Compliant diaphragm medical sensor and technique for using the same

Information

  • Patent Grant
  • 8311602
  • Patent Number
    8,311,602
  • Date Filed
    Wednesday, June 24, 2009
    14 years ago
  • Date Issued
    Tuesday, November 13, 2012
    11 years ago
Abstract
A sensor assembly is provided that includes a frame having a loop structure. An emitter and detector are disposed on opposite sides of the loop structure. A coating is provided over the frame. The coating includes at least one diaphragm structure disposed such that at least one of the emitter and detector can move along an axis running between the emitter and detector. The sensor may thereby be placed on a patient's finger, toe, and so forth to obtain pulse oximetry or other physiological measurements. A sensor frame and method of manufacturing the frame are also provided.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to medical devices and, more particularly, to sensors used for sensing physiological parameters of a patient.


2. Description of the Related Art


This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present invention, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.


In the field of medicine, doctors often desire to monitor certain physiological characteristics of their patients. Accordingly, a wide variety of devices have been developed for monitoring physiological characteristics. Such devices provide doctors and other healthcare personnel with the information they need to provide the best possible healthcare for their patients. As a result, such monitoring devices have become an indispensable part of modern medicine.


One technique for monitoring certain physiological characteristics of a patient is commonly referred to as pulse oximetry, and the devices built based upon pulse oximetry techniques are commonly referred to as pulse oximeters. Pulse oximetry may be used to measure various blood flow characteristics, such as the blood-oxygen saturation of hemoglobin in arterial blood, the volume of individual blood pulsations supplying the tissue, and/or the rate of blood pulsations corresponding to each heartbeat of a patient.


Pulse oximeters typically utilize a non-invasive sensor that is placed on or against a patient's tissue that is well perfused with blood, such as a patient's finger, toe, forehead or earlobe. The pulse oximeter sensor emits light and photoelectrically senses the absorption and/or scattering of the light after passage through the perfused tissue. The data collected by the sensor may then be used to calculate one or more of the above physiological characteristics based upon the absorption or scattering of the light. More specifically, the emitted light is typically selected to be of one or more wavelengths that are absorbed or scattered in an amount related to the presence of oxygenated versus de-oxygenated hemoglobin in the blood. The amount of light absorbed and/or scattered may then be used to estimate the amount of the oxygen in the tissue using various algorithms.


In many instances, it may be desirable to employ, for cost and/or convenience, a pulse oximeter sensor that is reusable. Such reusable sensors, however, may be uncomfortable for the patient for various reasons. For example, the materials used in their construction may not be adequately compliant or supple or the structural features may include angles or edges.


Furthermore, the reusable sensor should fit snugly enough that incidental patient motion will not dislodge or move the sensor, yet not so tight that it may interfere with pulse oximetry measurements. Such a conforming fit may be difficult to achieve over a range of patient physiologies without adjustment or excessive attention on the part of medical personnel. In addition, lack of a tight or secure fit may allow light from the environment to reach the photodetecting elements of the sensor. Such environmental light is not related to a physiological characteristic of the patient and may, therefore, introduce error into the measurements derived using data obtained with the sensor.


Reusable pulse oximeter sensors are also used repeatedly and, typically, on more than one patient. Therefore, over the life of the sensor, detritus and other bio-debris (sloughed off skin cells, dried fluids, dirt, and so forth) may accumulate on the surface of the sensor or in crevices and cavities of the sensor, after repeated uses. As a result, it may be desirable to quickly and/or routinely clean the sensor in a thorough manner. However, in sensors having a multi-part construction, as is typical in reusable pulse oximeter sensors, it may be difficult to perform such a quick and/or routine cleaning. For example, such a thorough cleaning may require disassembly of the sensor and individual cleaning of the disassembled parts or may require careful cleaning using utensils capable of reaching into cavities or crevices of the sensor. Such cleaning is labor intensive and may be impractical in a typical hospital or clinic environment.


SUMMARY

Certain aspects commensurate in scope with the originally claimed invention are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms the invention might take and that these aspects are not intended to limit the scope of the invention. Indeed, the invention may encompass a variety of aspects that may not be set forth below.


There is provided a sensor assembly that includes: a frame comprising a loop structure; an emitter and a detector disposed on opposing sides of the loop structure; and a coating provided over the frame, wherein the coating comprises at least one diaphragm structure disposed such that at least one of the emitter and the detector can move along an axis running between the emitter and the detector.


There is also provided a frame of a sensor that includes: a loop structure, wherein the loop structure is configured to provide support to an overlying coating when present such that one or more diaphragm structures are formed by the overlying coating.


There is also provided a method for manufacturing a frame of a sensor that includes: forming a frame comprising at least one loop structure, wherein the at least one loop structure is configured to provide support to an overlying coating when present such that one or more diaphragm structures are formed by the overlying coating.





BRIEF DESCRIPTION OF THE DRAWINGS

Advantages of the invention may become apparent upon reading the following detailed description and upon reference to the drawings in which:



FIG. 1 illustrates a patient monitoring system coupled to a multi-parameter patient monitor and a sensor, in accordance with aspects of the present technique;



FIG. 2 illustrates a perspective view of an internal frame for use in a patient sensor, in accordance with aspects of the present technique;



FIG. 3 illustrates a perspective view of the internal frame of FIG. 2 in an open configuration, in accordance with aspects of the present technique;



FIG. 4 illustrates a perspective view of an overmolded patient sensor, in accordance with aspects of the present technique;



FIG. 5 illustrates a front view of the overmolded patient sensor of FIG. 4 taken along view line 5-5;



FIG. 6 illustrates the overmolded patient sensor of FIGS. 4 and 5 in use on a patient's finger, in accordance with aspects of the present technique;



FIG. 7 illustrates a side view of the overmolded patient sensor of FIGS. 4 and 5 in use on a patient's finger, in accordance with aspects of the present technique;



FIG. 8 illustrates a cross-section taken along section line 8-8 of the overmolded patient sensor depicted in FIG. 4; and



FIG. 9 illustrates a cross-section taken along section line 9-9 of the overmolded patient sensor depicted in FIG. 4.





DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.


It is desirable to provide a comfortable and conformable reusable patient sensor, such as for use in pulse oximetry or other applications utilizing spectrophotometry, that is easily cleaned and that is resistant to environmental light infiltration. In accordance with some aspects of the present technique, a reusable patient sensor is provided that is overmolded to provide patient comfort and a suitably conformable fit. The overmold material provides a seal against bodily fluids, as well as water or other cleaning fluids, that allows easy cleaning without disassembly or special tools. In accordance with some aspects of the present technique, the reusable patient sensor includes one or more diaphragm regions that provide expansion and conformability about the digit of a patient, thereby facilitating secure placement of the sensor on the patient.


Prior to discussing such exemplary sensors in detail, it should be appreciated that such sensors are typically designed for use with a patient monitoring system. For example, referring now to FIG. 1, a sensor 10 according to the present invention may be used in conjunction with a patient monitor 12. In the depicted embodiment, a cable 14 connects the sensor 10 to the patient monitor 12. As will be appreciated by those of ordinary skill in the art, the sensor 10 and/or the cable 14 may include or incorporate one or more integrated circuit devices or electrical devices, such as a memory, processor chip, or resistor that may facilitate or enhance communication between the sensor 10 and the patient monitor 12. Likewise the cable 14 may be an adaptor cable, with or without an integrated circuit or electrical device, for facilitating communication between the sensor 10 and various types of monitors, including older or newer versions of the patient monitor 12 or other physiological monitors. In other embodiments, the sensor 10 and the patient monitor 12 may communicate via wireless means, such as using radio, infrared, or optical signals. In such embodiments, a transmission device (not shown) may be connected to the sensor 10 to facilitate wireless transmission between the sensor 10 and the patient monitor 12. As will be appreciated by those of ordinary skill in the art, the cable 14 (or corresponding wireless transmissions) are typically used to transmit control or timing signals from the monitor 12 to the sensor 10 and/or to transmit acquired data from the sensor 10 to the monitor 12. In some embodiments, however, the cable 14 may be an optical fiber that allows optical signals to be conducted between the monitor 12 and the sensor 10.


In one embodiment, the patient monitor 12 may be a suitable pulse oximeter, such as those available from Nellcor Puritan Bennett Inc. In other embodiments, the patient monitor 12 may be a monitor suitable for measuring tissue water fractions, or other body fluid related metrics, using spectrophotometric or other techniques. Furthermore, the monitor 12 may be a multi-purpose monitor suitable for performing pulse oximetry and measurement of tissue water fraction, or other combinations of physiological and/or biochemical monitoring processes, using data acquired via the sensor 10. Furthermore, to upgrade conventional monitoring functions provided by the monitor 12 to provide additional functions, the patient monitor 12 may be coupled to a multi-parameter patient monitor 16 via a cable 18 connected to a sensor input port and/or via a cable 20 connected to a digital communication port.


The sensor 10, in the example depicted in FIG. 1, is overmolded to provide a unitary or enclosed assembly. The sensor 10, includes an emitter 22 and a detector 24 which may be of any suitable type. For example, the emitter 22 may be one or more light emitting diodes adapted to transmit one or more wavelengths of light, such as in the red to infrared range, and the detector 24 may be a photodetector, such as a silicon photodiode package, selected to receive light in the range emitted from the emitter 22. In the depicted embodiment, the sensor 10 is coupled to a cable 14 that is responsible for transmitting electrical and/or optical signals to and from the emitter 22 and detector 24 of the sensor 10. The cable 14 may be permanently coupled to the sensor 10, or it may be removably coupled to the sensor 10—the latter alternative being more useful and cost efficient in situations where the sensor 10 is disposable.


The sensor 10 described above is generally configured for use as a “transmission type” sensor for use in spectrophotometric applications, though in some embodiments it may instead be configured for use as a “reflectance type sensor.” Transmission type sensors include an emitter and detector that are typically placed on opposing sides of the sensor site. If the sensor site is a fingertip, for example, the sensor 10 is positioned over the patient's fingertip such that the emitter and detector lie on either side of the patient's nail bed. For example, the sensor 10 is positioned so that the emitter is located on the patient's fingernail and the detector is located opposite the emitter on the patient's finger pad. During operation, the emitter shines one or more wavelengths of light through the patient's fingertip, or other tissue, and the light received by the detector is processed to determine various physiological characteristics of the patient.


Reflectance type sensors generally operate under the same general principles as transmittance type sensors. However, reflectance type sensors include an emitter and detector that are typically placed on the same side of the sensor site. For example, a reflectance type sensor may be placed on a patient's fingertip such that the emitter and detector are positioned side-by-side. Reflectance type sensors detect light photons that are scattered back to the detector.


For pulse oximetry applications using either transmission or reflectance type sensors the oxygen saturation of the patient's arterial blood may be determined using two or more wavelengths of light, most commonly red and near infrared wavelengths. Similarly, in other applications a tissue water fraction (or other body fluid related metric) or a concentration of one or more biochemical components in an aqueous environment may be measured using two or more wavelengths of light, most commonly near infrared wavelengths between about 1,000 nm to about 2,500 nm. It should be understood that, as used herein, the term “light” may refer to one or more of infrared, visible, ultraviolet, or even X-ray electromagnetic radiation, and may also include any wavelength within the infrared, visible, ultraviolet, or X-ray spectra.


Pulse oximetry and other spectrophotometric sensors, whether transmission-type or reflectance-type, are typically placed on a patient in a location conducive to measurement of the desired physiological parameters. For example, pulse oximetry sensors are typically placed on a patient in a location that is normally perfused with arterial blood to facilitate measurement of the desired blood characteristics, such as arterial oxygen saturation measurement (SaO2). Common pulse oximetry sensor sites include a patient's fingertips, toes, forehead, or earlobes. Regardless of the placement of the sensor 10, the reliability of the pulse oximetry measurement is related to the accurate detection of transmitted light that has passed through the perfused tissue and has not been inappropriately supplemented by outside light sources or modulated by subdermal anatomic structures. Such inappropriate supplementation and/or modulation of the light transmitted by the sensor can cause variability in the resulting pulse oximetry measurements.


As noted above, the overmolded sensor 10 discussed herein may be configured for either transmission or reflectance type sensing. For simplicity, the exemplary embodiment of the sensor 10 described herein is adapted for use as a transmission-type sensor. As will be appreciated by those of ordinary skill in the art, however, such discussion is merely exemplary and is not intended to limit the scope of the present technique.


Referring now to FIG. 2, an internal frame 30 for a sensor 10 is depicted. In the depicted example, the internal frame 30 is a skeletal frame for the sensor 10 in which one portion of the frame is formed as a loop 32. Such a skeletal frame may include different structures or regions that may or may not have similar rigidities. For example, the depicted skeletal frame includes the loop structure 32 and other structural supports 34 that define the general shape of the sensor 10 when coated, as discussed below with regard to FIGS. 3-9. In view of their structure providing function, the loop structure 32 and structural supports 34 may be constructed to be substantially rigid or semi-rigid. In addition, the loop structure 32 may act as a spring or biasing mechanism when coated, as discussed below, to bias the sensor 10 in the desired shape.


In addition, the skeletal frame may include a cable guide 36 through which a cable, such as an electrical or optical cable, may pass to connect to the electrical or optical conductors attached to the emitter 22 and/or detector 24 upon assembly. Likewise, a skeletal frame, such as the depicted internal frame 30, may include component housings, such as the emitter housing 38 and detector housing 40 which are attached to the remainder of the skeletal frame, such as via the loop structure 32. The loop structure 32 may be relatively flexible, allowing the emitter housing 38 and/or the detector housing 40 to move vertically (such as along an optical axis between the respective housings) relative to one another.


In embodiments where the internal frame 30 is skeletal, the various structural supports 34, housings 38 and 40, loop structure 32, and other structures may define various openings and spaces around and/or between the structures of the skeletal frame. In this manner, the skeletal frame provides structural support at specific locations for a coating or overmolding. However, in regions where structural support is not provided, flexibility and freedom of motion in an overlying coating or overmolding may be possible. For example, in one implementation, the emitter housing 38 and/or the detector housing 40 may be attached to the remainder of the skeletal frame by a flexible loop structure 32, as depicted in FIGS. 2 and 3. In such implementations, a coating 60 provided proximate to the emitter housing 38 and/or detector housing 40 may be sufficiently flexible (such as due to the elasticity and/or the thinness of the coating material in the open areas of the skeletal frame) such that the housings 38 and 40 may move independent of the remainder of the frame 30 along an optical axis between the housings 38 and 40.


In certain embodiments, the internal frame 30 is constructed, in whole or in part, from polymeric materials, such as thermoplastics, capable of providing a suitable rigidity or semi-rigidity for the different portions of the internal frame 30. Examples of such suitable materials include polypropylene, polyurethane, and nylon, though other polymeric materials may also be suitable. In other embodiments, the internal frame 30 is constructed, in whole or in part, from other suitably rigid or semi-rigid materials that provide the desired support and flexibility, such as stainless steel, aluminum, magnesium, graphite, fiberglass, or other metals, alloys, or compositions that are sufficiently ductile and/or strong. For example, metals, alloys, or compositions that are suitable for diecasting, sintering, lost wax casting, stamping and forming, and other metal or composition fabrication processes may be used to construct the internal frame 30.


In addition, the internal frame 30 may be constructed as an integral structure or as a composite structure. For example, in one embodiment, the internal frame 30 may be constructed as a single piece from a single material or from different materials. Alternatively, the internal frame 30 may be constructed or assembled from two or more parts that are separately formed. In such embodiments, the different parts may be formed from the same or different materials. For example, in implementations where different parts are formed from different materials, each part may be constructed from a material having suitable mechanical and/or chemical properties for that part. For example, the loop structure 32 may be formed to be more flexible than the structural support 34 of the frame 30. The different parts may then be joined or fitted together to form the internal frame 30.


In addition, the internal frame 30 may be molded, formed, or constructed in a different configuration than the final sensor configuration. For example, the internal frame 30 for use in the sensor 10 may be initially formed, from one or more pieces, in a generally open, or flat, configuration (as depicted in FIG. 3) compared to the relatively closed configuration of the internal frame 30 when folded to form the sensor 10 (as depicted in FIG. 2). In such embodiments, a top portion 46 and a bottom portion 48 of the internal frame 30 may be formed such that they are generally open or planar and are joined by a connective portion 50.


In such an implementation, the top portion 46, bottom portion 48, and connective portion 50 may be molded or formed as a single piece in an open configuration. In such an embodiment, the connective portion 50 may be broken or deformed to bring the top portion 46 and bottom portion 48 into a closed configuration, as depicted in FIG. 2. In this implementation, the top portion 46 and bottom portion 48 may be secured together, such as via a snap fitting process in which complementary connectors 52 (as depicted in FIG. 3) are snapped together to form a mechanical connection. Alternatively, the top portion 46 and bottom portion 48 may be secured together via other techniques suitable for attaching the respective portions of the internal frame 30, such as ultrasonic welding, or heat staking or by application of an adhesive or mechanical fastener.


Alternatively, the internal frame 30 may be formed as multiple parts that are joined together to form the internal frame 30. For example, the top portion 46 and the bottom portion 48 may be molded or formed separately and subsequently secured together to form the internal frame 30. The different parts of the internal frame 30 may be joined together using one or more of the techniques noted above, such as a snap fitting process, ultrasonic welding, or heat staking or by application of an adhesive or mechanical fastener. If the internal frame 30 is secured together in an open configuration, the connective portion 50 may be broken or deformed to bring the top portion 46 and bottom portion 48 into a closed configuration, as depicted in FIG. 2. Alternatively, the internal frame 30 may be constructed in a closed configuration from the separately molded or formed parts, such as the top portion 46 and bottom portion 48.


As noted above, in certain embodiments of the present technique, the frame 30 (such as a skeletal internal frame) is coated to form a unitary or integral sensor assembly as depicted in FIGS. 3-9. Such overmolded embodiments may result in a sensor assembly in which the internal frame 30 is completely or substantially coated. In embodiments in which the internal frame 30 is formed or molded as a relatively open or flat structure, the overmolding or coating process may be performed prior to or subsequent to bending the internal frame 30 into the closed configuration.


For example, the sensor 10 may be formed by an injection molding process. In one example of such a process the internal frame 30 may be positioned within a die or mold of the desired shape for the sensor 10. A molten or otherwise unset overmold material may then be injected into the die or mold. For example, in one implementation, a molten thermoplastic elastomer at between about 400° F. to about 450° F. is injected into the mold. The overmold material may then be set, such as by cooling for one or more minutes or by chemical treatment, to form the sensor body about the internal frame 30. In certain embodiments, other sensor components, such as the emitter 22 and/or detector 24, may be attached or inserted into their respective housings or positions on the overmolded sensor body.


Alternatively, the optical components (such as emitter 22 and detector 24) and/or conductive structures (such as wires or flex circuits) may be placed on the internal frame 30 prior to overmolding. The internal frame 30 and associated components may then be positioned within a die or mold and overmolded, as previously described. To protect the emitter 22, detector 24, and or other electrical components, conventional techniques for protecting such components from excessive temperatures may be employed. For example, the emitter 22 and/or the detector 24 may include an associated clear window, such as a plastic or crystal window, in contact with the mold to prevent coating from being applied over the window. In one embodiment, the material in contact with such windows may be composed of a material, such as beryllium copper, which prevents the heat of the injection molding process from being conveyed through the window to the optical components. For example, in one embodiment, a beryllium copper material initially at about 40° F. is contacted with the windows associated with the emitter 22 and/or detector 24 to prevent coating of the windows and heat transfer to the respective optical components. As will be appreciated by those of ordinary skill in the art, the injection molding process described herein is merely one technique by which the frame 30 may be coated to form a sensor body, with or without associated sensing components. Other techniques which may be employed include, but are not limited to, dipping the frame 30 into a molten or otherwise unset coating material to coat the frame 30 or spraying the frame 30 with a molten or otherwise unset coating material to coat the frame 30. In such implementations, the coating material may be subsequently set, such as by cooling or chemical means, to form the coating. Such alternative techniques, to the extent that they may involve high temperatures, may include thermally protecting whatever optical components are present, such as by using beryllium copper or other suitable materials to prevent heat transfer through the windows associated with the optical components, as discussed above.


By such techniques, the frame 30, as well as the optical components and associated circuitry where desired, may be encased in a coating material 60 to form an integral or unitary assembly with no exposed or external moving parts of the internal frame 30. For example, as depicted in FIGS. 4 and 5, the sensor 10 includes features of the underlying internal frame 30 that are now completely or partially overmolded, such as the overmolded external cable guide 62 and optical component housings, such as overmolded emitter housing 64 and detector housing 66. In addition, the overmolded sensor 10 includes an overmolded upper portion 68 and lower portion 70 that may be fitted about the finger 72 (as depicted in FIGS. 6 and 7) or to the toe or other appendage of the patient as appropriate.


In one implementation, the overmolding or coating 60 is a thermoplastic elastomer or other conformable coating or material. In such embodiments, the thermoplastic elastomer may include compositions such as thermoplastic polyolefins, thermoplastic vulcanizate alloys, thermoplastic polyurethane, silicone, and so forth. In one embodiment, the overmolding material is a thermoplastic elastomer having a durometer of about 15 to about 25 Shore. As will be appreciated by those of ordinary skill in the art, the overmolding composition may vary, depending on the varying degrees of flexibility, conformability, durability, wettability, or other physical and/or chemical traits that are desired. Furthermore, the coating material 60 may be selected based on the desired closing force imparted by the coating 60 to the upper portion 68 and lower portion 70 of the overmolded sensor body.


Furthermore, the coating material 60 may be selected based upon the desirability of a chemical bond between the internal frame 30 and the coating material 60. Such a chemical bond may be desirable for durability of the resulting overmolded sensor 10. For example, to prevent separation of the coating 60 from the internal frame 30, the material used to form the coating 60 may be selected such that the coating 60 bonds with some or all of the internal frame 30 during the overmolding process. In such embodiments, the coating 60 and the portions of the internal frame 30 to which the coating 60 is bonded are not separable, i.e., they form one continuous and generally inseparable structure.


Furthermore, in embodiments in which the coating 60 employed is liquid or fluid tight, such a sensor 10 may be easily maintained, cleaned, and/or disinfected by immersing the sensor into a disinfectant or cleaning solution or by rinsing the sensor 10 off, such as under running water. In particular, such an overmolded sensor assembly may be generally or substantially free of crevices, gaps, junctions or other surface irregularities typically associated with a multi-part construction which may normally allow the accumulation of biological detritus or residue. Such an absence of crevices and other irregularities may further facilitate the cleaning and care of the sensor 10.


Turning now to FIGS. 8 and 9, cross-sections of the coated sensor assembly 10 are depicted taken through transverse optical planes, represented by section lines 8 and 9 of FIG. 4 respectively. FIGS. 8 and 9 depict, among other aspects of the sensor 10, the overmolding material 60 as well as underlying portions of the internal frame 30, such as the emitter housing 38 and detector housing 40, along with the respective emitter 22, detector 24, and signal transmission structures (such as wiring or other structures for conducting electrical or optical signals). In the depicted embodiment, the emitter 22 and detector 24 are provided substantially flush with the patient facing surfaces of the sensor 10, as may be suitable for pulse oximetry applications. For other physiological monitoring applications, such as applications measuring tissue water fraction or other body fluid related metrics, other configurations may be desirable. For example, in such fluid measurement applications it may be desirable to provide one or both of the emitter 22 and detector 24 recessed relative to the patient facing surfaces of the sensor 10. Such modifications may be accomplished by proper configuration or design of a mold or die used in overmolding the internal frame 30 and/or by proper design of the emitter housing 38 or detector housing 40 of the internal frame 30.


In addition, as depicted in FIGS. 8 and 9, in certain embodiments portions of the coating material 60 may be flexible, such as thin or membranous regions of coating material 60 disposed about regions of the frame 30 and sensor 10 intended to flex. For example, in the depicted example, the overmolded detector housing 66 and emitter housing 64 are surrounded by comparatively thin and flexible dished regions that form diaphragm structures 76. In the depicted embodiment, opposing, co-axial diaphragm structures 76 are provided on both the top portion 68 and bottom portion 70 of the overmolded sensor 10. In addition, the diaphragm structures 76 may be symmetrical, such as round or elliptical structures. Such diaphragm structures 76 allow a greater range of digit sizes to be accommodated for a given retention or clamping force of the sensor 10. For example, the diaphragm structures 76 may allow the emitter 22 and/or detector 24, to flex or expand apart from one another along the optical axis in embodiments in which the respective housings 38 and 40 are flexibly attached to the remainder of the frame 30. In this manner, the sensor 10 may accommodate differently sized digits. For instance, for a relatively small digit, the diaphragm structures 76 may not be substantially deformed or vertically displaced, and therefore the emitter 22 and/or detector 24 are not substantially displaced either. For larger digits, however, the diaphragm structures 76 may be deformed or displaced to a greater extent to accommodate the digit, thereby displacing the emitter 22 and/or detector 24 as well. In addition, for medium to large digits, the diaphragm structures 76 may also increase retention of the sensor 10 on the digit by increasing the surface area to which the retaining force is applied.


Furthermore, as the diaphragm structures 76 deform, the force applied to the digit is spread out over a large area on the digit due to the deformation of the diaphragm structures 76. In this way, a lower pressure on digits of all sizes may be provided for a given vertical force. Therefore, a suitable conforming fit may be obtained in which the emitter 22 and detector 24 are maintained in contact with the digit without the application of concentrated and/or undesirable amounts of force, thereby improving blood flow through the digit.


In one embodiment, the loop structure 32 of the frame 30 and/or the coating material 60 bias the top portion 68 and a bottom portion 70 of the overmolded sensor 10 closed. An opposing force, however, may be applied to the lateral sides 78 of the overmolded sensor 10 to overcome the closing force and move the top portion 68 and bottom portion 70 apart. Alternately (or in addition), an opposing force may be applied to the inward facing surfaces 80 of the top portion 68 and bottom portion 70 to overcome the closing force and move the top portion 68 and bottom portion 70 apart. For example, in the depicted embodiment, the lateral sides 78 may be pinched or squeezed together to overcome the closing force provided by the frame 30 and the coating material 60 such that the top portion 68 and bottom portion 70 are separated. This process may be facilitated (or replaced) by the application of an opposing force to the inward facing surfaces 80 of the top portion 68 and bottom portion 70, such as by the insertion of a finger, to separate the top portion 68 and bottom portion 70. In this way, a patient sensor 10 incorporating the internal frame 30 may be opened for placement on a patient's finger, toe, or other appendage.


In the example depicted in FIGS. 8 and 9, the lateral sides 78 of the overmolding material facilitate the exclusion of environmental or ambient light from the interior of the sensor 10. In this manner, the lateral sides 78 help prevent or reduce the detection of light from the outside environment, which may be inappropriately detected by the sensor 10 as correlating to the SaO2. Thus, a pulse oximetry sensor may detect differences in signal modulations unrelated to the underlying SaO2 level. In turn, this may impact the detected red-to-infrared modulation ratio and, consequently, the measured blood oxygen saturation (SpO2) value. The conformability of the fit of sensor 10 and the lateral sides 78, therefore, may help prevent or reduce such errors.


Though the preceding examples relate to embodiments having two opposing diaphragm structures 76 provided on opposing faces of the sensor 10, other embodiments are also presently contemplated. For example, in one alternative embodiment, a single diaphragm structure 76 is provided on either the top portion 68 or bottom portion 70, with the opposing portion being relatively rigid compared to the diaphragm containing portion. In such an embodiment, the diaphragm containing portion flexes in response to opposing lateral force, as discussed above, to provide a conforming and comfortable fit when applied to a patient.


While the exemplary medical sensors 10 discussed herein are some examples of overmolded or coated medical devices, other such devices are also contemplated and fall within the scope of the present disclosure. For example, other medical sensors and/or contacts applied externally to a patient may be advantageously applied using an overmolded sensor body as discussed herein. Examples of such sensors or contacts may include glucose monitors or other sensors or contacts that are generally held adjacent to the skin of a patient such that a conformable and comfortable fit is desired. Similarly, and as noted above, devices for measuring tissue water fraction or other body fluid related metrics may utilize a sensor as described herein. Likewise, other spectrophotometric applications where a probe is attached to a patient may utilize a sensor as described herein.


While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims. Indeed, the present techniques may not only be applied to transmission type sensors for use in pulse oximetry, but also to retroflective and other sensor designs as well. Likewise, the present techniques are not limited to use on fingers and toes but may also be applied to placement on other body parts such as in embodiments configured for use on the ears or nose.

Claims
  • 1. A frame of a sensor, comprising: a loop structure comprising an emitter housing and a detector housing, wherein the emitter housing and detector housing protrude from an inner surface of the loop structure, and wherein the loop structure is configured to be flexible such that the emitter housing and the detector housing are biased toward one another, and wherein the loop structure is configured to provide support to an overlying coating such that one or more diaphragm structures are formed by the overlying coating.
  • 2. The frame of claim 1, wherein the loop structure, the emitter housing, and the detector housing comprise a single piece.
  • 3. The frame of claim 1, wherein the loop structure, the emitter housing, and the detector housing comprise a plurality of separate pieces coupled together.
  • 4. The frame of claim 1, wherein the loop structure comprises at least one of a metal, a metallic alloy, a thermoplastic material, or a composite material.
  • 5. The frame of claim 1, wherein the loop structure is configured to bias the emitter housing and the detector housing toward one another along an optical axis disposed through the emitter housing and the detector housing.
  • 6. The frame of claim 5, wherein the loop structure is configured to allow the emitter housing and the detector housing to move relative to one another along the optical axis.
  • 7. A pulse oximetry sensor frame, comprising: a loop structure comprising an emitter housing and a detector housing extending into an interior of the loop structure from opposite sides of an inner surface of the loop structure, wherein the loop structure is configured to be flexible and to bias the emitter housing and the detector housing toward one another, and wherein the loop structure is configured to form a respective diaphragm structure around each of the emitter housing and the detector housing when the loop structures is coated with a coating material.
  • 8. The pulse oximetry sensor frame of claim 7, wherein the loop structure comprises at least one of a metal, a metallic alloy, a thermoplastic material, or a composite material.
  • 9. The pulse oximetry sensor frame of claim 7, comprising a photodetector disposed within the detector housing and one or more light emitting diodes disposed within the emitter housing.
  • 10. The pulse oximetry sensor frame of claim 7, comprising the coating material disposed over the loop structure to form the respective diaphragm structures.
  • 11. The pulse oximetry sensor frame of claim 7, wherein the loop structure is configured to allow the emitter housing and the detector housing to move relative to one another along an optical axis disposed through the emitter housing and the detector housing independent of the remainder of the frame.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a divisional of U.S. application Ser. No. 11/495,411, filed on Jul. 28, 2006, which is a continuation of U.S. application Ser. No. 11/199,345, filed Aug. 8, 2005, the disclosures of which are hereby incorporated by reference in their entirety for all purposes.

US Referenced Citations (855)
Number Name Date Kind
D222454 Beeber Oct 1971 S
D250275 Bond Nov 1978 S
D251387 Ramsay et al. Mar 1979 S
D262488 Rossman et al. Dec 1981 S
4685464 Goldberger et al. Aug 1987 A
4796636 Branstetter et al. Jan 1989 A
4800495 Smith Jan 1989 A
4800885 Johnson Jan 1989 A
4802486 Goodman et al. Feb 1989 A
4805623 Jöbsis Feb 1989 A
4807630 Malinouskas Feb 1989 A
4807631 Hersh et al. Feb 1989 A
4819646 Cheung et al. Apr 1989 A
4819752 Zelin Apr 1989 A
4824242 Frick et al. Apr 1989 A
4825872 Tan et al. May 1989 A
4825879 Tan et al. May 1989 A
4830014 Goodman et al. May 1989 A
4832484 Aoyagi et al. May 1989 A
4846183 Martin Jul 1989 A
4848901 Hood, Jr. Jul 1989 A
4854699 Edgar, Jr. Aug 1989 A
4859056 Prosser et al. Aug 1989 A
4859057 Taylor et al. Aug 1989 A
4863265 Flower et al. Sep 1989 A
4865038 Rich et al. Sep 1989 A
4867557 Takatani et al. Sep 1989 A
4869253 Craig, Jr. et al. Sep 1989 A
4869254 Stone et al. Sep 1989 A
4880304 Jaeb et al. Nov 1989 A
4883055 Merrick Nov 1989 A
4883353 Hansmann et al. Nov 1989 A
4890619 Hatschek Jan 1990 A
4892101 Cheung et al. Jan 1990 A
4901238 Suzuki et al. Feb 1990 A
4908762 Suzuki et al. Mar 1990 A
4911167 Corenman et al. Mar 1990 A
4913150 Cheung et al. Apr 1990 A
4926867 Kanda et al. May 1990 A
4927264 Shiga et al. May 1990 A
4928692 Goodman et al. May 1990 A
4934372 Corenman et al. Jun 1990 A
4938218 Goodman et al. Jul 1990 A
4942877 Sakai et al. Jul 1990 A
4948248 Lehman Aug 1990 A
4955379 Hall Sep 1990 A
4960126 Conlon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
4971062 Hasebe et al. Nov 1990 A
4974591 Awazu et al. Dec 1990 A
5007423 Branstetter et al. Apr 1991 A
5025791 Niwa Jun 1991 A
RE33643 Isaacson et al. Jul 1991 E
5028787 Rosenthal et al. Jul 1991 A
5035243 Muz Jul 1991 A
5040539 Schmitt et al. Aug 1991 A
5041187 Hink et al. Aug 1991 A
5054488 Muz Oct 1991 A
5055671 Jones Oct 1991 A
5058588 Kaestle Oct 1991 A
5065749 Hasebe et al. Nov 1991 A
5066859 Karkar et al. Nov 1991 A
5069213 Polczynski Dec 1991 A
5078136 Stone et al. Jan 1992 A
5086229 Rosenthal et al. Feb 1992 A
5088493 Giannini et al. Feb 1992 A
5090410 Saper et al. Feb 1992 A
5094239 Jaeb et al. Mar 1992 A
5094240 Muz Mar 1992 A
5099841 Heinonen et al. Mar 1992 A
5099842 Mannheimer et al. Mar 1992 A
H0001039 Tripp et al. Apr 1992 H
5104623 Miller Apr 1992 A
5109849 Goodman et al. May 1992 A
5111817 Clark et al. May 1992 A
5113861 Rother May 1992 A
D326715 Schmidt Jun 1992 S
5125403 Culp Jun 1992 A
5127406 Yamaguchi Jul 1992 A
5131391 Sakai et al. Jul 1992 A
5140989 Lewis et al. Aug 1992 A
5152296 Simons Oct 1992 A
5154175 Gunther Oct 1992 A
5158082 Jones Oct 1992 A
5170786 Thomas et al. Dec 1992 A
5188108 Secker et al. Feb 1993 A
5190038 Polson et al. Mar 1993 A
5193542 Missanelli et al. Mar 1993 A
5193543 Yelderman Mar 1993 A
5203329 Takatani et al. Apr 1993 A
5209230 Swedlow et al. May 1993 A
5213099 Tripp et al. May 1993 A
5216598 Branstetter et al. Jun 1993 A
5217012 Young et al. Jun 1993 A
5217013 Lewis et al. Jun 1993 A
5218207 Rosenthal Jun 1993 A
5218962 Mannheimer et al. Jun 1993 A
5224478 Sakai et al. Jul 1993 A
5226417 Swedlow et al. Jul 1993 A
5228440 Chung et al. Jul 1993 A
5237994 Goldberger Aug 1993 A
5239185 Ito et al. Aug 1993 A
5246003 DeLonzor Sep 1993 A
5247931 Norwood Sep 1993 A
5247932 Chung et al. Sep 1993 A
5249576 Goldberger et al. Oct 1993 A
5253645 Friedman et al. Oct 1993 A
5253646 Delpy et al. Oct 1993 A
5259381 Cheung et al. Nov 1993 A
5259761 Schnettler et al. Nov 1993 A
5263244 Centa et al. Nov 1993 A
5267562 Ukawa et al. Dec 1993 A
5267563 Swedlow et al. Dec 1993 A
5267566 Choucair et al. Dec 1993 A
5273036 Kronberg et al. Dec 1993 A
5275159 Griebel Jan 1994 A
5278627 Aoyagi et al. Jan 1994 A
5279295 Martens et al. Jan 1994 A
5285783 Secker Feb 1994 A
5285784 Seeker Feb 1994 A
5287853 Vester et al. Feb 1994 A
5291884 Heinemann et al. Mar 1994 A
5297548 Pologe Mar 1994 A
5299120 Kaestle Mar 1994 A
5299570 Hatschek Apr 1994 A
5309908 Freidman et al. May 1994 A
5311865 Mayeux May 1994 A
5313940 Fuse et al. May 1994 A
5323776 Blakeley et al. Jun 1994 A
5329922 Atlee, III Jul 1994 A
5337744 Branigan Aug 1994 A
5339810 Ivers et al. Aug 1994 A
5343818 McCarthy et al. Sep 1994 A
5343869 Pross et al. Sep 1994 A
5348003 Caro Sep 1994 A
5348004 Hollub et al. Sep 1994 A
5349519 Kaestle Sep 1994 A
5349952 McCarthy et al. Sep 1994 A
5349953 McCarthy et al. Sep 1994 A
5351685 Potratz Oct 1994 A
5353799 Chance Oct 1994 A
5355880 Thomas et al. Oct 1994 A
5355882 Ukawa et al. Oct 1994 A
5361758 Hall et al. Nov 1994 A
5365066 Krueger, Jr. et al. Nov 1994 A
5368025 Young et al. Nov 1994 A
5368026 Swedlow et al. Nov 1994 A
5368224 Richardson et al. Nov 1994 A
5372136 Steuer et al. Dec 1994 A
5377675 Ruskewicz et al. Jan 1995 A
5385143 Aoyagi Jan 1995 A
5387122 Goldberger et al. Feb 1995 A
5390670 Centa et al. Feb 1995 A
5392777 Swedlow et al. Feb 1995 A
5398680 Polson et al. Mar 1995 A
5402777 Warring et al. Apr 1995 A
5402779 Chen et al. Apr 1995 A
5411023 Morris, Sr. et al. May 1995 A
5411024 Thomas et al. May 1995 A
5413099 Schmidt et al. May 1995 A
5413100 Barthelemy et al. May 1995 A
5413101 Sugiura May 1995 A
5413102 Schmidt et al. May 1995 A
5417207 Young et al. May 1995 A
5421329 Casciani et al. Jun 1995 A
5425360 Nelson Jun 1995 A
5425362 Siker et al. Jun 1995 A
5427093 Ogawa et al. Jun 1995 A
5429128 Cadell et al. Jul 1995 A
5429129 Lovejoy et al. Jul 1995 A
5431159 Baker et al. Jul 1995 A
5431170 Mathews Jul 1995 A
5437275 Amundsen et al. Aug 1995 A
5438986 Disch et al. Aug 1995 A
5448991 Polson et al. Sep 1995 A
5452717 Branigan et al. Sep 1995 A
5465714 Scheuing Nov 1995 A
5469845 DeLonzor et al. Nov 1995 A
RE35122 Corenman et al. Dec 1995 E
5482034 Lewis et al. Jan 1996 A
5482036 Diab et al. Jan 1996 A
5485847 Baker, Jr. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5490523 Isaacson et al. Feb 1996 A
5491299 Naylor et al. Feb 1996 A
5494032 Robinson et al. Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5497771 Rosenheimer Mar 1996 A
5499627 Steuer et al. Mar 1996 A
5503148 Pologe et al. Apr 1996 A
5505199 Kim Apr 1996 A
5507286 Solenberger Apr 1996 A
5511546 Hon Apr 1996 A
5517988 Gerhard May 1996 A
5520177 Ogawa et al. May 1996 A
5521851 Wei et al. May 1996 A
5522388 Ishikawa et al. Jun 1996 A
5524617 Mannheimer Jun 1996 A
5529064 Rall et al. Jun 1996 A
5533507 Potratz et al. Jul 1996 A
5551423 Sugiura Sep 1996 A
5551424 Morrison et al. Sep 1996 A
5553614 Chance Sep 1996 A
5553615 Carim et al. Sep 1996 A
5555882 Richardson et al. Sep 1996 A
5558096 Palatnik Sep 1996 A
5560355 Merchant et al. Oct 1996 A
5564417 Chance Oct 1996 A
5575284 Athan et al. Nov 1996 A
5575285 Takanashi et al. Nov 1996 A
5577500 Potratz Nov 1996 A
5582169 Oda et al. Dec 1996 A
5584296 Cui et al. Dec 1996 A
5588425 Sackner et al. Dec 1996 A
5588427 Tien Dec 1996 A
5590652 Inai Jan 1997 A
5595176 Yamaura Jan 1997 A
5596986 Goldfarb Jan 1997 A
5611337 Bukta Mar 1997 A
5617852 MacGregor Apr 1997 A
5619992 Guthrie et al. Apr 1997 A
5626140 Feldman et al. May 1997 A
5630413 Thomas et al. May 1997 A
5632272 Diab et al. May 1997 A
5632273 Suzuki May 1997 A
5634459 Gardosi Jun 1997 A
5638593 Gerhardt et al. Jun 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645060 Yorkey et al. Jul 1997 A
5645440 Tobler et al. Jul 1997 A
5660567 Nierlich et al. Aug 1997 A
5662105 Tien Sep 1997 A
5662106 Swedlow et al. Sep 1997 A
5664270 Bell et al. Sep 1997 A
5666952 Fuse et al. Sep 1997 A
5671529 Nelson Sep 1997 A
5673692 Schulze et al. Oct 1997 A
5673693 Solenberger Oct 1997 A
5676139 Goldberger et al. Oct 1997 A
5676141 Hollub Oct 1997 A
5678544 DeLonzor et al. Oct 1997 A
5680857 Pelikan et al. Oct 1997 A
5685299 Diab et al. Nov 1997 A
5685301 Klomhaus Nov 1997 A
5687719 Sato et al. Nov 1997 A
5687722 Tien et al. Nov 1997 A
5692503 Kuenstner Dec 1997 A
5692505 Fouts Dec 1997 A
5709205 Bukta Jan 1998 A
5713355 Richardson et al. Feb 1998 A
D393830 Tobler et al. Apr 1998 S
5817009 Rosenheimer et al. Oct 1998 A
5817010 Hibl Oct 1998 A
5818985 Merchant et al. Oct 1998 A
5820550 Polson et al. Oct 1998 A
5823950 Diab et al. Oct 1998 A
5823952 Levinson et al. Oct 1998 A
5827179 Lichter et al. Oct 1998 A
5827182 Raley et al. Oct 1998 A
5829439 Yokosawa et al. Nov 1998 A
5830135 Bosque et al. Nov 1998 A
5830136 DeLonzor et al. Nov 1998 A
5830137 Scharf Nov 1998 A
5839439 Nierlich et al. Nov 1998 A
RE36000 Swedlow et al. Dec 1998 E
5842979 Jarman Dec 1998 A
5842981 Larsen et al. Dec 1998 A
5842982 Mannheimer Dec 1998 A
5846190 Woehrle Dec 1998 A
5851178 Aronow Dec 1998 A
5851179 Ritson et al. Dec 1998 A
5853364 Baker, Jr. et al. Dec 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5865736 Baker, Jr. et al. Feb 1999 A
5879294 Anderson et al. Mar 1999 A
5885213 Richardson et al. Mar 1999 A
5890929 Mills et al. Apr 1999 A
5891021 Dillon et al. Apr 1999 A
5891022 Pologe Apr 1999 A
5891024 Jarman et al. Apr 1999 A
5891025 Buschmann et al. Apr 1999 A
5891026 Wang et al. Apr 1999 A
5902235 Lewis et al. May 1999 A
5910108 Solenberger Jun 1999 A
5911690 Rall Jun 1999 A
5912656 Tham et al. Jun 1999 A
5913819 Taylor et al. Jun 1999 A
5916154 Hobbs et al. Jun 1999 A
5916155 Levinson et al. Jun 1999 A
5919133 Taylor et al. Jul 1999 A
5919134 Diab Jul 1999 A
5920263 Huttenhoff et al. Jul 1999 A
5921921 Potratz et al. Jul 1999 A
5922607 Bernreuter Jul 1999 A
5924979 Swedlow et al. Jul 1999 A
5924980 Coetzee Jul 1999 A
5924982 Chin Jul 1999 A
5924985 Jones Jul 1999 A
5934277 Mortz Aug 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5954644 Dettling et al. Sep 1999 A
5957840 Terasawa et al. Sep 1999 A
5960610 Levinson et al. Oct 1999 A
5961450 Merchant et al. Oct 1999 A
5961452 Chung et al. Oct 1999 A
5964701 Asada et al. Oct 1999 A
5971930 Elghazzawi Oct 1999 A
5978691 Mills Nov 1999 A
5978693 Hamilton et al. Nov 1999 A
5983120 Groner et al. Nov 1999 A
5983122 Jarman et al. Nov 1999 A
5987343 Kinast Nov 1999 A
5991648 Levin Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5995856 Mannheimer et al. Nov 1999 A
5995858 Kinast Nov 1999 A
5995859 Takahashi Nov 1999 A
5997343 Mills et al. Dec 1999 A
5999834 Wang et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6005658 Kaluza et al. Dec 1999 A
6006120 Levin Dec 1999 A
6011985 Athan et al. Jan 2000 A
6011986 Diab Jan 2000 A
6014576 Raley et al. Jan 2000 A
6018673 Chin Jan 2000 A
6018674 Aronow Jan 2000 A
6022321 Amano et al. Feb 2000 A
6023541 Merchant et al. Feb 2000 A
6026312 Shemwell et al. Feb 2000 A
6026314 Amerov et al. Feb 2000 A
6031603 Fine et al. Feb 2000 A
6035223 Baker, Jr. Mar 2000 A
6036642 Diab et al. Mar 2000 A
6041247 Weckstrom et al. Mar 2000 A
6044283 Fein et al. Mar 2000 A
6047201 Jackson, III Apr 2000 A
6055447 Weil et al. Apr 2000 A
6061584 Lovejoy et al. May 2000 A
6064898 Aldrich May 2000 A
6064899 Fein et al. May 2000 A
6067462 Diab et al. May 2000 A
6073038 Wang et al. Jun 2000 A
6078829 Uchida Jun 2000 A
6078833 Hueber Jun 2000 A
6081735 Diab et al. Jun 2000 A
6083157 Noller Jul 2000 A
6083172 Baker, Jr. et al. Jul 2000 A
6088607 Diab et al. Jul 2000 A
6094592 Yorkey et al. Jul 2000 A
6095974 Shemwell et al. Aug 2000 A
6104938 Huiku et al. Aug 2000 A
6104939 Groner Aug 2000 A
6112107 Hannula Aug 2000 A
6113541 Dias et al. Sep 2000 A
6115621 Chin Sep 2000 A
6122535 Kaestle et al. Sep 2000 A
6133994 Mathews et al. Oct 2000 A
6135952 Coetzee Oct 2000 A
6144444 Haworth et al. Nov 2000 A
6144867 Walker et al. Nov 2000 A
6144868 Parker Nov 2000 A
6149481 Wang et al. Nov 2000 A
6151107 Schöllermann et al. Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6151518 Hayashi Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6154667 Miura Nov 2000 A
6157850 Diab et al. Dec 2000 A
6159147 Lichter Dec 2000 A
6163715 Larsen et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6173196 Delonzor et al. Jan 2001 B1
6178343 Bindszus et al. Jan 2001 B1
6179159 Gurley Jan 2001 B1
6181958 Steuer et al. Jan 2001 B1
6181959 Schollermann Jan 2001 B1
6184521 Coffin Feb 2001 B1
6188470 Grace Feb 2001 B1
6192260 Chance Feb 2001 B1
6195575 Levinson Feb 2001 B1
6198951 Kosuda et al. Mar 2001 B1
6206830 Diab Mar 2001 B1
6213952 Finarov Apr 2001 B1
6217523 Amano et al. Apr 2001 B1
6222189 Misner et al. Apr 2001 B1
6223064 Lynn Apr 2001 B1
6226539 Potratz May 2001 B1
6226540 Bernreuter et al. May 2001 B1
6229856 Diab May 2001 B1
6230035 Aoyagi et al. May 2001 B1
6233470 Tsuchiya May 2001 B1
6236871 Tsuchiya May 2001 B1
6236872 Diab May 2001 B1
6240305 Tsuchiya May 2001 B1
6253097 Aronow Jun 2001 B1
6253098 Walker et al. Jun 2001 B1
6256523 Diab Jul 2001 B1
6256524 Walker et al. Jul 2001 B1
6261236 Grimblatov Jul 2001 B1
6263221 Chance et al. Jul 2001 B1
6263222 Diab Jul 2001 B1
6263223 Sheperd et al. Jul 2001 B1
6266546 Steuer et al. Jul 2001 B1
6266547 Walker et al. Jul 2001 B1
6272363 Casciani et al. Aug 2001 B1
6278522 Lepper, Jr. Aug 2001 B1
6280213 Tobler Aug 2001 B1
6280381 Malin et al. Aug 2001 B1
6285894 Oppelt et al. Sep 2001 B1
6285895 Ristolainen et al. Sep 2001 B1
6285896 Tobler Sep 2001 B1
6298252 Kovach et al. Oct 2001 B1
6308089 Von der Ruhr et al. Oct 2001 B1
6321100 Parker Nov 2001 B1
6330468 Scharf Dec 2001 B1
6334065 Al-Ali Dec 2001 B1
6339715 Bahr et al. Jan 2002 B1
6342039 Lynn Jan 2002 B1
6343223 Chin et al. Jan 2002 B1
6343224 Parker Jan 2002 B1
6349228 Kiani Feb 2002 B1
6351658 Middleman et al. Feb 2002 B1
6353750 Kimura Mar 2002 B1
6356774 Bernstein et al. Mar 2002 B1
6360113 Dettling Mar 2002 B1
6360114 Diab Mar 2002 B1
6361501 Amano et al. Mar 2002 B1
6363269 Hanna et al. Mar 2002 B1
D455834 Donars et al. Apr 2002 S
6370408 Merchant et al. Apr 2002 B1
6370409 Chung et al. Apr 2002 B1
6371921 Caro Apr 2002 B1
6374129 Chin Apr 2002 B1
6377829 Al-Ali Apr 2002 B1
6381479 Norris Apr 2002 B1
6381480 Stoddar et al. Apr 2002 B1
6385471 Mortz May 2002 B1
6385821 Modgil et al. May 2002 B1
6388240 Schulz May 2002 B2
6393310 Kuenstner May 2002 B1
6393311 Edgar, Jr. et al. May 2002 B1
6397091 Diab May 2002 B2
6397092 Norris et al. May 2002 B1
6397093 Aldrich May 2002 B1
6400971 Finarov et al. Jun 2002 B1
6400972 Fine Jun 2002 B1
6400973 Winter Jun 2002 B1
6402690 Rhee et al. Jun 2002 B1
6408198 Hanna et al. Jun 2002 B1
6411832 Guthermann Jun 2002 B1
6411833 Baker, Jr. et al. Jun 2002 B1
6421549 Jacques Jul 2002 B1
6430423 DeLonzor et al. Aug 2002 B2
6430513 Wang et al. Aug 2002 B1
6430525 Weber Aug 2002 B1
6434408 Heckel et al. Aug 2002 B1
6438396 Cook Aug 2002 B1
6438399 Kurth Aug 2002 B1
6449501 Reuss Sep 2002 B1
6453183 Walker Sep 2002 B1
6453184 Hyogo et al. Sep 2002 B1
6456862 Benni Sep 2002 B2
6461305 Schnall Oct 2002 B1
6463310 Swedlow et al. Oct 2002 B1
6463311 Diab Oct 2002 B1
6466808 Chin et al. Oct 2002 B1
6466809 Riley Oct 2002 B1
6470199 Kopotic Oct 2002 B1
6470200 Walker et al. Oct 2002 B2
6480729 Stone Nov 2002 B2
6490466 Fein et al. Dec 2002 B1
6493568 Bell Dec 2002 B1
6496711 Athan et al. Dec 2002 B1
6498942 Esenaliev et al. Dec 2002 B1
6501974 Huiku Dec 2002 B2
6501975 Diab Dec 2002 B2
6505060 Norris Jan 2003 B1
6505061 Larson Jan 2003 B2
6505133 Hanna et al. Jan 2003 B1
6510329 Heckel Jan 2003 B2
6510331 Williams et al. Jan 2003 B1
6512937 Blank et al. Jan 2003 B2
6515273 Al-Ali Feb 2003 B2
6519484 Lovejoy et al. Feb 2003 B1
6519486 Edgar, Jr. et al. Feb 2003 B1
6519487 Parker Feb 2003 B1
6525386 Mills Feb 2003 B1
6526300 Kiani Feb 2003 B1
6526301 Larsen et al. Feb 2003 B2
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali Apr 2003 B1
6546267 Sugiura et al. Apr 2003 B1
6553241 Mannheimer et al. Apr 2003 B2
6553242 Sarussi Apr 2003 B1
6553243 Gurley Apr 2003 B2
6554788 Hunley Apr 2003 B1
6556852 Schulze et al. Apr 2003 B1
6560470 Pologe May 2003 B1
6564077 Mortara May 2003 B2
6564088 Soller et al. May 2003 B1
6571113 Fein et al. May 2003 B1
6571114 Koike et al. May 2003 B1
6574491 Elghazzawi Jun 2003 B2
6580086 Schulz Jun 2003 B1
6584336 Al-Ali Jun 2003 B1
6587703 Cheng et al. Jul 2003 B2
6587704 Fine et al. Jul 2003 B1
6589172 Williams et al. Jul 2003 B2
6591122 Schmitt Jul 2003 B2
6591123 Fein et al. Jul 2003 B2
6594511 Stone et al. Jul 2003 B2
6594512 Huang Jul 2003 B2
6594513 Jobsis et al. Jul 2003 B1
6597931 Cheng et al. Jul 2003 B1
6597933 Kiani Jul 2003 B2
6600940 Fein et al. Jul 2003 B1
6606510 Swedlow et al. Aug 2003 B2
6606511 Al-Ali Aug 2003 B1
6606512 Muz et al. Aug 2003 B2
6609016 Lynn Aug 2003 B1
6615064 Aldrich Sep 2003 B1
6615065 Barrett et al. Sep 2003 B1
6618602 Levin Sep 2003 B2
6622034 Gorski et al. Sep 2003 B1
6628975 Fein et al. Sep 2003 B1
6631281 Kästle Oct 2003 B1
6632181 Flaherty Oct 2003 B2
6640116 Diab Oct 2003 B2
6643530 Diab Nov 2003 B2
6643531 Katarow Nov 2003 B1
6647279 Pologue Nov 2003 B2
6647280 Bahr et al. Nov 2003 B2
6650916 Cook Nov 2003 B2
6650917 Diab Nov 2003 B2
6650918 Terry Nov 2003 B2
6654621 Palatnik et al. Nov 2003 B2
6654622 Eberhard et al. Nov 2003 B1
6654623 Kästle Nov 2003 B1
6654624 Diab Nov 2003 B2
6658277 Wassermann Dec 2003 B2
6658279 Swanson et al. Dec 2003 B2
6662033 Casciani et al. Dec 2003 B2
6665551 Suzuki Dec 2003 B1
6668182 Hubelbank Dec 2003 B2
6668183 Hicks et al. Dec 2003 B2
6671526 Aoyagi et al. Dec 2003 B1
6671528 Steuer et al. Dec 2003 B2
6671530 Chung et al. Dec 2003 B2
6671531 Al-Ali Dec 2003 B2
6671532 Fudge et al. Dec 2003 B1
6675031 Porges et al. Jan 2004 B1
6678543 Diab Jan 2004 B2
6681126 Solenberger Jan 2004 B2
6681128 Steuer et al. Jan 2004 B2
6681454 Modgil et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6694160 Chin Feb 2004 B2
6697653 Hanna Feb 2004 B2
6697655 Sueppel et al. Feb 2004 B2
6697656 Al-Ali Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab Mar 2004 B1
6699199 Asada et al. Mar 2004 B2
6701170 Stetson Mar 2004 B2
6702752 Dekker Mar 2004 B2
6707257 Norris Mar 2004 B2
6708049 Berson et al. Mar 2004 B1
6709402 Dekker Mar 2004 B2
6711424 Fine et al. Mar 2004 B1
6711425 Reuss Mar 2004 B1
6712762 Lichter Mar 2004 B1
6714803 Mortz Mar 2004 B1
6714804 Al-Ali Mar 2004 B2
6714805 Jeon et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6719686 Coakley et al. Apr 2004 B2
6719705 Mills Apr 2004 B2
6720734 Norris Apr 2004 B2
6721584 Baker, Jr. et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725074 Kästle Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6731962 Katarow May 2004 B1
6731963 Finarov et al. May 2004 B2
6731967 Turcott May 2004 B1
6735459 Parker May 2004 B2
6745060 Diab et al. Jun 2004 B2
6745061 Hicks et al. Jun 2004 B1
6748253 Norris et al. Jun 2004 B2
6748254 O'Neil et al. Jun 2004 B2
6754515 Pologe Jun 2004 B1
6754516 Mannheimer Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6760609 Jacques Jul 2004 B2
6760610 Tscupp et al. Jul 2004 B2
6763255 DeLonzor et al. Jul 2004 B2
6763256 Kimball et al. Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6773397 Kelly Aug 2004 B2
6778923 Norris et al. Aug 2004 B2
6780158 Yarita Aug 2004 B2
6791689 Weckstrom Sep 2004 B1
6792300 Diab Sep 2004 B1
6801797 Mannheimer et al. Oct 2004 B2
6801798 Geddes et al. Oct 2004 B2
6801799 Mendelson Oct 2004 B2
6801802 Sitzman et al. Oct 2004 B2
6802812 Walker et al. Oct 2004 B1
6805673 Dekker Oct 2004 B2
6810277 Edgar, Jr. et al. Oct 2004 B2
6813511 Diab Nov 2004 B2
6816741 Diab Nov 2004 B2
6819950 Mills Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6825619 Norris Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6829496 Nagai et al. Dec 2004 B2
6830711 Mills Dec 2004 B2
6836679 Baker, Jr. et al. Dec 2004 B2
6839579 Chin Jan 2005 B1
6839580 Zonios et al. Jan 2005 B2
6839582 Heckel Jan 2005 B2
6839659 Tarassenko et al. Jan 2005 B2
6842635 Parker Jan 2005 B1
6845256 Chin Jan 2005 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6850789 Schweitzer, Jr. et al. Feb 2005 B2
6859658 Krug Feb 2005 B1
6861639 Al-Ali Mar 2005 B2
6863652 Huang et al. Mar 2005 B2
6865407 Kimball et al. Mar 2005 B2
6873865 Steuer et al. Mar 2005 B2
6879850 Kimball Apr 2005 B2
6882874 Huiku Apr 2005 B2
6898452 Al-Ali et al. May 2005 B2
6909912 Melker Jun 2005 B2
6912413 Rantala et al. Jun 2005 B2
6916289 Schnall Jul 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931269 Terry Aug 2005 B2
6934570 Kiani et al. Aug 2005 B2
6941162 Fudge et al. Sep 2005 B2
6947781 Asada et al. Sep 2005 B2
6950687 Al-Ali Sep 2005 B2
6954664 Sweitzer Oct 2005 B2
6963767 Rantala et al. Nov 2005 B2
6968221 Rosenthal Nov 2005 B2
6971580 Zhu et al. Dec 2005 B2
6979812 Al-Ali Dec 2005 B2
6983178 Fine Jan 2006 B2
6985763 Boas et al. Jan 2006 B2
6985764 Mason et al. Jan 2006 B2
6990426 Yoon et al. Jan 2006 B2
6992751 Okita et al. Jan 2006 B2
6992772 Block et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6993372 Fine et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7006855 Sarussi Feb 2006 B1
7006856 Baker, Jr. et al. Feb 2006 B2
7016715 Stetson Mar 2006 B2
7020507 Scharf et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7024235 Melker Apr 2006 B2
7025728 Ito et al. Apr 2006 B2
7027849 Al-Ali et al. Apr 2006 B2
7027850 Wasserman Apr 2006 B2
7039449 Al-Ali May 2006 B2
7043289 Fine et al. May 2006 B2
7047055 Boaz et al. May 2006 B2
7060035 Wasserman et al. Jun 2006 B2
7062307 Norris et al. Jun 2006 B2
7067893 Mills Jun 2006 B2
7072701 Chen et al. Jul 2006 B2
7072702 Edgar, Jr. et al. Jul 2006 B2
7079880 Stetson Jul 2006 B2
7085597 Fein et al. Aug 2006 B2
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
7107088 Aceti Sep 2006 B2
7113815 O'Neil et al. Sep 2006 B2
7123950 Mannheimer Oct 2006 B2
7127278 Melker Oct 2006 B2
7130671 Baker, Jr. et al. Oct 2006 B2
7132641 Schulz Nov 2006 B2
7133711 Chernoguz et al. Nov 2006 B2
7139559 Kenagy et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7162288 Nordstrom Jan 2007 B2
7190987 Lindekugel et al. Mar 2007 B2
7198778 Achilefu et al. Apr 2007 B2
7215984 Diab et al. May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7228161 Chin Jun 2007 B2
7236811 Schmitt Jun 2007 B2
7248910 Li et al. Jul 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7280858 Al-Ali et al. Oct 2007 B2
7295866 Al-Ali et al. Nov 2007 B2
7305262 Brodnick et al. Dec 2007 B2
7315753 Baker, Jr. et al. Jan 2008 B2
7412272 Medina Aug 2008 B2
20010021803 Blank et al. Sep 2001 A1
20010051767 Williams et al. Dec 2001 A1
20020016537 Muz et al. Feb 2002 A1
20020026109 Diab et al. Feb 2002 A1
20020028990 Sheperd et al. Mar 2002 A1
20020038078 Ito Mar 2002 A1
20020042558 Mendelson Apr 2002 A1
20020068859 Knopp Jun 2002 A1
20020072681 Schnall Jun 2002 A1
20020103423 Chin et al. Aug 2002 A1
20020116797 Modgil et al. Aug 2002 A1
20020128544 Diab et al. Sep 2002 A1
20020133067 Jackson, III Sep 2002 A1
20020156354 Larson Oct 2002 A1
20020173706 Takatani Nov 2002 A1
20020173709 Fine et al. Nov 2002 A1
20020190863 Lynn Dec 2002 A1
20020198442 Rantala et al. Dec 2002 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030036690 Geddes et al. Feb 2003 A1
20030045785 Diab et al. Mar 2003 A1
20030073889 Keilbach et al. Apr 2003 A1
20030073890 Hanna Apr 2003 A1
20030100840 Sugiura et al. May 2003 A1
20030132495 Mills et al. Jul 2003 A1
20030135099 Al-Ali Jul 2003 A1
20030162414 Schulz et al. Aug 2003 A1
20030171662 O'Connor et al. Sep 2003 A1
20030176776 Huiku Sep 2003 A1
20030181799 Lindekugel et al. Sep 2003 A1
20030187337 Tarassenko et al. Oct 2003 A1
20030195402 Fein et al. Oct 2003 A1
20030197679 Ali et al. Oct 2003 A1
20030212316 Leiden Nov 2003 A1
20030225323 Kiani et al. Dec 2003 A1
20030225337 Scharf et al. Dec 2003 A1
20030236452 Melker et al. Dec 2003 A1
20030236647 Yoon et al. Dec 2003 A1
20040006261 Swedlow et al. Jan 2004 A1
20040010188 Wasserman et al. Jan 2004 A1
20040024297 Chen et al. Feb 2004 A1
20040024326 Yeo et al. Feb 2004 A1
20040034293 Kimball Feb 2004 A1
20040039272 Abdul-Hafiz et al. Feb 2004 A1
20040039273 Terry Feb 2004 A1
20040054269 Rantala et al. Mar 2004 A1
20040054291 Schulz Mar 2004 A1
20040059209 Al-Ali et al. Mar 2004 A1
20040059210 Stetson Mar 2004 A1
20040064020 Diab et al. Apr 2004 A1
20040068164 Diab et al. Apr 2004 A1
20040087846 Wasserman May 2004 A1
20040092805 Yarita May 2004 A1
20040097797 Porges et al. May 2004 A1
20040098009 Boecker et al. May 2004 A1
20040107065 Al-Ali Jun 2004 A1
20040116788 Chernoguz et al. Jun 2004 A1
20040116789 Boaz et al. Jun 2004 A1
20040117891 Hannula et al. Jun 2004 A1
20040122300 Boas et al. Jun 2004 A1
20040122302 Mason et al. Jun 2004 A1
20040133087 Ali et al. Jul 2004 A1
20040133088 Al-Ali et al. Jul 2004 A1
20040138538 Stetson Jul 2004 A1
20040138540 Baker, Jr. et al. Jul 2004 A1
20040143172 Fudge et al. Jul 2004 A1
20040147821 Al-Ali et al. Jul 2004 A1
20040147822 Al-Ali et al. Jul 2004 A1
20040147823 Kiani et al. Jul 2004 A1
20040147824 Diab Jul 2004 A1
20040152965 Diab et al. Aug 2004 A1
20040158134 Diab et al. Aug 2004 A1
20040158135 Baker, Jr. et al. Aug 2004 A1
20040162472 Berson et al. Aug 2004 A1
20040167381 Lichter Aug 2004 A1
20040171920 Mannheimer et al. Sep 2004 A1
20040171948 Terry Sep 2004 A1
20040176671 Fine et al. Sep 2004 A1
20040181133 Al-Ali et al. Sep 2004 A1
20040181134 Baker, Jr. et al. Sep 2004 A1
20040186358 Chernow et al. Sep 2004 A1
20040199063 O'Neil et al. Oct 2004 A1
20040204636 Diab et al. Oct 2004 A1
20040204637 Diab et al. Oct 2004 A1
20040204638 Diab et al. Oct 2004 A1
20040204639 Casciani et al. Oct 2004 A1
20040204865 Lee et al. Oct 2004 A1
20040210146 Diab et al. Oct 2004 A1
20040215069 Mannheimer Oct 2004 A1
20040215085 Schnall Oct 2004 A1
20040230107 Asada et al. Nov 2004 A1
20040230108 Melker et al. Nov 2004 A1
20040236196 Diab et al. Nov 2004 A1
20040242980 Kiani et al. Dec 2004 A1
20040249252 Fine et al. Dec 2004 A1
20040257557 Block et al. Dec 2004 A1
20040260161 Melker et al. Dec 2004 A1
20040267103 Li Dec 2004 A1
20040267104 Hannula et al. Dec 2004 A1
20040267140 Ito et al. Dec 2004 A1
20050004479 Townsend et al. Jan 2005 A1
20050010092 Weber et al. Jan 2005 A1
20050014999 Rahe-Meyer Jan 2005 A1
20050020887 Goldberg Jan 2005 A1
20050020894 Norris et al. Jan 2005 A1
20050033128 Ali et al. Feb 2005 A1
20050033129 Edgar, Jr. et al. Feb 2005 A1
20050033131 Chen Feb 2005 A1
20050043599 O'Mara Feb 2005 A1
20050043600 Diab Feb 2005 A1
20050049468 Carlson Mar 2005 A1
20050049470 Terry Mar 2005 A1
20050049471 Aceti Mar 2005 A1
20050070773 Chin Mar 2005 A1
20050070775 Chin Mar 2005 A1
20050075546 Samsoondar Apr 2005 A1
20050075550 Lindekugel Apr 2005 A1
20050085704 Schulz Apr 2005 A1
20050090720 Wu Apr 2005 A1
20050119538 Jeon et al. Jun 2005 A1
20050197548 Dietiker Sep 2005 A1
20050228248 Dietiker Oct 2005 A1
20050234317 Kiani Oct 2005 A1
20050256386 Chen Nov 2005 A1
20050272986 Smith Dec 2005 A1
20050277819 Kiani et al. Dec 2005 A1
20060020179 Anderson et al. Jan 2006 A1
20060030764 Porges Feb 2006 A1
20060058594 Ishizuka et al. Mar 2006 A1
20060074280 Martis Apr 2006 A1
20060084852 Mason et al. Apr 2006 A1
20060084878 Banet Apr 2006 A1
20060089547 Sarussi Apr 2006 A1
20060106294 Maser et al. May 2006 A1
20060122517 Banet Jun 2006 A1
20060129039 Lindner Jun 2006 A1
20060155198 Schmid Jul 2006 A1
20060173257 Nagai Aug 2006 A1
20060200029 Evans et al. Sep 2006 A1
20070027376 Todokoro et al. Feb 2007 A1
20070078311 Al-Ali et al. Apr 2007 A1
20070197887 Lunak et al. Aug 2007 A1
20080262328 Adams Oct 2008 A1
Foreign Referenced Citations (195)
Number Date Country
11080192 Nov 2007 CN
3405444 Aug 1985 DE
3516338 Nov 1986 DE
3703458 Aug 1988 DE
3938759 May 1991 DE
4210102 Sep 1993 DE
4423597 Aug 1995 DE
19632361 Feb 1997 DE
19703220 Jul 1997 DE
19640807 Sep 1997 DE
19647877 Apr 1998 DE
10030862 Jan 2002 DE
20318882 Apr 2004 DE
0127947 May 1984 EP
0194105 Sep 1986 EP
0204459 Dec 1986 EP
0262779 Apr 1988 EP
0315040 Oct 1988 EP
0314331 May 1989 EP
0352923 Jan 1990 EP
0360977 Apr 1990 EP
0430340 Jun 1991 EP
0435500 Jul 1991 EP
0497021 Aug 1992 EP
0529412 Aug 1992 EP
0531631 Sep 1992 EP
0566354 Apr 1993 EP
0587009 Aug 1993 EP
0630203 Sep 1993 EP
0572684 Dec 1993 EP
0615723 Sep 1994 EP
0702931 Mar 1996 EP
0724860 Aug 1996 EP
0793942 Sep 1997 EP
0864293 Sep 1998 EP
1006863 Oct 1998 EP
1006864 Oct 1998 EP
0875199 Nov 1998 EP
0998214 Dec 1998 EP
0898933 Mar 1999 EP
1332713 Aug 2003 EP
1469773 Aug 2003 EP
1502529 Jul 2004 EP
1491135 Dec 2004 EP
1807001 Jul 2007 EP
2685865 Jan 1992 FR
63275325 Nov 1988 JP
2013450 Jan 1990 JP
2111343 Apr 1990 JP
2191434 Jul 1990 JP
2237544 Sep 1990 JP
3170866 Jul 1991 JP
3173536 Jul 1991 JP
3245042 Oct 1991 JP
4038280 Mar 1992 JP
4174648 Jun 1992 JP
4191642 Jul 1992 JP
4332536 Nov 1992 JP
3124073 Mar 1993 JP
5049624 Mar 1993 JP
5049625 Mar 1993 JP
3115374 Apr 1993 JP
5200031 Aug 1993 JP
5212016 Aug 1993 JP
06014906 Jan 1994 JP
6016774 Mar 1994 JP
3116255 Apr 1994 JP
6029504 Apr 1994 JP
6098881 Apr 1994 JP
6154177 Jun 1994 JP
6269430 Sep 1994 JP
6285048 Oct 1994 JP
7001273 Jan 1995 JP
7124138 May 1995 JP
7136150 May 1995 JP
3116259 Jun 1995 JP
3116260 Jun 1995 JP
7155311 Jun 1995 JP
7155313 Jun 1995 JP
3238813 Jul 1995 JP
7171139 Jul 1995 JP
3134144 Sep 1995 JP
7236625 Sep 1995 JP
7246191 Sep 1995 JP
8256996 Oct 1996 JP
9192120 Jul 1997 JP
10216113 Aug 1998 JP
10216114 Aug 1998 JP
10216115 Aug 1998 JP
10337282 Dec 1998 JP
11019074 Jan 1999 JP
11155841 Jun 1999 JP
11188019 Jul 1999 JP
11244268 Sep 1999 JP
2000107157 Apr 2000 JP
2000237170 Sep 2000 JP
2001245871 Sep 2001 JP
2002224088 Aug 2002 JP
2002282242 Oct 2002 JP
2003153881 May 2003 JP
2003153882 May 2003 JP
2003169791 Jun 2003 JP
2003194714 Jul 2003 JP
2003210438 Jul 2003 JP
2003275192 Sep 2003 JP
2003339678 Dec 2003 JP
2004008572 Jan 2004 JP
2004089546 Mar 2004 JP
2004113353 Apr 2004 JP
2004135854 May 2004 JP
2004148069 May 2004 JP
2004148070 May 2004 JP
2004159810 Jun 2004 JP
2004166775 Jun 2004 JP
2004194908 Jul 2004 JP
2004202190 Jul 2004 JP
2004248820 Sep 2004 JP
2004261364 Sep 2004 JP
2004290412 Oct 2004 JP
2004290544 Oct 2004 JP
2004290545 Oct 2004 JP
2004329406 Nov 2004 JP
2004329607 Nov 2004 JP
2004329928 Nov 2004 JP
2004337605 Dec 2004 JP
2004344367 Dec 2004 JP
2004351107 Dec 2004 JP
2005034472 Feb 2005 JP
2005110816 Apr 2005 JP
2006158555 Jun 2006 JP
WO8909566 Oct 1989 WO
WO9001293 Feb 1990 WO
WO9004352 May 1990 WO
WO9101678 Feb 1991 WO
WO9111137 Aug 1991 WO
WO9200513 Jan 1992 WO
WO9221281 Dec 1992 WO
WO9309711 May 1993 WO
WO9313706 Jul 1993 WO
WO9316629 Sep 1993 WO
WO9403102 Feb 1994 WO
WO9423643 Oct 1994 WO
WO9502358 Jan 1995 WO
WO9512349 May 1995 WO
WO9516970 Jun 1995 WO
WO9613208 May 1996 WO
WO9639927 Dec 1996 WO
WO9736536 Oct 1997 WO
WO9736538 Oct 1997 WO
WO9740741 Nov 1997 WO
WO9749330 Dec 1997 WO
WO9817174 Apr 1998 WO
WO9818382 May 1998 WO
WO9843071 Oct 1998 WO
WO9851212 Nov 1998 WO
WO9857577 Dec 1998 WO
WO9900053 Jan 1999 WO
WO9932030 Jul 1999 WO
WO9947039 Sep 1999 WO
WO9963884 Dec 1999 WO
WO0021438 Apr 2000 WO
WO0028888 May 2000 WO
WO0059374 Oct 2000 WO
WO0113790 Mar 2001 WO
WO0116577 Mar 2001 WO
WO0117421 Mar 2001 WO
WO0147426 Mar 2001 WO
WO0140776 Jun 2001 WO
WO0167946 Sep 2001 WO
WO0176461 Oct 2001 WO
WO0214793 Feb 2002 WO
WO0235999 May 2002 WO
WO02062213 Aug 2002 WO
WO02074162 Sep 2002 WO
WO02085202 Oct 2002 WO
WO03000125 Jan 2003 WO
WO03001180 Jan 2003 WO
WO03009750 Feb 2003 WO
WO03011127 Feb 2003 WO
WO03020129 Mar 2003 WO
WO03039326 May 2003 WO
WO03063697 Aug 2003 WO
WO03073924 Sep 2003 WO
WO2004000114 Dec 2003 WO
WO2004006748 Jan 2004 WO
WO2004069046 Aug 2004 WO
WO2004075746 Sep 2004 WO
WO2005002434 Jan 2005 WO
WO2005009221 Feb 2005 WO
WO2005010567 Feb 2005 WO
WO2005010568 Feb 2005 WO
WO2005020120 Mar 2005 WO
WO2005065540 Jul 2005 WO
WO2006064399 Jun 2006 WO
WO2006104790 Oct 2006 WO
Related Publications (1)
Number Date Country
20090264723 A1 Oct 2009 US
Divisions (1)
Number Date Country
Parent 11495411 Jul 2006 US
Child 12491061 US
Continuations (1)
Number Date Country
Parent 11199345 Aug 2005 US
Child 11495411 US