This application relates to a heat exchanger having complex shaped pins.
Heat exchangers are known and utilized in any number of applications. One type of heat exchanger is a pin fin heat exchanger. In such a heat exchanger, a first fluid flows through a first chamber and a second fluid flows through a second chamber. A plate separates the two chambers and the fluids exchange heat through the plate.
To increase the heat transfer efficiency, it is known to have pins extending between adjacent plates. Historically, the plates and fins have had a constant cross-sectional thickness.
Additive manufacturing techniques have been developed. In an additive manufacturing system, a tool lays down material in layers and forms components. While it has been proposed to form heat exchangers from additive manufacturing techniques, a pin fin heat exchanger has not been formed by additive manufacturing techniques.
A heat exchanger has a plurality of outer walls and at least one inner wall. A first fluid port communicates a first fluid into a chamber on one side of the at least one inner wall and a second port communicates a second fluid into a second chamber on an opposed side of the at least one inner wall. A plurality of pins extends from the inner wall in at least one of the chambers. The plurality of pins has a generally frusto-conical outer surface.
A method is also disclosed and claimed.
These and other features may be best understood from the following drawings and specification.
While a particular arrangement is disclosed, the parallel flow of the two fluids as illustrated can be replaced with a cross-flow application. In such an application, the port 28 could be an inlet and port 26 an outlet. For that matter, a number of other inlet/outlet port arrangements and configurations could be utilized.
As shown in this figure, ports 34 communicate from the port 22 into the chambers 23. Similarly, ports 36 communicate with chambers 29 to the ports 28.
Pins 42 extend between the walls 30 and 32. Pins also extend between walls 32.
As can be appreciated in this figure, the pins 42 have enlarged surfaces adjacent the walls 30 and 32 and a thinner portion in the center.
For purposes of this application, the term “generally frusto-conical” means that the size either increases or decreases from one end toward the center and then moves back to either a larger or smaller size as shown across these embodiments.
It should be appreciated that any number of other shapes may be provided on the outer surface of the pins. Stated generally, there are discrete surfaces extending outwardly of the generally frusto-conical shapes to increase the heat transfer effect.
The pin embodiments, as disclosed above, would be difficult to manufacture using standard manufacturing techniques.
Any number of additive manufacturing techniques can be utilized to form a heat exchanger as disclosed. In one embodiment, direct metal selective laser melting may be used.
This disclosure could be summarized as a heat exchanger 20 has a plurality of outer walls and at least one inner wall (walls 30 and 32), a first fluid port communicating a first fluid into a chamber 23 on one side of at least one inner wall and a second port communicating a second fluid into a second chamber 29 on an opposed side of the at least one inner wall. A plurality of pins extend from the at least one inner wall in at least one of chambers 23/29, the plurality of pins have a generally frusto-conical shape.
A method of forming a heat exchanger 20 includes laying down layers of material 100 with an additive manufacturing process and forming a plurality of outer walls and at least one inner wall. The method also includes forming a first fluid port for communicating a first fluid into a chamber formed on one side of at least one inner wall and forming a second port communicating a second fluid into a second chamber formed on an opposed side of the at least one inner wall. The method further includes the step of forming a plurality of pins extending from at least one inner wall in at least one of the chambers, the plurality of pins are formed to have a generally frusto-conical shape.
Although an embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.