The present invention relates to magnesium supplements and, more specifically, to a complex of magnesium and maltol for oral treatment of magnesium deficiency.
Magnesium deficiency, known as hypomagnesemia, occurs when the amount of magnesium in the blood is lower than normal. Magnesium is an essential mineral and a cofactor for hundreds of enzymes, and is involved in numerous pathways including energy production, nucleic acid and protein synthesis, ion transport, and cell signaling. As a result, inadequate dietary intakes or low serum concentrations of magnesium has been associated with increased risk of cardiovascular disease, osteoporosis, and various metabolic disorders. The conventional approach for the treatment of hypomagnesemia is to administer magnesium orally or intravenously. However, current oral supplements are not as useful as potential magnesium chelates. Thus, there is a need in the art for a magnesium chelate complex that can be delivered orally at a low cost.
The present invention comprises complexes of magnesium maltol that can deliver magnesium via oral administration at a low cost. The magnesium maltol is formed by dissolving an amount of maltol in water. A solution of citric acid and magnesium oxide is added to the maltol, allowed to react, and then evaporated to obtain magnesium maltol.
The present invention will be more fully understood and appreciated by reading the following Detailed Description in conjunction with the accompanying drawings, in which:
Referring to the figures, wherein like numeral refer to like parts throughout, there is seen in
Referring to
A comparison of the 1H NMR of citric acid, magnesium citrate, maltol and magnesium maltol suggests that proton signals of MgMalt between 2.5-2.7 ppm are the result of citric acid and that the MgMalt contains 9.2-15.7% magnesium citrate. Similarly, characterization via 13C NMR taken in 1:6 (v:v) D2:H2O, as seen in
The synthesis of magnesium maltol was further optimized to reduce the amount of unrelated maltol as seen in
The synthesis approach of magnesium maltol was additionally used to form magnesium ethylmaltol as seen in
Both Complex 1 and 2 were synthesized from a magnesium oxide starting material in the presence of citric acid to aid in the solubility of the relatively water-insoluble metal oxide; the citric acid provides a proton. Addition of citric acid at 0.25 equivalents was the lowest concentration found that could drive the reaction while also minimizing the formation of magnesium citrate, with 1H NMR of both Complex 1 and 2 indicating ˜8% magnesium citrate in the final products. Increasing the equivalents of magnesium oxide to 1.2 eq. and 1.1 eq for the synthesis of Complex 1 and 2, respectively, was required to mitigate the return of unreacted maltol or ethylmaltol. Specifically, at 1:2 equivalents of magnesium oxide:maltol, upon cooling the solution from reaction temperature, a white precipitate was observed. Analysis of the dried precipitate via EA confirmed it to be unreacted maltol. Given the requirement to have citric acid present to drive the reaction, minimized as it is to 0.25 eq, it is clear the citrate is outcompeting maltol for magnesium binding. Thus, an additional stoichiometric amount of MgO is necessary to drive complete chelation of all maltol starting material.
The same requirement for an excess of MgO is observed for the synthesis of Complex 2. The only difference noted was the requirement to cool the reaction to −20° C. to recover the unreacted ethylmaltol, a requirement given the increased water solubility of ethylmaltol (5.84 g/100 mL) relative to maltol (1.2 g/100 mL). The presence of unreacted ethylmaltol was confirmed via EA.
The infrared spectra of Complex 1 and 2 were compared to the infrared spectra of both maltol and ethylmaltol, as seen in
This suggests magnesium coordination about the ketone, and a shift to slightly higher energy is consistent with magnesium coordination as reported by others. However, this is different than the observed signal shifts observed for other divalent metal-maltol complexes such as bismaltolato zinc (II). Upon coordination to zinc, the infrared maltol signals attributed to the ketone moiety are shifted to lower energy. This may be the result of zinc being less electropositive in character than magnesium, thus resulting in less ionic character upon coordination, but may also be attributed to differences in ionic radii of the two metals. No significant change to the region associated with the ketone is observed for Complex 2. However, coordination about this site is again supported by 13C NMR. Additionally, the spectra of both Complex 1 and 2 indicate the presence of coordinated water signified by broad signals observed between 3200-3500 cm−1, as were observed for the previously describe zinc maltol complexes. Further insight into the conclusions drawn from the FT-IR spectra are provided in Table 1
Thermal analysis of Complex 1 was conducted relative to maltol. Maltol exhibited a continuous percent weight loss from onset at ˜70° C. to 200° C. and stopped decreasing in percent weight at approximately 5%, thus suggesting decomposition of maltol between 160 and 200° C., which is consistent with the known melting point of maltol at 160° C. TGA analysis of Complex 1 exhibited a similar decomposition trend differing only with the percent weight loss exhibited by Complex 1 reaching a minimum at approximately 40%. The DSC spectrum of Complex 1 exhibited two endotherms: a broad endotherm with an apex at approximately 120° C. attributed to the loss of coordinated water from Complex 1, and a secondary more intense, sharper endotherm attaining apogee at approximately 160° C. This endotherm is attributed to the thermal decomposition of the maltol ligand, which is consistent with the TGA of maltol. The endotherm at 120° C. corresponds to a percent weight decrease of 22.70% observed on the TGA of Complex 1, which is attributed to the loss of four water molecules given a predicted percent weight change of 20.80%. While the EA of Complex 1 suggests only three waters, this difference is attributed to different hydrated states given the propensity of magnesium to take on water.
As observed with maltol, ethylmaltol exhibited only one continuous percent weight decrease from approximately 70° C.-200° C. and stops decreasing in weight at approximately 5% weight. This profile is attributed to the thermal decomposition of the ethylmaltol ligand, which is predicted to be roughly the same as maltol at ˜160° C. The TGA of 2 differed to that of ethylmaltol in that it exhibited two distinguishable percent weight decreases and stopped decreasing in percent weight at approximately 35%. Both percent weight changes correspond to two separate endotherms observed on the DSC of Complex 2—one broad endotherm apexed at approximately 110° C. and a secondary sharp, and substantially more intense, endotherm with an apex at approximately 320° C., respectively. The first broad endotherm observed on the DSC of Complex 2 shows a corresponding percent weight change of 15.33%, which corresponds to the loss three waters from the overall [Mg(EtMa)2(H2O)z2].H2O] complex supported by the EA with a predicted weight percent change of 15.15%. The secondary, more intense, endotherm at approximately 320° C. is attributed to the decomposition of the ethylmaltol ligand. The number of waters observed for Complex 1 via thermal analyses predict two waters directly coordinated to the magnesium core, and two additional waters of crystallization. The presence of three waters is consistent with EA. However, magnesium readily absorbs water and differing drying conditions and/or sample preparations likely have contributed to the different hydration states noted. The three waters observed for 2 support two coordinated waters and one water of crystallization.
Mg2+ readily coordinates with hard Lewis bases as exemplified by the monodentate magnesium chelates of formic acid, orotic acid, maleic acid, the bidentate magnesium chelates of mandelic acid and malic acid, and the tridentate magnesium chelate of citric acid. Ligand chelation to the divalent magnesium cation is often characterized by an observable shift in the NMR, or a change in signal resolution, of the proton signals adjacent to the Lewis bases of the ligand, due to the electropositive character of the metal. Given the impact that concentration and pH may have on shifting of proton and carbon signals, each sample of Complex 1 and 2 was analyzed at equimolar concentrations and at identical pH to maltol and ethylmaltol, respectively, with the instrument internally calibrated to TMS and each spectrum calibrated to the residual HOD peaks present in the D2O solvent.
1H NMR was conducted on both maltol and Complex 1 in 700 μl of D2O. At equimolar concentrations, the integration of maltol and Complex 1 is conserved. Additionally, Complex 1 showed a small but observable upfield shift for all three protons of 0.04 ppm for H2, 0.01-0.02 ppm for H3, and 0.03 ppm for H3. There is substantial sharpening of all three proton signals for 1 relative to free maltol.
Both heteronuclear single quantum coherence (HSQC) and heteronuclear multiple bond correlation (HMBC) confirmed the proton and carbon signal assignments of maltol, showing that C1 was the most downfield carbon signal at 175.20 ppm, while C5 was assigned at 154.50 ppm, and C2 was assigned at 113.40 ppm. Evaluation of maltol 13C NMR (comparatively to Complex 1 showed a significant reduction in intensity, as well as broadening of the C1 and C2 carbon signals. Analysis also showed a complete disappearance of the signal attributed to C5; a similar trend was observed for the 13C NMR of Complex 2, except for C5 peak intensity. Additionally, there was an observable downfield shift of the C1 carbon signal (178.20 ppm) and an upfield shift of the C2 (112.40 ppm) carbon signal.
1H NMR was conducted on ethylmaltol and the pure and dried 2 in D2O. At equimolar concentrations, the integration of ethylmaltol and Complex 2 is conserved. Additionally, Complex 2 showed a small observable upfield shift for each of the proton peaks of 0.02 ppm, 0.01 ppm, 0.01 ppm, and 0.02-0.03ppm for H1-H4, respectively, a trend similar to that noted for Complex 1. Assignments of all proton and carbon signals were confirmed via 2D 1H-13C NMR.
Over triplicate independent runs, the solubility of 1 was found to be 3.33±0.19 g per 100 mL of H2O, and the solubility of 2 was found to be 28.4±0.86 g per 100 mL of H2O. The solubility of 1 is approximately 2.8× greater than that of maltol (1.2 g/100 mL) and the solubility of 2 is approximately 4.9× greater than that of the ethylmaltol ligand (5.84 g/100 mL) (Table 2). These solubilities are consistent with the reported solubilities of maltol and ethylmaltol.
Cellular uptake of Complex 1 and 2 were conducted in CaCo-2 cells at an incubation time of 1 hr as seen in
Hypomagnesemia is a greatly under-appreciated clinical issue, and is common in critically ill patients, where it may lead to complications, from severe to fatal. Magnesium compounds that are fully characterized and which have the properties and benefits of being readily water soluble, all natural/GRAS and readily absorbed, is a current unmet need. Such compounds both offer ready incorporation into supplements, but also have scope to become magnesium pharmaceuticals, which can be used in a clinical setting to off-set side-effects of magnesium deficiency such as cardiovascular and neuromuscular manifestations. The present invention provides for the syntheses of magnesium maltol (Complex 1) and magnesium ethylmaltol (Complex 2). Solution state and solid-state characterization enabled full characterization of both complexes and analysis of cellular uptake data in the human CaCo-2 cell line confirmed cellular entry. Given the characterization, water solubility, cell uptake and all natural/GRAS status of the ligands (and magnesium oxide and citric acid starting materials), these compounds offer great opportunities as food/supplement ingredients and for potential future pharmaceutical development.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/050796 | 9/17/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63079743 | Sep 2020 | US |