Exploring, drilling and completing hydrocarbon and other wells are generally complicated, time consuming and ultimately very expensive endeavors. In recognition of these expenses, added emphasis has been placed on efficiencies associated with well completions and maintenance over the life of the well. Over the years, ever increasing well depths and sophisticated architecture have made reductions in time and effort spent in completions and maintenance operations of even greater focus.
In terms of architecture, the terminal end of a cased well often extends into an open-hole section. Thus, completions hardware may be fairly complex and of uniquely configured parts, depending on the particular location and function to be served. For example, in addition to the noted casing, the hardware may include gravel packing, sleeves, screens and other equipment particularly suited for installation in the open-hole section at the end of the well. However, hardware supporting zonal or formation isolation may be located above the open-hole section. Further, certain features such as chemical injection lines may traverse both cased and open-hole well regions. Once more, such complex architecture may need to remain flexible enough in terms of design and installation sequence so as to account for perforating, fracturing, gravel packing and a host of other applications that may be employed in completing the well.
With the above factors in mind, the sequence of hardware installation, following drilling and casing of the well, may begin with gravel packing directed at the open-hole productive region of the well. In terms of hardware delivery for a corresponding lower completion, this may include the installation of screen equipment, a gravel pack packer, a frac sleeve and other features at this productive interface. The result is a cased well that now terminates at a lower completion having at least a temporary degree of fluid control.
This temporary fluid control may consist of no more than employing frac sleeves closed over the formation interface at the lower completion. Thus, an intermediate completion, targeting a more secure form of well control may be installed. That is, once the lower completion is installed, a second trip into the well dedicated to the installation of a formation isolation valve with sealing architecture running to the lower completion may be installed. Thus, a more reliable and permanent form of control may be provided. Once more, this second intermediate completion may include the delivery of a polished bore receptacle, or “PBR”, assembly. As such, a receiving platform is provided for subsequent installation of production tubing and other hardware of the upper completion.
The intermediate completion is delivered by way of work string that not only is used for installation, but also achieves proper isolation during delivery. For example, the string delivers the intermediate completion with the formation isolation valve open, lands out and is then withdrawn in a manner that closes the valve before the string leaves sealed engagement with the PBR there above. As a result, fluid control over the lower completion is tightly maintained from the moment of installation of the intermediate completion.
With the intermediate completion fully installed and a means of permanent control now available over the lower completion, the upper completion may be installed as noted above. That is, a third trip into the well for delivery of and installation of production tubing, internal electric submersible pump (ESP), intelligent completion consisting of flow control valves and other equipment may now safely proceed. This equipment may be safely landed out at the PBR and installed without undue concern over maintaining fluid control over the underlying lower completion.
Unfortunately, the installation of the intermediate completion in order to provide a secure and reliable platform for the subsequent upper completion installation is an extremely costly undertaking. For example, depending on the overall depth of the well, the intermediate installation may take two days or more and consume millions of dollars in terms of equipment, rig-up and other dedicated time-related costs. Furthermore, the presence of an intermediate completion means that the number of equipment mating applications is doubled. That is, rather than simply mating an upper completion to a lower completion, an intermediate completion is mated to the lower followed by the mating of the upper completion to the intermediate. This doesn't just add time, it doubles the likelihood of mismatching or damaging the completions hardware during installation.
The possibility of loss of well control may be dramatically expensive if not catastrophic. Thus, in spite of the drawbacks associated with the intermediate completion as noted above, it remains preferable to have one installed. That is, as opposed to sole reliance on less secure well control features, such as closed sleeves of the lower completion, the installation of an intermediate completion generally remains the best available option for attaining a reliably installed upper completion.
A fluid loss control system is detailed herein that is configured for use with completion hardware, namely to aid in completion installation in a well. The system includes a tubular mandrel for advancement through the well for ultimate delivery to a location therein. A cup packer assembly is disposed about the mandrel for sealing an annular space of the well. However, a flow regulation mechanism is coupled to an underside of this assembly such that annular fluid is allowed to bypass the assembly during the advancement, yet at the same time close off flow upon delivery of the mandrel to the location.
Embodiments are described with reference to certain completions hardware and manners of installation. In particular, lower and upper completion assemblies are detailed that are configured for installation and without the requirement of an intervening intermediate assembly for maintenance of fluid loss control. Rather, a unique fluid loss control system is incorporated into the upper completion so as to allow maintenance of control during installation. While such embodiments are detailed herein in conjunction with certain hardware such as electric submersible pumps and circulation valves, a variety of other hardware installations such as intelligent completion, slotted liner, and screen may take advantage of the unique control system. For example, the tubular mandrel of the upper completion may also be employed for delivering a slotted liner. Further, such hardware may be installed in conjunction with the installation of the upper completion or via separate conveyance such as coiled tubing. Regardless, a fluid loss control system is provided of unique cup packer and flow regulation features that allow for avoidance a costly intermediate completion assembly without sacrifice to reliable maintenance over flow control.
Referring now to
Continuing with reference to
That is, hardware of the lower completion 400, such as the frac pack sleeve 450 of
In addition to preventing uphole fluids 135 from migrating downhole to more susceptible areas of concern, the fluid loss control system 101 is also tailored to intentionally allow uphole migration of downhole fluids 130. That is, as the upper completion 100 is advanced downhole, rather than being forced downhole, these fluids 130 are allowed to bypass the cup packers 105 of the system 101. In this manner, the forces on such fluids 130 as the uphole completion 100 advances are largely negated. Accordingly, fluid forces on the lower completion 400 as a result of the advancing upper completion 100 are substantially eliminated (see
The bypass of downhole fluids 130 as described above is achieved by way of a fluid loss control device 120 which is incorporated into a thimble at the base of the cup packers 120. More specifically, as detailed further below with reference to
Referring now to
As indicated above, the completions hardware is fully installed. In this particular embodiment, this means that the production packer 160 above the fluid loss control system 101 has been set. Thus, the sealable nature of the underlying cup packer 105 and overall system 101 has completed the intermediate function of fluid loss control. Now, a substantially permanent mechanism, the packer 160 is available to maintain such control for the duration of well operations. With respect to the annular space 289, this means that an uphole portion 286 thereof is sealably isolated from a downhole portion 287 thereof by the packer 160. The more temporary cup packer 105 and system 101 no longer need play a role in maintaining such control.
Continuing with reference to
With the completion hardware fully installed production may be regulated through surface equipment 210 at the oilfield 200. For example, in the embodiment shown, a communication line 270 is provided between a control unit 260 adjacent the well head 240 at surface 200 and the ESP 415. Of course, a host of additional communication or injection lines may also be provided. For example, sand face monitoring and control lines may be run to the lower completion 400. Further, in circumstances such as these, where lines are mated between the upper 100 and lower 400 completions, the effort and precision of an added intermediate mating is eliminated due to the elimination of the intermediate completion. Thus, the likelihood of a mismatched unreliable mated connection is reduced in addition to the overall savings of time and equipment expense.
Continuing with reference to
Referring now to
With particular reference to
On the other hand, continuing with added reference to
Of course, continuing with added reference to
In the embodiment shown, the override mechanism 380 is a rupture disk device that may be interventionally actuated, pressure actuated or otherwise triggered from surface via conventional means. Once this takes place, uphole fluids 135 may be allowed to flow past the cup packer 105 as the upper completion 100 is removed from the well 280. Thus, the column of fluid 135 above the cup packer 105 fails to present a substantial obstacle to upper completion removal. However, in other embodiments, the override mechanism 380 may be more directly integrated with the regulation valve 300 of
Referring now to
With specific reference to
A temporary measure such as the closure of a frac sleeve 425 may be adequate for initially isolating the production region 290 from the well 280 (or even vice versa). However, in light of the comparatively delicate nature of the interface as noted above and the forthcoming substantial installation of the upper completion 100, added measures may be taken beyond frac sleeve closure 425. Conventionally, this may have included the massive undertaking of a dedicated intermediate completion installation as noted above. However, as described herein and further below, such measures may be addressed based on the makeup of the upper completion 100 itself
With specific reference now to
Continuing with reference to
Once the upper completion 100 is fully engaged with the lower completion 400, conventional triggering may be utilized to set the packer 160 and fully isolate the annular space therebelow to the lower completion 400. At this time, the fluid loss system 101 may have completed its primary function, the lower completion 400 now being adequately isolated for ongoing well operations.
Referring now to
Once the completions are coupled or mated together as indicated at 550, a valve of the system may be closed as indicated at 560 to complete an annularly sealed isolation. In circumstances where later removal of the upper completion is required, the system may also be outfitted with an override mechanism as shown at 590. Thus, a bypass of fluid from above the system may be allowed so as to allow for a practical raising and removal of the upper completion.
Continuing with reference to
Embodiments described hereinabove include completion hardware that is installed in a secure and reliable manner in terms of maintaining well control. This is achieved in a manner that eliminates the need for an intermediate completion platform in advance of upper completion installation. As a result, a significant amount of expense and time may be saved. Additionally, the risk of misaligned or otherwise deficient coupling of completion hardware is reduced.
The preceding description has been presented with reference to presently preferred embodiments. Persons skilled in the art and technology to which these embodiments pertain will appreciate that alterations and changes in the described structures and methods of operation may be practiced without meaningfully departing from the principle, and scope of these embodiments. For example, different completions architectures utilizing cement casing, multiple cables, real-time monitoring and a variety of other hardware features may take advantage of embodiments of a fluid loss control system as detailed herein. Regardless, the foregoing description should not be read as pertaining only to the precise structures described and shown in the accompanying drawings, but rather should be read as consistent with and as support for the following claims, which are to have their fullest and fairest scope.
This Patent Document claims priority under 35 U.S.C. §119 to U.S. Provisional App. Ser. Nos. 61/586,959 and 61/586,967, entitled “Completion System with ESP Run” and “Completion System for Subsea ESP Run” respectively, both filed on Jan. 16, 2012 and incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
61586967 | Jan 2012 | US | |
61586959 | Jan 2012 | US |