This application is related to U.S. patent application titled “FLEXIBLY MOUNTED CARTRIDGE ALIGNMENT COLLAR FOR DRUG DELIVERY DEVICE” to the same Applicant and filed on the same day, which is hereby incorporated by reference in its entirety.
The present invention, in some embodiments thereof, relates to a coupling system for a drug cartridge, more particularly, but not exclusively, to a coupling system including a cannula to be inserted through a septum.
U.S. Patent Application Publication No. 20110054400 discloses that, “a piercing member for piercing a membrane may be arranged within a housing and supported by a compliant that may be for allowing articulation of the piercing member relative to the housing in a case where the piercing member is in the membrane and moved relative to the housing.”
U.S. Pat. No. 6,595,960 discloses, “An apparatus and method of providing a flexible needle assembly for use with a medication delivery pen. The flexible needle assembly includes a needle cannula having proximal and distal points and a hub coupled to the needle cannula. The hub includes a flexible roof, or ball-and-socket arrangement, that permits the needle cannula to move about the centerline of the hub. The flexible roof can include one or more concentric ribs to enhance flexibility of the needle cannula about the centerline of the hub.”
U.S. Pat. No. 3,994,295 discloses that, “An adapter device for mounting a hypodermic needle on a syringe barrel consists of two telescoped elements the outer of which is a casing or shell and the inner or which is a resilient tube bonded at opposite ends to a stem adapted for connection to the barrel and a needle mounting member seated over the end of the shell.”
U.S. Patent Application Publication No. 20140083517 discloses “an alignment device for coupling a liquid drug cartridge with a longitudinal cartridge axis and a constricted neck portion with a cap and a pierceable septum distal from the neck portion with an adapter . . . ” “The septum is perpendicular to the cartridge axis. The device comprises an adapter cannula with a longitudinal cannula axis to pierce the septum and a proximal cartridge engagement structure for axial aligned engagement with a distal end section of cartridge body. The device further comprises a distal adapter engagement structure for axial aligned engagement with the adapter. A coupling of the cartridge with the adapter is enabled via the alignment device. The adapter and the cartridge are, during the coupling, aligned by the cartridge engagement structure and the adapter engagement structure, respectively relative to each other such that the longitudinal cartridge axis and the longitudinal cannula axis form a common longitudinal axis.”
U.S. Patent Application Publication No. 20120029431 discloses “A reservoir and straight-line, push-on connector assembly” . . . “for connecting the reservoir and one of a standard Luer line set and a custom Luer line set to any number of infusion pump configurations using a simple straight-line, push-on motion, wherein the push-on connector assembly is provided and configured to secure the line set and reservoir with the infusion pump. One simple straight-line, push-on motion, preferably performed by gripping an expander sleeve, places and secures the reservoir (i.e., locates the reservoir on the x, y, and z axes) in the pump reservoir cavity, and one simple straight-line, pull-off motion releases and removes the reservoir from the pump reservoir cavity. Rotational orientation is not required for connection, pump engagement, or pump function, and any pulling of the tube set will not release the reservoir as the expansion sleeve through which the tube set is routed is not moved from the securing position by tension on the tube set or Luer fitting.”
U.S. Patent Application Publication No. 2013/096509 discloses “A system for a drug delivery device comprising a reservoir holder configured to hold a reservoir, and an alignment interface comprising a main body configured to be coupled to the reservoir. A first alignment feature is provided on the main body. The first alignment feature cooperates with a corresponding alignment feature provided by the reservoir holder such that when the reservoir is inserted into the holder, the first alignment feature cooperates with the corresponding alignment feature provided by the holder so as to rotate the alignment interface and thereby align the alignment interface within the holder. Thus, the reservoir may be aligned within the reservoir holder. The first alignment feature may comprise at least one protrusion provided on the main body of the interface. The system further comprises one or more coding features.”
U.S. Patent Application Publication No. 2013148270 discloses a method and apparatus, “for delivery of a drug to a recipient. In some embodiments, the delivery apparatus may unseal a drug containing reservoir. In some embodiments, the delivery rate may be controlled and/or adjustable. Optionally the apparatus may be disposable. Optionally, the apparatus may have a low profile and/or be wearable and/or attachable to the recipient. Optionally, discharge of the drug and/or unsealing of the reservoir may be driven by a plunger moving parallel to the base of the apparatus. Optionally, the apparatus may release a hypodermic needle into the recipient. Optionally, release of the hypodermic needle may be in a direction non-parallel and/or orthogonal to the direction of movement of the plunger. Optionally, prior to release, the hypodermic needle may be preserved in an aseptic state by a needle opening septum sealing a needle opening. Optionally, upon release, the hypodermic needle may pierce the needle opening septum.”
Additional background art includes Edwin Chan, Yuh-Fun Maa, Ph.D and David Overcashier; Manufacturing Consideration in Developing a Prefilled Syringe—Investigating the Effect of Headspace Pressure; American Pharmaceutical Review, May 8, 2012 and Appendix 3 Measurement of Leakage of Tuberculin Syringes; World Health Organization Monograph Series No. 12; BCG Vaccination, editors Lydia Edwards, Carroll Palmer and Knut Magnus; Tuberculosis Research Office World Health Organization Copenhagen; World Health Organization; Palais Des Nations, Geneva, 1953.
Unless otherwise defined, all technical and/or scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the invention, exemplary methods and/or materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be necessarily limiting.
According to an aspect of some embodiments of the invention, there is provided an assembly for coupling a drug delivery device to a cartridge sealed by a septum having a leak threshold force, the apparatus comprising: a cannula having a tip region configured to penetrate the septum, the tip region having a width; a frame including: a guide sized and shaped to secure the cartridge to the frame and a mount attached to the cannula; the mount positioned on the frame so that the tip region of the cannula protrudes through the septum of the cartridge when the cartridge is secured to the frame by the guide; the mount is compliant enough so that a force of less than a leak threshold force of the septum moves the tip region of the cannula transaxially at least distance equal to the width.
According to some embodiments of the invention, the mount is compliant enough so that a force of less than a leak threshold force of the septum moves the tip region of the cannula transaxially at least distance equal to a position deviation tolerance of the septum.
According to some embodiments of the invention, the distance is greater than a movement caused by a flexibility of the frame and the cannula under the leak threshold force.
According to some embodiments of the invention, the mount compensates for a movement of the cannula at a stress level less than a stress then a bending stress of the cannula.
According to some embodiments of the invention, the leak threshold force is 6 N.
According to some embodiments of the invention, the assembly further comprises: a base located on a side of the cannula opposite the tip region, the base inhibiting backwards movement of the tip region.
According to some embodiments of the invention, the base is positioned off axis of the cannula.
According to some embodiments of the invention, the mount is configured to bias movement of the cannula is a particular direction.
According to some embodiments of the invention, the particular direction is parallel to a face of a bevel of a tip of the cannula.
According to some embodiments of the invention, the cannula is bent at an angle ranging between 30 to 80 degrees.
According to some embodiments of the invention, the assembly further comprises: a second end of the cannula connected to a flexible fluid path.
According to some embodiments of the invention, the assembly further includes the cartridge is coupleable to the cannula by a linear movement of the cartridge with respect to the guide.
According to some embodiments of the invention, the compliant mount is flexible.
According to an aspect of some embodiments of the invention, there is provided a method of supplying a drug to a delivery device comprising: loading a cartridge containing the drug into the delivery device piercing a septum with a cannula; opening a flow path between the cannula and an internal fluid path of the drug delivery device; limiting transaxial movement of the septum to less than a first deviation tolerance; and allow transverse movement of a septum interface region of the cannula to adjust to the movement.
According to some embodiments of the invention, the transaxial movements of the cannula are caused by a stress less than a leak threshold of the septum.
According to some embodiments of the invention, the allowing movement is in one direction more than another direction.
According to some embodiments of the invention, the more movement is allowed in the direction opposite a face of a bevel of the cannula than in a direction of the face of a bevel of the cannula.
According to some embodiments of the invention, the more movement is allowed parallel to a direction faced by a bevel of the cannula than in a direction perpendicular thereto.
According to some embodiments of the invention, the allowing movement is less when there is an axial stress against a tip of the cannula than when the cannula not under axial stress.
According to some embodiments of the invention, the method where the allowing movement is elastic.
Some embodiments of the invention are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of embodiments of the invention.
In this regard, the description taken with the drawings makes apparent to those skilled in the art how embodiments of the invention may be practiced.
In the drawings:
The present invention, in some embodiments thereof, relates to a coupling system for a drug cartridge, more particularly, but not exclusively, to a coupling system including a cannula to be inserted through a septum.
An aspect of some embodiments of the present invention relates reducing stress on a coupling caused for example by movement of the coupled parts. For example, the coupling may include a cannula puncturing a septum of a cartridge of a drug delivery device. For example a compliant assembly may reduce stress between a cannula and a septum caused by movements of the cartridge. Misfitting and/or relative movement between a drug cartridge and the delivery device may cause relative movement between the cartridge and the coupling. Optionally, when the septum moves, the compliant assembly may permit compensating movement of a septum interface portion of the cannula reducing stress at the interface. In some embodiments, a compliant coupling assembly may allow directionally dependent displacement of the coupling. For example, the tip of the cannula may move transaxially in response to lateral movement of the septum.
In some embodiments, a frame may interconnect, orient and/or position a guide in relation to a compliant coupling assembly. For example, the frame may include a housing of a drug delivery device and/or the guide may include a guide channel in the housing. Optionally, the cartridge includes a septum near a distal end thereof. For example, the septum may be oriented perpendicular to a longitudinal axis of the cartridge (for example the axis may extend from the distal end to the proximal end of the cartridge). The coupling optionally includes cannula, for example a hollow needle oriented longitudinally near the distal end of the guide channel. In some embodiments, the cartridge may be inserted into the channel and/or the cannula (for example a beveled proximal end thereof). The proximal end of the cannula may protrude into the access channel of the cartridge and/or puncture the septum of the cartridge. After puncturing the septum, the hollow of the needle may form a flow path from the inside of the cartridge into an internal flow path of the drug delivery device.
In some embodiments, the flexibility of the mount may allow freedom of movement of the cannula that is directionally dependent. For example, the septum contacting portion of the cannula may have a sideways freedom of movement (for example the tip and/or the septum contacting portion of the cannula may move transaxially a distance ranging between 0 to 1.0 mm or under a side load of 0.6 kg). For example, a base may be provided distal to the cannula, blocking backward movement of the cannula (e.g. distal movements of the tip of the cannula and/or movements of the tip of the cannula away from the septum).
In some embodiments the tolerance of deviation of positioning of the access channel of the cartridge with respect to the housing may range for example between 0 to 5 mm and/or between 5 to 7 mm and/or between 7 to 15 the tolerance of orientation of the access channel with the housing may range for example between 0 to 7 degrees. For example, when the cartridge is engaged with the fitting, the tolerance of deviation of positioning of the access channel of the cartridge with respect to the coupling may range for example between 0 to 1 mm in all directions and the tolerance of orientation of the access channel with the coupling may range for example between 0 to 2 degrees.
In performance tests leaks were found to occur during use of patch injectors. Careful observation revealed that leaks were sometimes caused by stresses between a septum puncturing needle and the septum of the cartridge. These stresses may in some instances cause an elastic stretching and/or plastic deformation and/or tearing producing an opening around the piercing location where fluid may leak from the cartridge. A compliant coupling assembly may reduce the stress and/or the leakage.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not necessarily limited in its application to the details of construction and the arrangement of the components and/or methods set forth in the following description and/or illustrated in the drawings and/or the Examples. The invention is capable of other embodiments or of being practiced or carried out in various ways.
Method of Connecting a Cartridge to a Fluid Path
Referring now to the drawings,
In some embodiments a drug cartridge may be contact 101 a cartridge with a misalignment between the cartridge and the coupling. For example, the cartridge may have an access channel sealed by a septum on the distal end thereof and/or the cartridge may be positioned using a guide. In various embodiments, the septum may be slightly misaligned with the cannula of the device. For example misalignment may result from imprecision in positioning of the septum with respect to the body of the cartridge and/or imprecision in positioning of the channel with respect to the housing and/or imprecision in positioning of the channel with respect to the cannula and/or due to unbalanced forces when inserting the cartridge into the channel and/or other factors. Changes in working forces on the cartridge (for example difference between forcing during insertion, waiting, and/or discharge) may cause a cartridge to move after connection of the coupling (e.g. puncturing of a septum). These and/or other factors (for example the bevel of the point of the cannula) may cause the coupling to connect 104 to the cartridge in a misaligned and/or strained state. The coupling and/or a mounting of the coupling may adjust 108 to relieve the strained state. Adjustment 108 of the coupling and/or the coupling mount may allow the coupling to remain in the strained state without stressing the cartridge interface.
In some embodiments a cartridge may be inserted 105 into a delivery device. Optionally, inserting 105 the cartridge into the device may connect 103 a coupling and/or open a path between the drug delivery device and the cartridge. Optionally, the path may be used to supply the drug to the delivery device. For example opening a path between the cartridge and delivery device may include opening a fluid flow path allowing flow of a liquid drug from the cartridge to the delivery device. For example the fluid path may be supplied from the access channel of the cartridge to the coupling of the delivery device.
In some embodiments, parts of the injector may move 106 after the path is opened between the delivery device and the cartridge. For example, a plunger may be pushed into the cartridge to push out the contents. The force of the plunger may cause movement 106 (for example movement of the cartridge and/or the access channel with respect to the housing and/or rotation of the cartridge). For example, the angle between the axis of the cartridge and the guide channel of the delivery device may change. Changes in position of the cartridge may sometime cause transaxial movement of the septum and/or access channel. For example, a cartridge may rotate around its axis. In some cases, a connection between a coupling and the cartridge may be off axis and/or off center. Movement 106 of the cartridge may cause strain 107 on coupling-cartridge interface. Optionally, the coupling may compensate 108, for example by moving along with the cartridge and/or the access channel. An adjustable, flexible, and/or conformable coupling mount optionally preserves the integrity of the flow path and/or preserves the flow path in an open state.
In some embodiments, a septum and/or an axis channel may be moved 106 transaxially a distance that is less than or equal to a movement allowed by a position deviation tolerance of a cartridge guide. Stress on the interface between the septum and the tip region of cannula may develop. The stress may cause compensating movements by the cannula. For example, compensating movements of a magnitude of the position deviation tolerance of the septum may be produced by a stress less than the leak threshold force of the septum. For example, the movement deviation tolerance of the septum in the transaxial direction may range between 0 to 0.5 mm and/or 0.5 to 1.5 mm and/or 1.5 to 3 mm and/or 3 to 6 mm. The threshold leakage force on the septum may for example range between 0.1 to 1 N and/or between 1 N to 5 N and/or between 5 N and/or between 5 to 8 N and/or between 8 to 20 N.
In some embodiments, preserving the flow path may include preserving alignment between the coupling and the access channel. In some embodiments, compensation for the movement of the cartridge may include reducing stress between at an interface between the coupling and the cartridge. In some embodiments, preserving integrity of a flow path and/or reducing stress may reduce and/or prevent leakage of the contents of the cartridge.
States of a Compliant Coupling System
In some embodiments, a cartridge coupling assembly and/or a cartridge may be connected 262′ and/or may be properly aligned 266 without compensation. Connection of the cartridge to a coupling assembly may include for example insertion of the cartridge into a guide in the housing of a drug delivery device. For example, a cartridge may be aligned 266 to a housing of the device and/or a coupling may be aligned 264 to the cartridge and/or the cartridge guide and/or the housing of the device and/or the mount may be aligned 268d with the housing of the device and/or the guide and/or the cartridge.
In some embodiments, compliance (for example flexing and/or pivoting and/or sliding) of the mount of a coupling may compensate 268b for a misalignment 264′ of the coupling (for example due to manufacturing imprecision of the coupling and/or the mount and/or the frame).
In some embodiments, flexing of a coupling mount may compensate 268a, for a misalignment 266′ and/or movement of a cartridge with respect to a housing of the drug delivery device. Alternatively or additionally, compliance of the mount may compensate 268a, 268c for a misalignment 266′ and/or movement of a cartridge with respect to a housing of the drug delivery device.
In some embodiments, a drug cartridge may be supplied disconnected 262 from a drug delivery device. Optionally or alternatively, the cartridge and the device may be integrally manufactured.
A Compliant Coupling Assembly
In some embodiments, the design of base 312 and/or mount 314 may allow movement of coupling 316 more in one direction than in another. For example, coupling 316 may be allowed to rotate and/or move relatively freely perpendicular to an axis of cartridge 322 and/or guide 324 and/or coupling 316 and/or access channel 321. Movements of coupling 316 toward or away from guide 324 in the direction of a longitudinal axis of axis of cartridge 322 and/or guide 324 and/or coupling 316 and/or access channel 321 may for example be more limited. For example, liming longitudinal movement of coupling 316 may make it easier to connect coupling 316 to access channel 321 and/or cartridge 322, for example when inserting cartridge 322 into the device.
Embodiment for Piercing a Septum of a Cartridge
In some embodiment, a coupling may move more freely in one direction than another. For example, base 412 limits longitudinal movement of cannula 416. For example, longitudinal movement of cannula 416 may be limited to a range between 0 and 1 mm. In some embodiments, limiting longitudinal movement cannula 416 may make it easier to insert cannula 416 through septum 420. In some embodiments, pivoting of mount 414 around base may allow transaxial movement (for example lateral movement and/or upward [dorsal] and/or downward [ventral] movement) of the proximal end 418 and/or a septum interface region 417 of coupling 416. For example transaxial movement may range between 0.1 mm and 0.7 mm. For example, when septum 420 moves, stress between the septum and the tip region of cannula 416 may cause compensating movements of the tip region of cannula 416 (for example the tip region may include a tip 418 and/or a septum interface region 417 of cannula 416). For example, a transaxial movement of the septum of 0.7 mm or less may produce a stress on region 417 of the cannula. The stress may produce compensating movement which reduces the stress. For example, compensating movement of region 417 of 0.7 mm may be produced by a stress of less than the leak threshold force of the septum. For example the leak threshold force of the septum may range between 5 to 7 N. Alternatively or additionally the test leak threshold force may be defined under a test pressure for example ranging between 1 to 5 kg/cm2 and/or between 5 to 6 kg/cm2 and/or between 6 to 12 kg/cm2. Alternatively the leak volume may range for between 0.01 to 0.05 ml and/or between 0.05 to 0.1 ml and/or between 0.1 to 0.2 ml and/or between 0.2 to 0.5 ml and/or between 0.5 to 1 ml. The leak volume may be defined over a given time (for example the volume may leak out over a time ranging between 0 and 60 seconds and/or between 1 to 10 minutes and/or between 10 minutes to an hour and/or between an hour to a day). A leak threshold strain may be defined for example as a quantity of movement of a cannula puncturing a septum that causes leaking between the cannula and the septum, for example leakage of more than 0.05 ml under working conditions. Alternatively or additionally the test leak threshold strain may be defined under a test pressure for example ranging between 1 to 5 kg/cm2 and/or between 5 to 6 kg/cm2 and/or between 6 to 12 kg/cm2. Alternatively the leak volume may range for between 0.01 to 0.05 ml and/or between 0.05 to 0.1 ml and/or between 0.1 to 0.2 ml and/or between 0.2 to 0.5 ml and/or between 0.5 to 1 ml.
In some embodiments, mount 414 may be configured to allow more movement under some conditions than others. For example, mount 416 is configured to inhibit more transaxial movement when there is a longitudinal force in the proximal direction on mount 414. For example, when there is no distal force, mount 414 sits on base 412 and may pivot relatively freely. A distal force (for example the force of septum 420 being pushed against cannula 416 optionally pushes the rear (distal) portion of mount 414 against the rear (distal) wall of housing 410. When braced against the rear wall of housing 410, mount 414 is more stable. In some embodiments, added stability under a distal force may make it easier to puncture septum 420 with cannula 416. Alternatively or additionally, base 412 may be located off the center axis of mount 414. For example, base 412 may be offset slightly (rightward on the page of
In some embodiments, cannula 416 may include a hollow bore needle ranging between 10 to 34 gauge. Mount 414 may be made for example of a hard plastic or resin for example Polycarbonate. Alternatively mount 414 may be made of a more flexible material for example an elastomer, for example thermoplastic elastomer (TPC) and/or rubber and/or silicone. In some embodiments the mount may be connected to a frame (e.g. housing 410) on a movable support for example a pivot and/or a sliding support. Movement of the movable support optionally supplies the compliance of the mount. In some embodiments, the length of the axis channel (for example the neck of the cartridge) may range between 6 and 10 mm. For example the diameter of the axis channel (for example the neck of the cartridge) may range between 4 to 8 mm and/or between 8 to 8.5 mm and/or between 8.5 to 9 mm and/or between 9 to 10 mm and/or between 10 to 20 mm.
In some embodiments, an internal fluid path connecting the coupling to a delivery subassembly may include a flexible section. For example, an internal fluid path of the embodiment of
In some embodiments, a cartridge may be steadied by supports. For example, when cartridge 422 is inserted fully into guide channel 424 (into a loaded position) supports 430a and 430b may steady an adapter fitting 419 of cartridge 422. Steadying the position of adapter fitting 419 may increase the precision of positioning and/or decrease movement of channel 521.
In some embodiments, supports may align a cartridge in a drug delivery device. Optionally support 530 which aligns cartridge 422 also holds compliant mount 414. Optionally, a slack (for example a space between support 530 fitting 419) allows a limited freedom of movement of cartridge 422 with respect to housing 410, for example ranging between 0.01 mm and 1.0 mm. Optionally mount 414 may give a freedom of movement to a proximal portion of cannula 416. For example the freedom of movement may be in the horizontal direction and/or the vertical direction and/or there may be a greater freedom of movement in one direct than the other. For example, the freedom of movement may be to the portion of cannula 416 extending proximally to mount 414 and/or to septum interface portion 417 of the needle and/or the proximal tip 418 of the needle. The freedom of movement may range between 30 to 60% of the freedom of movement of cartridge 422 and/or between 60 to 120% and/or between 120% and 200% to the freedom of movement of cartridge 422 and/or channel 521.
In some embodiments, cannula 416 may include a bent needle, a proximal side of which couples to cartridge 422 (for example by piercing septum 420) and a distal side of which is connected to an internal fluid path (for example flexible tube 426) and/or to an output assembly such as needle insertion assembly 432. Mount 414 optionally includes a curved channel 413 through which fits the bent portion of cannula 416. Optionally, cannula 416 may be bent between 30 to 80 degrees.
In some embodiments, cartridge 422 is inserted into a distal opening in guide channel 424. Optionally, cartridge 422 slides longitudinally along channel 424 until it reaches a loaded position. For example in the loaded position, the coupling (e.g. cannula 426) engages the access channel of cartridge 422, for example by puncturing septum 420 and/or sliding into channel 521 (e.g. see
In some embodiments, a cannula may be inserted through a septum until a septum interface region intersects the septum. For example,
In some embodiments, a cartridge may rotate around its longitudinal axis. For example this may cause septum 1020 to rotate. In some cases, for the example of
It is expected that during the life of a patent maturing from this application many relevant technologies will be developed and the scope of the terms are intended to include all such new technologies a priori.
As used herein the term “about” refers to ±5%.
The terms “comprises”, “comprising”, “includes”, “including”, “having” and their conjugates mean “including but not limited to”.
The term “consisting of” means “including and limited to”.
The term “consisting essentially of” means that the composition, method or structure may include additional ingredients, steps and/or parts, but only if the additional ingredients, steps and/or parts do not materially alter the basic and novel characteristics of the claimed composition, method or structure.
As used herein, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a compound” or “at least one compound” may include a plurality of compounds, including mixtures thereof.
Throughout this application, various embodiments of this invention may be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.
Whenever a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range. The phrases “ranging/ranges between” a first indicate number and a second indicate number and “ranging/ranges from” a first indicate number “to” a second indicate number are used herein interchangeably and are meant to include the first and second indicated numbers and all the fractional and integral numerals therebetween.
It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination or as suitable in any other described embodiment of the invention. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.
Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.
All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention. To the extent that section headings are used, they should not be construed as necessarily limiting.
Number | Name | Date | Kind |
---|---|---|---|
3994295 | Wulff | Nov 1976 | A |
4601702 | Hudson | Jul 1986 | A |
4886499 | Cirelli et al. | Dec 1989 | A |
4919596 | Slate et al. | Apr 1990 | A |
4950246 | Muller | Aug 1990 | A |
5097122 | Colman et al. | Mar 1992 | A |
5109850 | Blanco et al. | May 1992 | A |
5131816 | Brown et al. | Jul 1992 | A |
5211638 | Dudar et al. | May 1993 | A |
5254096 | Rondelet et al. | Oct 1993 | A |
5383865 | Michel | Jan 1995 | A |
5501665 | Jhuboo et al. | Mar 1996 | A |
5593390 | Castellano et al. | Jan 1997 | A |
5616132 | Newman | Apr 1997 | A |
5643218 | Lynn et al. | Jul 1997 | A |
5647853 | Feldmann et al. | Jul 1997 | A |
5690618 | Smith et al. | Nov 1997 | A |
D393314 | Meisner et al. | Apr 1998 | S |
5800420 | Gross et al. | Sep 1998 | A |
5807375 | Gross et al. | Sep 1998 | A |
5814020 | Gross | Sep 1998 | A |
5851197 | Marano et al. | Dec 1998 | A |
5858001 | Tsals et al. | Jan 1999 | A |
5858008 | Capaccio | Jan 1999 | A |
5931814 | Alex et al. | Aug 1999 | A |
5957895 | Sage et al. | Sep 1999 | A |
5993423 | Choi | Nov 1999 | A |
6004297 | Steenfeldt-Jensen et al. | Dec 1999 | A |
6064797 | Crittendon et al. | May 2000 | A |
6074369 | Sage et al. | Jun 2000 | A |
6186982 | Gross et al. | Feb 2001 | B1 |
6200289 | Hochman et al. | Mar 2001 | B1 |
6248093 | Moberg | Jun 2001 | B1 |
6277095 | Kriesel et al. | Aug 2001 | B1 |
6277098 | Klitmose et al. | Aug 2001 | B1 |
6277099 | Strowe et al. | Aug 2001 | B1 |
6287283 | Ljunggreen et al. | Sep 2001 | B1 |
6362591 | Moberg | Mar 2002 | B1 |
6391005 | Lum et al. | May 2002 | B1 |
6423029 | Elsberry | Jul 2002 | B1 |
D465026 | May et al. | Oct 2002 | S |
6458102 | Mann et al. | Oct 2002 | B1 |
6485461 | Mason et al. | Nov 2002 | B1 |
6485465 | Moberg et al. | Nov 2002 | B2 |
6500150 | Gross et al. | Dec 2002 | B1 |
6517517 | Farrugia et al. | Feb 2003 | B1 |
D471274 | Diaz et al. | Mar 2003 | S |
D471983 | Hippolyte et al. | Mar 2003 | S |
6555986 | Moberg | Apr 2003 | B2 |
6558351 | Steil et al. | May 2003 | B1 |
6589229 | Connelly et al. | Jul 2003 | B1 |
6595956 | Gross et al. | Jul 2003 | B1 |
6595960 | West et al. | Jul 2003 | B2 |
6645181 | Lavi | Nov 2003 | B1 |
6652482 | Hochman | Nov 2003 | B2 |
6656158 | Mahoney et al. | Dec 2003 | B2 |
6656159 | Flaherty | Dec 2003 | B2 |
6659980 | Moberg et al. | Dec 2003 | B2 |
6673033 | Sciulli et al. | Jan 2004 | B1 |
6679862 | Diaz et al. | Jan 2004 | B2 |
6699218 | Flaherty et al. | Mar 2004 | B2 |
6749587 | Flaherty | Jun 2004 | B2 |
6768425 | Flaherty et al. | Jul 2004 | B2 |
6786890 | Preuthun et al. | Sep 2004 | B2 |
6800071 | McConnell et al. | Oct 2004 | B1 |
6805687 | Dextradeur et al. | Oct 2004 | B2 |
6817990 | Yap et al. | Nov 2004 | B2 |
6824529 | Gross et al. | Nov 2004 | B2 |
6843782 | Gross et al. | Jan 2005 | B2 |
6854620 | Ramey | Feb 2005 | B2 |
6905298 | Haring | Jun 2005 | B1 |
6908452 | Diaz et al. | Jun 2005 | B2 |
6960192 | Flaherty et al. | Nov 2005 | B1 |
7001360 | Veasey et al. | Feb 2006 | B2 |
7048715 | Diaz et al. | May 2006 | B2 |
7060059 | Keith et al. | Jun 2006 | B2 |
7128727 | Flaherty et al. | Oct 2006 | B2 |
7144384 | Gorman et al. | Dec 2006 | B2 |
7193521 | Moberg et al. | Mar 2007 | B2 |
D544092 | Lewis | Jun 2007 | S |
7247149 | Beyerlein | Jul 2007 | B2 |
7247150 | Bierman | Jul 2007 | B2 |
7250037 | Shermer et al. | Jul 2007 | B2 |
7267669 | Staunton et al. | Sep 2007 | B2 |
7303549 | Flaherty et al. | Dec 2007 | B2 |
7384413 | Gross et al. | Jun 2008 | B2 |
7390314 | Stutz, Jr. et al. | Jun 2008 | B2 |
7407493 | Cane′ | Aug 2008 | B2 |
7455663 | Bikovsky | Nov 2008 | B2 |
7465290 | Reilly | Dec 2008 | B2 |
7497842 | Diaz et al. | Mar 2009 | B2 |
7530964 | Lavi et al. | May 2009 | B2 |
7547281 | Hayes et al. | Jun 2009 | B2 |
7565208 | Harris et al. | Jul 2009 | B2 |
7569050 | Moberg et al. | Aug 2009 | B2 |
D600341 | Loerwald | Sep 2009 | S |
7585287 | Bresina et al. | Sep 2009 | B2 |
7588559 | Aravena et al. | Sep 2009 | B2 |
D602155 | Foley et al. | Oct 2009 | S |
D602586 | Foley et al. | Oct 2009 | S |
D604835 | Conley | Nov 2009 | S |
7621893 | Moberg et al. | Nov 2009 | B2 |
7628770 | Ethelfeld | Dec 2009 | B2 |
7628772 | McConnell et al. | Dec 2009 | B2 |
7628782 | Adair et al. | Dec 2009 | B2 |
7637891 | Wall | Dec 2009 | B2 |
7641649 | Moberg et al. | Jan 2010 | B2 |
7660627 | McNichols et al. | Feb 2010 | B2 |
7678079 | Shermer et al. | Mar 2010 | B2 |
7682338 | Griffin | Mar 2010 | B2 |
7686787 | Moberg et al. | Mar 2010 | B2 |
7699829 | Harris et al. | Apr 2010 | B2 |
7699833 | Moberg et al. | Apr 2010 | B2 |
7704227 | Moberg et al. | Apr 2010 | B2 |
7704231 | Pongpairochana et al. | Apr 2010 | B2 |
7708717 | Estes et al. | May 2010 | B2 |
7713238 | Mernoe | May 2010 | B2 |
7713240 | Istoc et al. | May 2010 | B2 |
7717903 | Estes et al. | May 2010 | B2 |
7717913 | Novak et al. | May 2010 | B2 |
7722574 | Toman et al. | May 2010 | B2 |
7736344 | Moberg et al. | Jun 2010 | B2 |
7744589 | Mounce et al. | Jun 2010 | B2 |
7749194 | Edwards et al. | Jul 2010 | B2 |
7766873 | Moberg et al. | Aug 2010 | B2 |
7776030 | Estes et al. | Aug 2010 | B2 |
7780637 | Jerde et al. | Aug 2010 | B2 |
7789857 | Moberg et al. | Sep 2010 | B2 |
7801599 | Young et al. | Sep 2010 | B2 |
7806868 | De Polo et al. | Oct 2010 | B2 |
7815622 | Istoc et al. | Oct 2010 | B2 |
7828528 | Estes et al. | Nov 2010 | B2 |
7837659 | Bush, Jr. et al. | Nov 2010 | B2 |
7846132 | Gravesen et al. | Dec 2010 | B2 |
7857131 | Vedrine | Dec 2010 | B2 |
7879025 | Jacobson et al. | Feb 2011 | B2 |
7879026 | Estes et al. | Feb 2011 | B2 |
7892206 | Moberg et al. | Feb 2011 | B2 |
7918825 | O'Connor et al. | Apr 2011 | B2 |
7918843 | Genosar et al. | Apr 2011 | B2 |
7935104 | Yodfat et al. | May 2011 | B2 |
7935105 | Miller et al. | May 2011 | B2 |
7938803 | Mernoe et al. | May 2011 | B2 |
7955297 | Radmer et al. | Jun 2011 | B2 |
7955305 | Moberg et al. | Jun 2011 | B2 |
7967784 | Pongpairochana et al. | Jun 2011 | B2 |
7967795 | Cabiri | Jun 2011 | B1 |
7981105 | Adair et al. | Jul 2011 | B2 |
7988683 | Adair et al. | Aug 2011 | B2 |
7993300 | Nyholm et al. | Aug 2011 | B2 |
7998111 | Moberg et al. | Aug 2011 | B2 |
7998116 | Mernoe | Aug 2011 | B2 |
7998117 | Gross et al. | Aug 2011 | B2 |
8002752 | Yodfat et al. | Aug 2011 | B2 |
8021357 | Tanaka et al. | Sep 2011 | B2 |
8025658 | Chong et al. | Sep 2011 | B2 |
8029459 | Rush et al. | Oct 2011 | B2 |
8029460 | Rush et al. | Oct 2011 | B2 |
8029469 | Ethelfeld | Oct 2011 | B2 |
8034019 | Nair et al. | Oct 2011 | B2 |
8038648 | Marksteiner | Oct 2011 | B2 |
8038666 | Triplett et al. | Oct 2011 | B2 |
8057436 | Causey et al. | Nov 2011 | B2 |
8062253 | Nielsen et al. | Nov 2011 | B2 |
8062257 | Moberg et al. | Nov 2011 | B2 |
8062259 | Nycz et al. | Nov 2011 | B2 |
8065096 | Moberg et al. | Nov 2011 | B2 |
8066694 | Wagener | Nov 2011 | B2 |
D650079 | Presta et al. | Dec 2011 | S |
D652503 | Cameron et al. | Jan 2012 | S |
8105279 | Mernoe et al. | Jan 2012 | B2 |
8114046 | Covino et al. | Feb 2012 | B2 |
8114064 | Alferness et al. | Feb 2012 | B2 |
8114066 | Naef et al. | Feb 2012 | B2 |
8147446 | Yodfat et al. | Apr 2012 | B2 |
8152764 | Istoc et al. | Apr 2012 | B2 |
8152770 | Reid | Apr 2012 | B2 |
8152779 | Cabiri | Apr 2012 | B2 |
8157769 | Cabiri | Apr 2012 | B2 |
8162923 | Adams et al. | Apr 2012 | B2 |
8167841 | Teisen-Simony et al. | May 2012 | B2 |
8172804 | Bikovsky | May 2012 | B2 |
8182447 | Moberg et al. | May 2012 | B2 |
8182462 | Istoc et al. | May 2012 | B2 |
8197444 | Bazargan et al. | Jun 2012 | B1 |
8206296 | Jennewine | Jun 2012 | B2 |
8206351 | Sugimoto et al. | Jun 2012 | B2 |
8221356 | Enggaard et al. | Jul 2012 | B2 |
8221359 | Kristensen et al. | Jul 2012 | B2 |
8226607 | Carter et al. | Jul 2012 | B2 |
8226608 | Mernoe | Jul 2012 | B2 |
8234769 | Leidig | Aug 2012 | B2 |
8267893 | Moberg et al. | Sep 2012 | B2 |
8267921 | Yodfat et al. | Sep 2012 | B2 |
8287520 | Drew et al. | Oct 2012 | B2 |
8308679 | Hanson et al. | Nov 2012 | B2 |
8361028 | Gross et al. | Jan 2013 | B2 |
8372039 | Mernoe et al. | Feb 2013 | B2 |
8373421 | Lindegger et al. | Feb 2013 | B2 |
8409142 | Causey et al. | Apr 2013 | B2 |
8414557 | Istoc et al. | Apr 2013 | B2 |
8430847 | Mernoe et al. | Apr 2013 | B2 |
8469942 | Kow et al. | Jun 2013 | B2 |
8474332 | Bente, IV et al. | Jul 2013 | B2 |
8475408 | Mernoe et al. | Jul 2013 | B2 |
8479595 | Vazquez et al. | Jul 2013 | B2 |
8483980 | Moberg et al. | Jul 2013 | B2 |
8495918 | Bazargan et al. | Jul 2013 | B2 |
8512287 | Cindrich et al. | Aug 2013 | B2 |
8517987 | Istoc et al. | Aug 2013 | B2 |
8523803 | Favreau | Sep 2013 | B1 |
8556856 | Bazargan et al. | Oct 2013 | B2 |
8574216 | Istoc et al. | Nov 2013 | B2 |
8603026 | Favreau | Dec 2013 | B2 |
8603027 | Favreau | Dec 2013 | B2 |
8617110 | Moberg et al. | Dec 2013 | B2 |
8628510 | Bazargan et al. | Jan 2014 | B2 |
8647074 | Moberg et al. | Feb 2014 | B2 |
8647296 | Moberg et al. | Feb 2014 | B2 |
8668672 | Moberg et al. | Mar 2014 | B2 |
8674288 | Hanson et al. | Mar 2014 | B2 |
8679060 | Mernoe et al. | Mar 2014 | B2 |
8681010 | Moberg et al. | Mar 2014 | B2 |
8690855 | Alderete, Jr. et al. | Apr 2014 | B2 |
8708961 | Field et al. | Apr 2014 | B2 |
8715237 | Moberg et al. | May 2014 | B2 |
8753326 | Chong et al. | Jun 2014 | B2 |
8753331 | Murphy | Jun 2014 | B2 |
8764707 | Moberg et al. | Jul 2014 | B2 |
8764723 | Chong et al. | Jul 2014 | B2 |
8771222 | Kanderian, Jr. et al. | Jul 2014 | B2 |
8777896 | Starkweather et al. | Jul 2014 | B2 |
8777924 | Kanderian, Jr. et al. | Jul 2014 | B2 |
8777925 | Patton | Jul 2014 | B2 |
8784369 | Starkweather et al. | Jul 2014 | B2 |
8784370 | Lebel et al. | Jul 2014 | B2 |
8790295 | Sigg et al. | Jul 2014 | B1 |
8795224 | Starkweather et al. | Aug 2014 | B2 |
8795231 | Chong et al. | Aug 2014 | B2 |
8795260 | Drew | Aug 2014 | B2 |
8801668 | Ali et al. | Aug 2014 | B2 |
8808269 | Bazargan et al. | Aug 2014 | B2 |
8810394 | Kalpin | Aug 2014 | B2 |
8864739 | Moberg et al. | Oct 2014 | B2 |
8870818 | Alderete, Jr. et al. | Oct 2014 | B2 |
8992475 | Mann et al. | Mar 2015 | B2 |
9011371 | Moberg et al. | Apr 2015 | B2 |
9033924 | Yavorsky | May 2015 | B2 |
9050406 | Kow et al. | Jun 2015 | B2 |
20010034502 | Moberg et al. | Oct 2001 | A1 |
20020040208 | Flaherty et al. | Apr 2002 | A1 |
20020055711 | Lavi et al. | May 2002 | A1 |
20030135159 | Daily et al. | Jul 2003 | A1 |
20030160683 | Blomquist | Aug 2003 | A1 |
20030171717 | Farrugia et al. | Sep 2003 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040085215 | Moberg et al. | May 2004 | A1 |
20040260233 | Garibotto et al. | Dec 2004 | A1 |
20050065472 | Cindrich et al. | Mar 2005 | A1 |
20050071487 | Lu et al. | Mar 2005 | A1 |
20050171487 | Haury et al. | Aug 2005 | A1 |
20050171512 | Flaherty | Aug 2005 | A1 |
20050177136 | Miller | Aug 2005 | A1 |
20050197650 | Sugimoto et al. | Sep 2005 | A1 |
20050238507 | Dilanni et al. | Oct 2005 | A1 |
20060095014 | Ethelfeld | May 2006 | A1 |
20060122577 | Poulsen et al. | Jun 2006 | A1 |
20060173439 | Thorne et al. | Aug 2006 | A1 |
20060184154 | Moberg et al. | Aug 2006 | A1 |
20060229569 | Lavi et al. | Oct 2006 | A1 |
20060264890 | Moberg et al. | Nov 2006 | A1 |
20060283465 | Nickel et al. | Dec 2006 | A1 |
20070021733 | Hansen et al. | Jan 2007 | A1 |
20070049865 | Radmer et al. | Mar 2007 | A1 |
20070118405 | Campbell et al. | May 2007 | A1 |
20070149926 | Moberg et al. | Jun 2007 | A1 |
20070191770 | Moberg et al. | Aug 2007 | A1 |
20070282269 | Carter et al. | Dec 2007 | A1 |
20080033369 | Kohlbrenner et al. | Feb 2008 | A1 |
20080051711 | Mounce et al. | Feb 2008 | A1 |
20080059133 | Edwards et al. | Mar 2008 | A1 |
20080140006 | Eskuri et al. | Jun 2008 | A1 |
20080140018 | Enggaard et al. | Jun 2008 | A1 |
20080147004 | Mann et al. | Jun 2008 | A1 |
20080167641 | Hansen et al. | Jul 2008 | A1 |
20080188813 | Miller et al. | Aug 2008 | A1 |
20080215006 | Thorkild | Sep 2008 | A1 |
20080221522 | Moberg et al. | Sep 2008 | A1 |
20080221523 | Moberg et al. | Sep 2008 | A1 |
20080269723 | Mastrototaro et al. | Oct 2008 | A1 |
20080275425 | Strickler et al. | Nov 2008 | A1 |
20080294143 | Tanaka et al. | Nov 2008 | A1 |
20080306449 | Kristensen et al. | Dec 2008 | A1 |
20080312601 | Cane | Dec 2008 | A1 |
20080319416 | Yodfat et al. | Dec 2008 | A1 |
20090054750 | Jennewine | Feb 2009 | A1 |
20090076453 | Mejlhede et al. | Mar 2009 | A1 |
20090088694 | Carter et al. | Apr 2009 | A1 |
20090088731 | Campbell et al. | Apr 2009 | A1 |
20090093792 | Gross et al. | Apr 2009 | A1 |
20090124977 | Jensen | May 2009 | A1 |
20090149830 | Spector | Jun 2009 | A1 |
20090182277 | Carter | Jul 2009 | A1 |
20090234319 | Marksteiner | Sep 2009 | A1 |
20090240240 | Hines et al. | Sep 2009 | A1 |
20090253973 | Bashan et al. | Oct 2009 | A1 |
20090259176 | Yairi | Oct 2009 | A1 |
20090299397 | Ruan et al. | Dec 2009 | A1 |
20090326509 | Muse et al. | Dec 2009 | A1 |
20100030156 | Beebe et al. | Feb 2010 | A1 |
20100030198 | Beebe et al. | Feb 2010 | A1 |
20100037680 | Moberg et al. | Feb 2010 | A1 |
20100049144 | McConnell et al. | Feb 2010 | A1 |
20100057057 | Hayter et al. | Mar 2010 | A1 |
20100076412 | Rush et al. | Mar 2010 | A1 |
20100094255 | Nycz et al. | Apr 2010 | A1 |
20100100076 | Rush et al. | Apr 2010 | A1 |
20100100077 | Rush et al. | Apr 2010 | A1 |
20100106098 | Atterbury et al. | Apr 2010 | A1 |
20100121314 | Iobbi | May 2010 | A1 |
20100137790 | Yodfat | Jun 2010 | A1 |
20100145303 | Yodfat et al. | Jun 2010 | A1 |
20100162548 | Leidig | Jul 2010 | A1 |
20100168607 | Miesel | Jul 2010 | A1 |
20100198157 | Gyrn et al. | Aug 2010 | A1 |
20100204657 | Yodfat et al. | Aug 2010 | A1 |
20100212407 | Stringham et al. | Aug 2010 | A1 |
20100217192 | Moberg et al. | Aug 2010 | A1 |
20100217193 | Moberg et al. | Aug 2010 | A1 |
20100234830 | Straessler et al. | Sep 2010 | A1 |
20100241065 | Moberg et al. | Sep 2010 | A1 |
20100264931 | Lindegger et al. | Oct 2010 | A1 |
20100274112 | Hoss et al. | Oct 2010 | A1 |
20100274192 | Mernoe | Oct 2010 | A1 |
20100280499 | Yodfat et al. | Nov 2010 | A1 |
20100331826 | Field et al. | Dec 2010 | A1 |
20110034900 | Yodfat et al. | Feb 2011 | A1 |
20110054399 | Chong et al. | Mar 2011 | A1 |
20110054400 | Chong et al. | Mar 2011 | A1 |
20110066131 | Cabiri | Mar 2011 | A1 |
20110119033 | Moberg et al. | May 2011 | A1 |
20110160654 | Hanson et al. | Jun 2011 | A1 |
20110160666 | Hanson et al. | Jun 2011 | A1 |
20110160669 | Gyrn et al. | Jun 2011 | A1 |
20110172645 | Moga et al. | Jul 2011 | A1 |
20110178472 | Cabiri | Jul 2011 | A1 |
20110201998 | Pongpairochana et al. | Aug 2011 | A1 |
20110224614 | Moberg et al. | Sep 2011 | A1 |
20110238031 | Adair et al. | Sep 2011 | A1 |
20110245773 | Estes et al. | Oct 2011 | A1 |
20110264383 | Moberg et al. | Oct 2011 | A1 |
20110270160 | Mernoe | Nov 2011 | A1 |
20110282282 | Lorenzen et al. | Nov 2011 | A1 |
20110295205 | Kaufmann et al. | Dec 2011 | A1 |
20110313238 | Reichenbach et al. | Dec 2011 | A1 |
20110319861 | Wilk | Dec 2011 | A1 |
20110319919 | Curry et al. | Dec 2011 | A1 |
20120004602 | Hanson et al. | Jan 2012 | A1 |
20120010594 | Holt et al. | Jan 2012 | A1 |
20120022499 | Anderson et al. | Jan 2012 | A1 |
20120025995 | Moberg et al. | Feb 2012 | A1 |
20120029431 | Hwang et al. | Feb 2012 | A1 |
20120035546 | Cabiri | Feb 2012 | A1 |
20120041364 | Smith | Feb 2012 | A1 |
20120041370 | Moberg et al. | Feb 2012 | A1 |
20120041414 | Estes et al. | Feb 2012 | A1 |
20120071828 | Tojo et al. | Mar 2012 | A1 |
20120078217 | Smith et al. | Mar 2012 | A1 |
20120096953 | Bente, IV et al. | Apr 2012 | A1 |
20120096954 | Vazquez et al. | Apr 2012 | A1 |
20120101436 | Bazargan et al. | Apr 2012 | A1 |
20120108933 | Liang et al. | May 2012 | A1 |
20120160033 | Kow et al. | Jun 2012 | A1 |
20120165733 | Bazargan et al. | Jun 2012 | A1 |
20120165780 | Bazargan et al. | Jun 2012 | A1 |
20120215169 | Moberg et al. | Aug 2012 | A1 |
20120215199 | Moberg et al. | Aug 2012 | A1 |
20120226234 | Bazargan et al. | Sep 2012 | A1 |
20120259282 | Alderete, Jr. et al. | Oct 2012 | A1 |
20120310153 | Moberg et al. | Dec 2012 | A1 |
20130012873 | Gross et al. | Jan 2013 | A1 |
20130068319 | Plumptre et al. | Mar 2013 | A1 |
20130096509 | Avery et al. | Apr 2013 | A1 |
20130133438 | Kow et al. | May 2013 | A1 |
20130148270 | Fujioka et al. | Jun 2013 | A1 |
20130237953 | Kow et al. | Sep 2013 | A1 |
20130245595 | Kow et al. | Sep 2013 | A1 |
20130253419 | Favreau | Sep 2013 | A1 |
20130253420 | Favreau | Sep 2013 | A1 |
20130253421 | Favreau | Sep 2013 | A1 |
20130253472 | Cabiri | Sep 2013 | A1 |
20130331791 | Gross et al. | Dec 2013 | A1 |
20140055073 | Favreau | Feb 2014 | A1 |
20140055076 | Favreau | Feb 2014 | A1 |
20140058349 | Bazargan et al. | Feb 2014 | A1 |
20140083517 | Moia | Mar 2014 | A1 |
20140094755 | Bazargan et al. | Apr 2014 | A1 |
20140128807 | Moberg et al. | May 2014 | A1 |
20140128835 | Moberg et al. | May 2014 | A1 |
20140135692 | Alderete, Jr. et al. | May 2014 | A1 |
20140135694 | Moberg et al. | May 2014 | A1 |
20140142499 | Moberg et al. | May 2014 | A1 |
20140148784 | Anderson et al. | May 2014 | A1 |
20140148785 | Moberg et al. | May 2014 | A1 |
20140163522 | Alderete, Jr. et al. | Jun 2014 | A1 |
20140194819 | Maule et al. | Jul 2014 | A1 |
20140207064 | Yavorsky | Jul 2014 | A1 |
20140207065 | Yavorsky | Jul 2014 | A1 |
20140207066 | Yavorsky | Jul 2014 | A1 |
20140213975 | Clemente et al. | Jul 2014 | A1 |
20140236087 | Alderete, Jr. et al. | Aug 2014 | A1 |
20140261758 | Wlodarczyk et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
0401179 | Dec 1990 | EP |
1249250 | Oct 2002 | EP |
2412395 | Feb 2012 | EP |
2712650 | Apr 2014 | EP |
9009202 | Aug 1990 | WO |
9632975 | Oct 1996 | WO |
2011090955 | Jul 2011 | WO |
2011141907 | Nov 2011 | WO |
Entry |
---|
Extended Search Report dated Jun. 13, 2016 in EP Application No. 16157430.6. |
Edwin Chan, Yuh-Fun Maa, Ph.D and David Overcashier; Manufacturing Consideration in Developing a Prefilled Syringe—Investigating the Effect of Headspace Pressure; American Pharmaceutical Review, May 8, 2012 and Appendix 3 Measurement of Leakage of Tuberculin Syringes; World Health Organization Monograph Series No. 12; BCG Vaccination, editors Lydia Edwards, Carroll Palmer and Knut Magnus; Tuberculosis Research Office World Health Organization Copenhagen; World Health Organization; Palais Des Nations, Geneva, 1953. |
Number | Date | Country | |
---|---|---|---|
20160256352 A1 | Sep 2016 | US |