Compliant orthopedic driver

Information

  • Patent Grant
  • 11832863
  • Patent Number
    11,832,863
  • Date Filed
    Friday, April 22, 2022
    2 years ago
  • Date Issued
    Tuesday, December 5, 2023
    5 months ago
Abstract
Embodiments of a compliant orthopedic driver are disclosed herein. In some embodiments, compliant orthopedic driver includes a body extending from a proximal end to a distal end along a driver axis; a driver tip disposed at the distal end of the body, wherein the body includes at least one compliant portion configured to allow the driver flex about at least two axes transverse to the driver axis.
Description
FIELD OF THE INVENTION

The invention generally relates to devices and methods that improve surgical procedures by, for example, providing a working space for the procedure and improving the surgical conditions for the practitioner of a procedure.


BACKGROUND OF THE INVENTION

During spinal, orthopedic and general surgeries, screws are often used to fix implants and other mechanical constructs to bony structure. There are an increasing number of robotic systems and various types of instrument guides available on the market. The goal of such apparatuses is to assist surgeons in drilling, tapping and/or screw placement along a desired trajectory. The usage of guides and robotic systems to maintain the desired trajectory can lead to undesirable locking between the driver (e.g., a screwdriver) and the fixation element (e.g., a screw) in a manner which makes it difficult to decouple the driver from the fixation element. This difficult can negatively impact the surgical procedure and possibly the final result of the procedure.


For example, in the case of pedicle screw placement along a spine, a guide (robotic or handheld) is first used to guide a drill in the direction of a desired trajectory. Subsequently, the drill is inserted through the guide to begin drilling the hole in a vertebra. However, upon contact with the bone, contact forces (action and reaction) may cause the less rigid structure (typically the bone/vertebra) to move away from its initial position. If the trajectory of the drill is not corrected to compensate for these contact forces, the actual drilled trajectory will not be aligned with the desired trajectory. After the hole is drilled, other hole preparation tasks may be performed (e.g., tapping, bone breach testing, etc.). Finally, the implant is placed in the bone. Since implants do not typically have cutting abilities, the implant (e.g., a screw) follows the drilled hole trajectory. Because the driver being used to install the implant extends through the guide, which extends along the desired trajectory, and the implant extends along the drilled hole trajectory, which is not collinear with the desired trajectory, there will be action-reaction forces and torques at the interface of the implant and the driver. This interface is typically configured to have minimal mechanical backlash and a rigid connection (e.g., torx interface, hex interface, etc.). However, this interface does not adapt well to off-axis use and, as such, will result in the locking of the driver in the implant. The principal, underlying cause of this locking is over-constraint in the driver. When the driver is locked in the implant and cannot be decoupled therefrom, typical troubleshooting techniques are moving the guide, which may delay the surgery and/or result in improper implantation of the implant.


Therefore, a need exists for an orthopedic driver that overcomes or minimizes these and other problems.


SUMMARY

Embodiments of a compliant orthopedic driver are disclosed herein. In some embodiments, compliant orthopedic driver includes a body extending from a proximal end to a distal end along a driver axis; a driver tip disposed at the distal end of the body, wherein the body includes at least one compliant portion configured to allow the driver flex about at least two axes transverse to the driver axis.


Embodiments of a compliant orthopedic driver are disclosed herein. In some embodiments, compliant orthopedic driver includes a body extending from a proximal end to a distal end along a driver axis; a driver tip disposed at the distal end of the body, wherein the body includes at least one compliant portion configured to allow the driver flex about at least two axes transverse to the driver axis wherein the body includes a first compliant portion and a second compliant portion spaced apart from the first compliant portion, and wherein each of the first and second compliant portions are configured to allow the driver flex about at least two axes transverse to the driver axis.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be more readily understood with reference to the embodiments thereof illustrated in the attached figures, in which:



FIG. 1A is an isometric view of a compliant driver in accordance with an embodiment of the present disclosure;



FIG. 1B is a front view of the compliant drive of FIG. 1A;



FIG. 1C is a top view of the compliant driver of FIG. 1A;



FIG. 1D is an isometric view of a compliant driver in accordance with an embodiment of the present disclosure;



FIG. 1E is a front view of the compliant drive of FIG. 1D;



FIG. 2A is an isometric view of a compliant driver in accordance with another embodiment of the present disclosure;



FIG. 2B is a front view of the compliant drive of FIG. 2A;



FIG. 2C is a top view of the compliant driver of FIG. 2A;



FIG. 3A is an isometric view of a compliant driver in accordance with another embodiment of the present disclosure;



FIG. 3B is a front view of the compliant driver of FIG. 3A;



FIG. 4A is an isometric view of a compliant driver in accordance with another embodiment of the present disclosure;



FIG. 4B is a front view of the compliant driver of FIG. 4A; and



FIGS. 5A and 5B depict an exemplary robotic arm with which a compliant driver according to embodiments of the present disclosure may be used.





DETAILED DESCRIPTION

Embodiments of the invention will now be described. The following detailed description of the invention is not intended to be illustrative of all embodiments. In describing embodiments of the present invention, specific terminology is employed for the sake of clarity. However, the invention is not intended to be limited to the specific terminology so selected. It is to be understood that each specific element includes all technical equivalents that operate in a similar manner to accomplish a similar purpose.


Typically, an orthopedic driver (e.g., a screwdriver) requires the two degrees of freedom (DOFs) to be locked in order to fulfil its main function (i.e., insert a screw): (1) Rotation around the driver axis and (2) translation along the driver axis. This means that when an implant is attached to the driver tip, the implant should not be able to rotate around nor translate along the driver axis. When the four remaining DOFs between driver and implant are also locked, a mechanical over-constrain results at the implant-driver interface due to non-collinearity of a trajectory of a hole drilled into a bone and instrument guiding trajectory. This over-constrain is the root cause of screw locking issues.


As such, it is necessary to add compliance to the driver to allow the driver tip to adapt or flex to the screw trajectory and, therefore, eliminate the mechanical over-constrain at the implant-driver interface. One way to add compliance to the driver is to incorporate a kinematic chain into the driver. In some embodiments, the kinematic chain may include two or more universal joints in series, each of which adds two DOFs (rotation about a first axis and rotation about a second axis) for a total of four DOFs. In other embodiments, the kinematic chain may include a universal joint (two DOFs, as explained above) and a semi-ball joint (three DOFs—rotation about three axes).



FIGS. 1A-1C depict a compliant orthopedic driver 100 (e.g., a screwdriver) in accordance with embodiments of the present disclosure. In some embodiments, the driver 100 includes a body 102 extending from a proximal end 104 to a distal end 106 along a driver axis 105. The body 102 terminates at a driver tip 108 at the distal end 106. The driver tip 108 may have any shape (e.g., torx, hex, cross, etc.) corresponding to the shape of a recess in the head of a screw (not shown) to be implanted using the driver 100. In the embodiment depicted in FIGS. 1A-1C, the two universal joints are implemented by two pairs of blade hinges 110A, 110B. The two pairs of blade hinges 110A, 110B are separated by a first distance 120. The second pair of blade hinges 110B is disposed a second distance 122 from the driver tip 108. The first and second distances 120, 122 depend on the surgical procedure (e.g., spine, trauma, etc.) and the tools being used (e.g., robotic guide, handheld guide, etc.). In this embodiment, the driver tip 108 exhibits 4 DOFs. The two locked DOFs are the rotation around and translation along the driver axis 105. In some embodiments, mechanical end-stops (not shown) may be incorporated to protect the hinges against over travel.


Because each pair of hinges is identical, the first pair of blade hinges 110A will be described for brevity. The first pair of blade hinges 110A includes a first blade 112A and a second blade 112B which extends transversely to the first blade 112A. In some embodiments, the second blade 112B is perpendicular to the first blade 112A. The first blade 112A has a first length L1 and a first thickness t1 and the second blade has a second length L2 and a second thickness t2. In some embodiments, the first length L1 is equivalent to the second length L2. In some embodiment, the first thickness t1 is equivalent to the second thickness t2. The first length L1 and the first thickness t1 are configured to allow the driver 100 to flex about a first axis 115A as indicated by arrow 114A. Similarly, the second length L2 and the second thickness t2 are configured to allow the driver 100 to flex about a second axis 115B as indicated by arrow 114B. In some embodiments, the first and second axes 115A, 115B are perpendicular to the driver axis 105. In some embodiments, first and second blades 112A, 112B are configured to allow for a degree of flexure between 0° and 10°. In some embodiments, the first and second blades 112A, 112B are adjacent to one another, as depicted in FIGS. 1A-1C. In some embodiments, the first and second blades 112A, 112B may alternatively be spaced apart by a predetermined distance. In some embodiments, all sharp edges/corners of the blades may be rounded to reduce high stress concentrations.



FIGS. 1D and 1E depict a compliant orthopedic driver 150 in accordance with another embodiment of the present disclosure. The driver includes all of the elements discussed above with respect to the driver 100. As such, a description of those features will be omitted here for clarity. The orthopedic driver 150 additionally includes first and second pairs of stops 152A, 152B corresponding to the first pair of blade hinges 110A and third and fourth pairs of stops 152C, 152D corresponding to the second pair of blade hinges 110B. As depicted in FIGS. 1D and 1E, each pair of stops is disposed on opposite sides of the blades to prevent over travel (i.e., limit the amount of travel) of the driver 150 in either direction of flexure. Because all four pairs of stops are substantially similar, only the first pair of stops 152A will be described. It should be understood that this description also applies to the other pairs of stops. As shown more clearly in FIG. 1E, the first pair of stops 152A includes a first pair of cantilevered portions 154A disposed on a first side of the first blade 112A and a second pair of cantilevered portions 154B disposed on a second side opposite the first side of the first blade 112A. The first and second pairs of cantilevered portions 154A, 154B extend from the body 102 over the first blade 112A. The first pair of cantilevered portions 154A are separated by a first predetermined distance 156A. The second pair of cantilevered portions 154B are separated by a second predetermined distance 156B. In some embodiments, the first and second predetermined distances 156A, 156B are equivalent; such that the amount flexure in both directions is equally limited. In some embodiments, the first and second predetermined distances 156A, 156B are not equivalent; such that flexure in one direction is limited more than flexure in the opposite direction.



FIGS. 2A-2C depict a compliant orthopedic driver 200 (e.g., a screwdriver) in accordance with another embodiment of the present disclosure. The driver 200 functions similarly to the drive 100 described above. In some embodiments, the driver 200 includes a body 202 extending from a proximal end 204 to a distal end 206 along a driver axis 205. The body 202 terminates at a driver tip 208 at the distal end 206. The driver tip 208 may have any shape (e.g., torx, hex, cross, etc.) corresponding to the shape of a recess in the head of a screw (not shown) to be implanted using the driver 200. In the embodiment depicted in FIGS. 2A-2C, the two universal joints are implemented by two pairs of notch hinges 210A, 210B. The two pairs of notch hinges 210A, 210B are separated by a first distance 220. The second pair of notch hinges 210B is disposed a second distance 222 from the driver tip 208. The first and second distances 220, 222 depend on the surgical procedure (e.g., spine, trauma, etc.) and the tools being used (e.g., robotic guide, handheld guide, etc.). In this embodiment, the driver tip 208 also exhibits 4 DOFs. The two locked DOFs are again the rotation around and translation along the driver axis 205. In some embodiments, mechanical end-stops (not shown) may be incorporated to protect the hinges against over travel.


Because each pair of hinges is identical, the first pair of notch hinges 210A will be described for brevity. The first pair of notch hinges 210A includes a first pair of notches 212A and a second pair of notches 212B which extends transversely to the first blade 212A. In some embodiments, the second pair of notches 212B are angularly offset with respect to the first pair of notches 212A by 90°. Each of the first pair of notches 212A has a first radius r1. A first thickness t1 separates the first pair of notches 212A (FIG. 2C). Each of the second pair of notches 210B has a second radius r2. A second thickness t2 separates the second pair of notches 212B (FIG. 2C). In some embodiments, the first radius r1 is equivalent to the second radius r2. In some embodiments, the first thickness t1 is equivalent to the second thickness t2. The first radius r1 and the first thickness t1 are configured to allow the driver 200 to flex about a first axis 215A as indicated by arrow 214A. Similarly, the second radius r2 and the second thickness t2 are configured to allow the driver 200 to flex about a second axis 215B as indicated by arrow 214B. In some embodiments, the first and second axes 215A, 215B are perpendicular to the driver axis 205. In some embodiments, first and second pairs of notches 212A, 212B are configured to allow for a degree of flexure between 0° and 10°. In some embodiments, the first and second pairs of notches 212A, 212B are adjacent to one another, as depicted in FIGS. 2A-2C. In some embodiments, the first and second pairs of notches 212A, 212B may alternatively be spaced apart by a predetermined distance. The notches 212A, 212B advantageously allow for gradual flexure without high stress areas associated with sharp corners. In some embodiments, the driver 200 may also include stops as described above with respect to FIGS. 1D and 1E to limit the amount of flexure of the driver.



FIGS. 3A and 3B depict a compliant orthopedic driver 300 (e.g., a screwdriver) in accordance with another embodiment of the present disclosure. The driver 300 functions somewhat similarly to the drivers 100, 200 described above. In some embodiments, the driver 300 includes a body 302 extending from a proximal end 304 to a distal end 306 along a driver axis 305. The body 302 terminates at a driver tip 308 at the distal end 306. The driver tip 308 may have any shape (e.g., torx, hex, cross, etc.) corresponding to the shape of a recess in the head of a screw (not shown) to be implanted using the driver 300. The driver 300 incorporates the semi-ball joint method, which is implemented by having a reduced diameter section 310. The reduced diameter section provides 5 DOFs: flexure about a first axis 314A, slight translation along the first axis 314A, flexure about a second axis 314B, slight translation along the second axis 314B, and torsion about the driver axis 305.


The reduced diameter section 310 has a first length 320 and is disposed a first distance 322 from the driver tip 308. The first length 320 and the first distance 322 depend on the surgical procedure (e.g., spine, trauma, etc.) and the tools being used (e.g., robotic guide, handheld guide, etc.). The reduced diameter section 310 has a second diameter d2, which is smaller than a first diameter d1 of the body 302. The first length 320 and the second diameter d2 dictate the amount of flexure of the driver 300. In some embodiments, the first length 320 and the diameter of the reduced diameter section 310 may be configured to allow for slight torsion about the driver axis 305. As such, the only fully locked DOF is the translation along the driver axis 305. The first length 320 is configured to allow for more torsion stiffness than flexure stiffness. In some embodiments, the driver 300 may also include stops as described above with respect to FIGS. 1D and 1E to limit the amount of flexure of the driver.



FIGS. 4A and 4B depict a compliant orthopedic driver 400 (e.g., a screwdriver) in accordance with another embodiment of the present disclosure. The driver 400 functions similarly to the driver 300 described above. In some embodiments, the driver 400 includes a body 402 extending from a proximal end 404 to a distal end 406 along a driver axis 405. The body 402 terminates at a driver tip 408 at the distal end 406. The driver tip 408 may have any shape (e.g., torx, hex, cross, etc.) corresponding to the shape of a recess in the head of a screw (not shown) to be implanted using the driver 400. The driver 400 also incorporates the semi-ball joint method, which is implemented by having a first reduced diameter section 410A and a second reduced diameter section 410B.


Because the second reduced diameter section 410B is identical to the first reduced diameter section, only the first reduced diameter section 410A will be described for brevity. The first reduced diameter section 410A has a first length 421A and a first reduced diameter d1, which is less than a body diameter D1. The first reduced diameter section 410A is disposed a first distance 420 from the second reduced diameter section 410B. The second reduced diameter section 410B is disposed a second distance 422 from the driver tip 408. The first and second lengths 421A, 421B, the first and second reduced diameters d1, d2, and the first and second distances 420, 422 all dictate the amount of flexure of the driver 400 depend on the surgical procedure (e.g., spine, trauma, etc.) and the tools being used (e.g., robotic guide, handheld guide, etc.). In some embodiments, these dimensions may be configured to allow for slight torsion about the driver axis 305. As such, the only fully locked DOF is the translation along the driver axis 405. Each of the first and second reduced diameter sections 410A, 410B provide the same DOFs as discussed above with respect to the reduced diameter section 310. However, having two shorter reduced diameter sections advantageously provides improved resistance to buckling under an axial load. In some embodiments, the driver 400 may also include stops as described above with respect to FIGS. 1D and 1E to limit the amount of flexure of the driver.



FIGS. 5A and 5B depict an exemplary robot arm with which a compliant driver (100, 200, 300, 400) in accordance with the present disclosure may be used. As noted above, the compliant driver (100, 200, 300, 400) may also be used with any other type of guide (e.g., handheld). FIG. 5A depicts part of a surgical robot system 500 with a robot 502 including base 506, robot arm 504, and end-effector 512. Other elements of the robot system, not illustrated, such as the display, cameras, etc. may also be present. FIG. 5B depicts a close-up view of the end-effector 512 with guide tube 514 and a plurality of tracking markers 518 rigidly affixed to the end-effector 512. In this embodiment, the plurality of tracking markers 118 are attached to the guide tube 112. When tracking an instrument such as, for example, the compliant driver (100, 200, 300, 400), the end-effector 512, or other object to be tracked in 3D, an array of tracking markers 518 may be rigidly attached to a portion of the instrument or end-effector 512. Preferably, the tracking markers 518 are attached such that the markers 518 are out of the way (e.g., not impeding the surgical operation, visibility, etc.). The markers 518 may be affixed to the instrument, end-effector 112, or other object to be tracked, for example, with an array 612.


Embodiments of the inventive driver advantageously solve the problem of driver-implant locking by preventing or substantially limiting such an occurrence by introducing adapted compliance in the driver. As a result, one exemplary realized benefit is the usability of such drivers in conjunction with robotic systems by decreasing the probability of occurrence of the implant locking effect to almost zero, without interfering with the general workflow or external functionality (proper implant function).


While the invention herein disclosed has been described with reference to specific embodiments and applications thereof, numerous modifications and variations can be made thereto by those skilled in the art without departing from the scope of the invention as set forth in the claims.

Claims
  • 1. A surgical robotic system comprising: a robot having a base, a robot arm, and an end-effector;a guide tube coupled to the end-effector of the robot;a compliant orthopedic driver for driving a bone screw into a bone of a patient configured to be positioned within a guide tube, the complaint orthopedic driver comprising: a body extending from a proximal end to a distal end along a driver axis;a driver tip disposed at the distal end of the body and having a mechanical interface adapted to mate with a head of the screw to allow rotation of the bone screw by rotation of the body around the driver axis,wherein the body includes a first compliant portion configured to allow the driver to flex about at least a first axis and a second axis, the first and second axes are transverse to the driver axis, the driver tip being rotationally fixed to the body around the driver axis,wherein the first compliant portion includes a first pair of blade hinges having a first blade and a second blade, wherein the second blade is disposed adjacent and distal to the first blade along the driver axis,wherein the first compliant portion flexes about the first axis, the first axis extending along the first blade and flexes about the second axis, the second axis extending along the second blade.
  • 2. The surgical robotic system of claim 1, further comprising a second compliant portion spaced apart by a predetermined distance from the first compliant portion.
  • 3. The surgical robotic system of claim 2, wherein the second compliant portion includes a second pair of blade hinges having a third blade and a fourth blade.
  • 4. The surgical robotic system of claim 3, wherein the first blade is perpendicular to the second blade and the third blade is perpendicular to the fourth blade along the driver axis.
  • 5. The surgical robotic system of claim 3, wherein the first blade has a first predetermined thickness and a first predetermined length, and wherein the second blade has a second predetermined thickness and a second predetermined length.
  • 6. The surgical robotic system of claim 2, wherein the first and second compliant portions include a first reduced diameter section having a first predetermined length and a second reduced diameter section having a second predetermined length.
  • 7. The surgical robotic system of claim 1, wherein the first compliant portion includes a reduced diameter section having a predetermined length.
  • 8. The surgical robotic system of claim 1, wherein the first compliant portion is spaced apart from the driver tip by a second predetermined distance.
  • 9. The surgical robotic system of claim 1, wherein the first compliant portion includes a pair of stops configured to limit an amount of flexure of the driver about the at least two axes.
  • 10. The surgical robotic system of claim 1, wherein a plurality of tracking markers are rigidly affixed to the end-effector.
  • 11. The surgical robotic system of claim 1, wherein a plurality of tracking markers are rigidly affixed to the complaint orthopedic driver.
  • 12. A surgical robotic system comprising: a robot having a base, a robot arm, and an end-effector;a guide tube coupled to the end-effector of the robot;a compliant orthopedic driver for driving a bone screw into a bone of a patient configured to be positioned within a guide tube, the complaint orthopedic driver comprising: a body extending from a proximal end to a distal end along a driver axis;a driver tip disposed at the distal end of the body and having a mechanical interface adapted to mate with a head of the screw to allow rotation of the bone screw by rotation of the body around the driver axis,wherein the body includes a first compliant portion and a second compliant portion spaced apart from the first compliant portion, andwherein each of the first and second compliant portions are configured to allow the driver to flex about a first axis and a second axis, the first and second axes are transverse to the driver axis, the driver tip being rotationally fixed to the body around the driver axis,wherein the first compliant portion includes a first pair of blade hinges having a first blade and a second blade, wherein the second blade is disposed adjacent and distal to the first blade along the driver axis,wherein the first compliant portion flexes about the first axis, the first axis extending along the first blade and flexes about the second axis, the second axis extending along the second blade,wherein the first and second blades are configured to allow for a degree of flexure between 0 degrees and 10 degrees.
  • 13. The surgical robotic system of claim 12, wherein the second compliant portion comprises a second pair of blade hinges having a third blade and a fourth blade, and wherein the first blade is angularly offset from the second blade, and wherein the third blade is angularly offset from the fourth blade.
  • 14. The surgical robotic system of claim 13, wherein the first blade is perpendicular to the second blade.
  • 15. The surgical robotic system of claim 13, wherein the first blade has a first predetermined thickness and a first predetermined length, and wherein the second blade has a second predetermined thickness and a second predetermined length.
  • 16. The surgical robotic system of claim 13, wherein the first compliant portion comprises a first reduced diameter section having a first predetermined length and the second compliant portion comprises a second reduced diameter section having a second predetermined length.
  • 17. The surgical robotic system of claim 12, wherein a plurality of tracking markers are rigidly affixed to the end-effector.
  • 18. The surgical robotic system of claim 12, wherein a plurality of tracking markers are rigidly affixed to the complaint orthopedic driver.
CROSS REFERENCE TO RELATED APPLICATIONS

This patent application is a continuation of patent application Ser. No. 16/180,381 filed on Nov. 5, 2018, which is incorporated in its entirety herein.

US Referenced Citations (680)
Number Name Date Kind
4150293 Franke Apr 1979 A
5246010 Gazzara et al. Sep 1993 A
5354314 Hardy et al. Oct 1994 A
5397323 Taylor et al. Mar 1995 A
5598453 Baba et al. Jan 1997 A
5772594 Barrick Jun 1998 A
5791908 Gillio Aug 1998 A
5820559 Ng et al. Oct 1998 A
5825982 Wright et al. Oct 1998 A
5887121 Funda et al. Mar 1999 A
5911449 Daniele et al. Jun 1999 A
5951475 Gueziec et al. Sep 1999 A
5987960 Messner et al. Nov 1999 A
6012216 Esteves et al. Jan 2000 A
6031888 Ivan et al. Feb 2000 A
6033415 Mittelstadt et al. Mar 2000 A
6080181 Jensen et al. Jun 2000 A
6106511 Jensen Aug 2000 A
6122541 Cosman et al. Sep 2000 A
6144875 Schweikard et al. Nov 2000 A
6157853 Blume et al. Dec 2000 A
6167145 Foley et al. Dec 2000 A
6167292 Badano et al. Dec 2000 A
6201984 Funda et al. Mar 2001 B1
6203196 Meyer et al. Mar 2001 B1
6205411 DiGioia, III et al. Mar 2001 B1
6212419 Blume et al. Apr 2001 B1
6231565 Tovey et al. May 2001 B1
6236875 Bucholz et al. May 2001 B1
6246900 Cosman et al. Jun 2001 B1
6301495 Gueziec et al. Oct 2001 B1
6306126 Montezuma Oct 2001 B1
6312435 Wallace et al. Nov 2001 B1
6314311 Williams et al. Nov 2001 B1
6320929 Von Der Haar Nov 2001 B1
6322567 Mittelstadt et al. Nov 2001 B1
6325808 Bernard et al. Dec 2001 B1
6340363 Bolger et al. Jan 2002 B1
6377011 Ben-Ur Apr 2002 B1
6379302 Kessman et al. Apr 2002 B1
6402762 Hunter et al. Jun 2002 B2
6424885 Niemeyer et al. Jul 2002 B1
6447503 Wynne et al. Sep 2002 B1
6451027 Cooper et al. Sep 2002 B1
6477400 Barrick Nov 2002 B1
6484049 Seeley et al. Nov 2002 B1
6487267 Wolter Nov 2002 B1
6490467 Bucholz et al. Dec 2002 B1
6490475 Seeley et al. Dec 2002 B1
6499488 Hunter et al. Dec 2002 B1
6501981 Schweikard et al. Dec 2002 B1
6507751 Blume et al. Jan 2003 B2
6535756 Simon et al. Mar 2003 B1
6560354 Maurer, Jr. et al. May 2003 B1
6565554 Niemeyer May 2003 B1
6587750 Gerbi et al. Jul 2003 B2
6614453 Suri et al. Sep 2003 B1
6614871 Kobiki et al. Sep 2003 B1
6619840 Rasche et al. Sep 2003 B2
6636757 Jascob et al. Oct 2003 B1
6645196 Nixon et al. Nov 2003 B1
6666579 Jensen Dec 2003 B2
6669635 Kessman et al. Dec 2003 B2
6701173 Nowinski et al. Mar 2004 B2
6757068 Foxlin Jun 2004 B2
6782287 Grzeszczuk et al. Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786896 Madhani et al. Sep 2004 B1
6788018 Blumenkranz Sep 2004 B1
6804581 Wang et al. Oct 2004 B2
6823207 Jensen et al. Nov 2004 B1
6827351 Graziani et al. Dec 2004 B2
6837892 Shoham Jan 2005 B2
6839612 Sanchez et al. Jan 2005 B2
6856826 Seeley et al. Feb 2005 B2
6856827 Seeley et al. Feb 2005 B2
6879880 Nowlin et al. Apr 2005 B2
6892090 Verard et al. May 2005 B2
6920347 Simon et al. Jul 2005 B2
6922632 Foxlin Jul 2005 B2
6968224 Kessman et al. Nov 2005 B2
6978166 Foley et al. Dec 2005 B2
6988009 Grimm et al. Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
6996487 Jutras et al. Feb 2006 B2
6999852 Green Feb 2006 B2
7007699 Martinelli et al. Mar 2006 B2
7016457 Senzig et al. Mar 2006 B1
7043961 Pandey et al. May 2006 B2
7062006 Pelc et al. Jun 2006 B1
7063705 Young et al. Jun 2006 B2
7072707 Galloway, Jr. et al. Jul 2006 B2
7083615 Peterson et al. Aug 2006 B2
7097640 Wang et al. Aug 2006 B2
7099428 Clinthorne et al. Aug 2006 B2
7108421 Gregerson et al. Sep 2006 B2
7130676 Barrick Oct 2006 B2
7139418 Abovitz et al. Nov 2006 B2
7139601 Bucholz et al. Nov 2006 B2
7155316 Sutherland et al. Dec 2006 B2
7164968 Treat et al. Jan 2007 B2
7167738 Schweikard et al. Jan 2007 B2
7169141 Brock et al. Jan 2007 B2
7172627 Fiere et al. Feb 2007 B2
7194120 Wicker et al. Mar 2007 B2
7197107 Arai et al. Mar 2007 B2
7231014 Levy Jun 2007 B2
7231063 Naimark et al. Jun 2007 B2
7239940 Wang et al. Jul 2007 B2
7248914 Hastings et al. Jul 2007 B2
7301648 Foxlin Nov 2007 B2
7302288 Schellenberg Nov 2007 B1
7313430 Urquhart et al. Dec 2007 B2
7318805 Schweikard et al. Jan 2008 B2
7318827 Leitner et al. Jan 2008 B2
7319897 Leitner et al. Jan 2008 B2
7324623 Heuscher et al. Jan 2008 B2
7327865 Fu et al. Feb 2008 B2
7331967 Lee et al. Feb 2008 B2
7333642 Green Feb 2008 B2
7339341 Oleynikov et al. Mar 2008 B2
7366562 Dukesherer et al. Apr 2008 B2
7379790 Toth et al. May 2008 B2
7386365 Nixon Jun 2008 B2
7422592 Morley et al. Sep 2008 B2
7435216 Kwon et al. Oct 2008 B2
7440793 Chauhan et al. Oct 2008 B2
7460637 Clinthorne et al. Dec 2008 B2
7466303 Yi et al. Dec 2008 B2
7493153 Ahmed et al. Feb 2009 B2
7505617 Fu et al. Mar 2009 B2
7533892 Schena et al. May 2009 B2
7542791 Mire et al. Jun 2009 B2
7555331 Viswanathan Jun 2009 B2
7567834 Clayton et al. Jul 2009 B2
7594912 Cooper et al. Sep 2009 B2
7606613 Simon et al. Oct 2009 B2
7607440 Coste-Maniere et al. Oct 2009 B2
7623902 Pacheco Nov 2009 B2
7630752 Viswanathan Dec 2009 B2
7630753 Simon et al. Dec 2009 B2
7643862 Schoenefeld Jan 2010 B2
7660623 Hunter et al. Feb 2010 B2
7661881 Gregerson et al. Feb 2010 B2
7683331 Chang Mar 2010 B2
7683332 Chang Mar 2010 B2
7689320 Prisco et al. Mar 2010 B2
7691098 Wallace et al. Apr 2010 B2
7702379 Avinash et al. Apr 2010 B2
7702477 Tuemmler et al. Apr 2010 B2
7711083 Heigl et al. May 2010 B2
7711406 Kuhn et al. May 2010 B2
7720523 Omernick et al. May 2010 B2
7725253 Foxlin May 2010 B2
7726171 Langlotz et al. Jun 2010 B2
7742801 Neubauer et al. Jun 2010 B2
7751865 Jascob et al. Jul 2010 B2
7760849 Zhang Jul 2010 B2
7762825 Burbank et al. Jul 2010 B2
7763015 Cooper et al. Jul 2010 B2
7787699 Mahesh et al. Aug 2010 B2
7796728 Bergfjord Sep 2010 B2
7813838 Sommer Oct 2010 B2
7818044 Dukesherer et al. Oct 2010 B2
7819859 Prisco et al. Oct 2010 B2
7824401 Manzo et al. Nov 2010 B2
7831294 Viswanathan Nov 2010 B2
7834484 Sartor Nov 2010 B2
7835557 Kendrick et al. Nov 2010 B2
7835778 Foley et al. Nov 2010 B2
7835784 Mire et al. Nov 2010 B2
7840253 Tremblay et al. Nov 2010 B2
7840256 Lakin et al. Nov 2010 B2
7843158 Prisco Nov 2010 B2
7844320 Shahidi Nov 2010 B2
7853305 Simon et al. Dec 2010 B2
7853313 Thompson Dec 2010 B2
7865269 Prisco et al. Jan 2011 B2
D631966 Perloff et al. Feb 2011 S
7879045 Gielen et al. Feb 2011 B2
7881767 Strommer et al. Feb 2011 B2
7881770 Melkent et al. Feb 2011 B2
7886743 Cooper et al. Feb 2011 B2
RE42194 Foley et al. Mar 2011 E
RE42226 Foley et al. Mar 2011 E
7900524 Calloway et al. Mar 2011 B2
7907166 Lamprecht et al. Mar 2011 B2
7909122 Schena et al. Mar 2011 B2
7925653 Saptharishi Apr 2011 B2
7930065 Larkin et al. Apr 2011 B2
7935130 Willliams May 2011 B2
7940999 Liao et al. May 2011 B2
7945012 Ye et al. May 2011 B2
7945021 Shapiro et al. May 2011 B2
7953470 Vetter et al. May 2011 B2
7954397 Choi et al. Jun 2011 B2
7971341 Dukesherer et al. Jul 2011 B2
7974674 Hauck et al. Jul 2011 B2
7974677 Mire et al. Jul 2011 B2
7974681 Wallace et al. Jul 2011 B2
7979157 Anvari Jul 2011 B2
7983733 Viswanathan Jul 2011 B2
7988215 Seibold Aug 2011 B2
7996110 Lipow et al. Aug 2011 B2
8004121 Sartor Aug 2011 B2
8004229 Nowlin et al. Aug 2011 B2
8010177 Csavoy et al. Aug 2011 B2
8019045 Kato Sep 2011 B2
8021310 Sanborn et al. Sep 2011 B2
8035685 Jensen Oct 2011 B2
8046054 Kim et al. Oct 2011 B2
8046057 Clarke Oct 2011 B2
8052688 Wolf, II Nov 2011 B2
8054184 Cline et al. Nov 2011 B2
8054752 Druke et al. Nov 2011 B2
8057397 Li et al. Nov 2011 B2
8057407 Martinelli et al. Nov 2011 B2
8062288 Cooper et al. Nov 2011 B2
8062375 Glerum et al. Nov 2011 B2
8066524 Burbank et al. Nov 2011 B2
8073335 Labonville et al. Dec 2011 B2
8079950 Stern et al. Dec 2011 B2
8086299 Adler et al. Dec 2011 B2
8092370 Roberts et al. Jan 2012 B2
8098914 Liao et al. Jan 2012 B2
8100950 St. Clair et al. Jan 2012 B2
8105320 Manzo Jan 2012 B2
8108025 Csavoy et al. Jan 2012 B2
8109877 Moctezuma de la Barrera et al. Feb 2012 B2
8112292 Simon Feb 2012 B2
8116430 Shapiro et al. Feb 2012 B1
8120301 Goldberg et al. Feb 2012 B2
8121249 Wang et al. Feb 2012 B2
8123675 Funda et al. Feb 2012 B2
8133229 Bonutti Mar 2012 B1
8142420 Schena Mar 2012 B2
8147494 Leitner et al. Apr 2012 B2
8150494 Simon et al. Apr 2012 B2
8150497 Gielen et al. Apr 2012 B2
8150498 Gielen et al. Apr 2012 B2
8165658 Waynik et al. Apr 2012 B2
8170313 Kendrick et al. May 2012 B2
8179073 Farritor et al. May 2012 B2
8182476 Julian et al. May 2012 B2
8184880 Zhao et al. May 2012 B2
8202278 Orban, III et al. Jun 2012 B2
8208708 Homan et al. Jun 2012 B2
8208988 Jensen Jun 2012 B2
8219177 Smith et al. Jul 2012 B2
8219178 Smith et al. Jul 2012 B2
8220468 Cooper et al. Jul 2012 B2
8224024 Foxlin et al. Jul 2012 B2
8224484 Swarup et al. Jul 2012 B2
8225798 Baldwin et al. Jul 2012 B2
8228368 Zhao et al. Jul 2012 B2
8231610 Jo et al. Jul 2012 B2
8263933 Hartmann et al. Jul 2012 B2
8239001 Verard et al. Aug 2012 B2
8241271 Millman et al. Aug 2012 B2
8248413 Gattani et al. Aug 2012 B2
8256319 Cooper et al. Sep 2012 B2
8271069 Jascob et al. Sep 2012 B2
8271130 Hourtash Sep 2012 B2
8281670 Larkin et al. Oct 2012 B2
8282653 Nelson et al. Oct 2012 B2
8301226 Csavoy et al. Oct 2012 B2
8311611 Csavoy et al. Nov 2012 B2
8320991 Jascob et al. Nov 2012 B2
8332012 Kienzle, III Dec 2012 B2
8333755 Cooper et al. Dec 2012 B2
8335552 Stiles Dec 2012 B2
8335557 Maschke Dec 2012 B2
8348931 Cooper et al. Jan 2013 B2
8353963 Glerum Jan 2013 B2
8358818 Miga et al. Jan 2013 B2
8359730 Burg et al. Jan 2013 B2
8374673 Adcox et al. Feb 2013 B2
8374723 Zhao et al. Feb 2013 B2
8379791 Forthmann et al. Feb 2013 B2
8386019 Camus et al. Feb 2013 B2
8392022 Ortmaier et al. Mar 2013 B2
8394099 Patwardhan Mar 2013 B2
8395342 Prisco Mar 2013 B2
8398634 Manzo et al. Mar 2013 B2
8400094 Schena Mar 2013 B2
8414957 Enzerink et al. Apr 2013 B2
8418073 Mohr et al. Apr 2013 B2
8450694 Baviera et al. May 2013 B2
8452447 Nixon May 2013 B2
RE44305 Foley et al. Jun 2013 E
8462911 Vesel et al. Jun 2013 B2
8465476 Rogers et al. Jun 2013 B2
8465771 Wan et al. Jun 2013 B2
8467851 Mire et al. Jun 2013 B2
8467852 Csavoy et al. Jun 2013 B2
8469947 Devengenzo et al. Jun 2013 B2
RE44392 Hynes Jul 2013 E
8483434 Buehner et al. Jul 2013 B2
8483800 Jensen et al. Jul 2013 B2
8486532 Enzerink et al. Jul 2013 B2
8489235 Moll et al. Jul 2013 B2
8500722 Cooper Aug 2013 B2
8500728 Newton et al. Aug 2013 B2
8504201 Moll et al. Aug 2013 B2
8506555 Ruiz Morales Aug 2013 B2
8506556 Schena Aug 2013 B2
8508173 Goldberg et al. Aug 2013 B2
8512318 Tovey et al. Aug 2013 B2
8515576 Lipow et al. Aug 2013 B2
8518120 Glerum et al. Aug 2013 B2
8521331 Itkowitz Aug 2013 B2
8526688 Groszmann et al. Sep 2013 B2
8526700 Isaacs Sep 2013 B2
8527094 Kumar et al. Sep 2013 B2
8528440 Morley et al. Sep 2013 B2
8532741 Heruth et al. Sep 2013 B2
8541970 Nowlin et al. Sep 2013 B2
8548563 Simon et al. Oct 2013 B2
8549732 Burg et al. Oct 2013 B2
8551114 Ramos de la Pena Oct 2013 B2
8551116 Julian et al. Oct 2013 B2
8556807 Scott et al. Oct 2013 B2
8556979 Glerum et al. Oct 2013 B2
8560118 Greer et al. Oct 2013 B2
8561473 Blumenkranz Oct 2013 B2
8562594 Cooper et al. Oct 2013 B2
8571638 Shoham Oct 2013 B2
8571710 Coste-Maniere et al. Oct 2013 B2
8573465 Shelton, IV Nov 2013 B2
8574303 Sharkey et al. Nov 2013 B2
8585420 Burbank et al. Nov 2013 B2
8594841 Zhao et al. Nov 2013 B2
8597198 Sanborn et al. Dec 2013 B2
8600478 Verard et al. Dec 2013 B2
8603077 Cooper et al. Dec 2013 B2
8611985 Lavallee et al. Dec 2013 B2
8613230 Blumenkranz et al. Dec 2013 B2
8621939 Blumenkranz et al. Jan 2014 B2
8624537 Nowlin et al. Jan 2014 B2
8630389 Kato Jan 2014 B2
8634897 Simon et al. Jan 2014 B2
8634957 Toth et al. Jan 2014 B2
8638056 Goldberg et al. Jan 2014 B2
8638057 Goldberg et al. Jan 2014 B2
8639000 Zhao et al. Jan 2014 B2
8641726 Bonutti Feb 2014 B2
8644907 Hartmann et al. Feb 2014 B2
8657809 Schoepp Feb 2014 B2
8660635 Simon et al. Feb 2014 B2
8666544 Moll et al. Mar 2014 B2
8675939 Moctezuma de la Barrera Mar 2014 B2
8678647 Gregerson et al. Mar 2014 B2
8679125 Smith et al. Mar 2014 B2
8679183 Glerum et al. Mar 2014 B2
8682413 Lloyd Mar 2014 B2
8684253 Giordano et al. Apr 2014 B2
8685098 Glerum et al. Apr 2014 B2
8693730 Umasuthan et al. Apr 2014 B2
8694075 Groszmann et al. Apr 2014 B2
8696458 Foxlin et al. Apr 2014 B2
8700123 Okamura et al. Apr 2014 B2
8706086 Glerum Apr 2014 B2
8706185 Foley et al. Apr 2014 B2
8706301 Zhao et al. Apr 2014 B2
8717430 Simon et al. May 2014 B2
8727618 Maschke et al. May 2014 B2
8734432 Tuma et al. May 2014 B2
8738115 Amberg et al. May 2014 B2
8738181 Greer et al. May 2014 B2
8740882 Jun et al. Jun 2014 B2
8746252 McGrogan et al. Jun 2014 B2
8749189 Nowlin et al. Jun 2014 B2
8749190 Nowlin et al. Jun 2014 B2
8761930 Nixon Jun 2014 B2
8764448 Yang et al. Jul 2014 B2
8771170 Mesallum et al. Jul 2014 B2
8781186 Clements et al. Jul 2014 B2
8781630 Banks et al. Jul 2014 B2
8784385 Boyden et al. Jul 2014 B2
8786241 Nowlin et al. Jul 2014 B2
8787520 Baba Jul 2014 B2
8792704 Isaacs Jul 2014 B2
8798231 Notohara et al. Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8808164 Hoffman et al. Aug 2014 B2
8812077 Dempsey Aug 2014 B2
8814793 Brabrand Aug 2014 B2
8816628 Nowlin et al. Aug 2014 B2
8818105 Myronenko et al. Aug 2014 B2
8820605 Shelton, Iv Sep 2014 B2
8821511 Von Jako et al. Sep 2014 B2
8823308 Nowlin et al. Sep 2014 B2
8827996 Scott et al. Sep 2014 B2
8828024 Farritor et al. Sep 2014 B2
8830224 Zhao et al. Sep 2014 B2
8834489 Cooper et al. Sep 2014 B2
8834490 Bonutti Sep 2014 B2
8838270 Druke et al. Sep 2014 B2
8844789 Shelton, IV et al. Sep 2014 B2
8855822 Bartol et al. Oct 2014 B2
8858598 Seifert et al. Oct 2014 B2
8860753 Bhandarkar et al. Oct 2014 B2
8864751 Prisco et al. Oct 2014 B2
8864798 Weiman et al. Oct 2014 B2
8864833 Glerum et al. Oct 2014 B2
8867703 Shapiro et al. Oct 2014 B2
8870880 Himmelberger et al. Oct 2014 B2
8876866 Zappacosta et al. Nov 2014 B2
8880223 Raj et al. Nov 2014 B2
8882803 Iott et al. Nov 2014 B2
8883210 Truncale et al. Nov 2014 B1
8888821 Rezach et al. Nov 2014 B2
8888853 Glerum et al. Nov 2014 B2
8888854 Glerum et al. Nov 2014 B2
8894652 Seifert et al. Nov 2014 B2
8894688 Suh Nov 2014 B2
8894691 Iott et al. Nov 2014 B2
8906069 Hansell et al. Dec 2014 B2
8964934 Ein-Gal Feb 2015 B2
8992580 Bar et al. Mar 2015 B2
8996169 Lightcap et al. Mar 2015 B2
9001963 Sowards-Emmerd et al. Apr 2015 B2
9002076 Khadem et al. Apr 2015 B2
9044190 Rubner et al. Jun 2015 B2
9107683 Hourtash et al. Aug 2015 B2
9125556 Zehavi et al. Sep 2015 B2
9131986 Greer et al. Sep 2015 B2
9215968 Schostek et al. Dec 2015 B2
9308050 Kostrzewski et al. Apr 2016 B2
9380984 Li et al. Jul 2016 B2
9393039 Lechner et al. Jul 2016 B2
9398886 Gregerson et al. Jul 2016 B2
9398890 Dong et al. Jul 2016 B2
9414859 Ballard et al. Aug 2016 B2
9420975 Gutfleisch et al. Aug 2016 B2
9492235 Hourtash et al. Nov 2016 B2
9592096 Maillet et al. Mar 2017 B2
9750465 Engel et al. Sep 2017 B2
9757203 Hourtash et al. Sep 2017 B2
9795354 Menegaz et al. Oct 2017 B2
9814535 Bar et al. Nov 2017 B2
9820783 Donner et al. Nov 2017 B2
9833265 Donner et al. Nov 2017 B2
9848922 Tohmeh et al. Dec 2017 B2
9925011 Gombert et al. Mar 2018 B2
9931025 Graetzel et al. Apr 2018 B1
10034717 Miller et al. Jul 2018 B2
20010036302 Miller Nov 2001 A1
20020035321 Bucholz et al. Mar 2002 A1
20040068172 Nowinski et al. Apr 2004 A1
20040076259 Jensen et al. Apr 2004 A1
20050096502 Khalili May 2005 A1
20050143651 Verard et al. Jun 2005 A1
20050171558 Abovitz et al. Aug 2005 A1
20060100610 Wallace et al. May 2006 A1
20060173329 Marquart et al. Aug 2006 A1
20060184396 Dennis et al. Aug 2006 A1
20060241416 Marquart et al. Oct 2006 A1
20060291612 Nishide et al. Dec 2006 A1
20070015987 Benlloch Baviera et al. Jan 2007 A1
20070021738 Hasser et al. Jan 2007 A1
20070038059 Sheffer et al. Feb 2007 A1
20070073133 Schoenefeld Mar 2007 A1
20070156121 Millman et al. Jul 2007 A1
20070156157 Nahum et al. Jul 2007 A1
20070167712 Keglovich et al. Jul 2007 A1
20070233238 Huynh et al. Oct 2007 A1
20080004523 Jensen Jan 2008 A1
20080013809 Zhu et al. Jan 2008 A1
20080033283 Dellaca et al. Feb 2008 A1
20080046122 Manzo et al. Feb 2008 A1
20080082109 Moll et al. Apr 2008 A1
20080108912 Node-Langlois May 2008 A1
20080108991 Von Jako May 2008 A1
20080109012 Falco et al. May 2008 A1
20080144906 Allred et al. Jun 2008 A1
20080161680 Von Jako et al. Jul 2008 A1
20080161682 Kendrick et al. Jul 2008 A1
20080177203 von Jako Jul 2008 A1
20080214922 Hartmann et al. Sep 2008 A1
20080228068 Viswanathan et al. Sep 2008 A1
20080228196 Wang et al. Sep 2008 A1
20080235052 Node-Langlois et al. Sep 2008 A1
20080269596 Revie et al. Oct 2008 A1
20080287771 Anderson Nov 2008 A1
20080287781 Revie et al. Nov 2008 A1
20080300477 Lloyd et al. Dec 2008 A1
20080300478 Zuhars et al. Dec 2008 A1
20080302950 Park et al. Dec 2008 A1
20080306490 Lakin et al. Dec 2008 A1
20080319311 Hamadeh Dec 2008 A1
20090012509 Csavoy et al. Jan 2009 A1
20090030428 Omori et al. Jan 2009 A1
20090080737 Battle et al. Mar 2009 A1
20090185655 Koken et al. Jul 2009 A1
20090198121 Hoheisel Aug 2009 A1
20090216113 Meier et al. Aug 2009 A1
20090228019 Gross et al. Sep 2009 A1
20090259123 Navab et al. Oct 2009 A1
20090259230 Khadem et al. Oct 2009 A1
20090264899 Appenrodt et al. Oct 2009 A1
20090281417 Hartmann et al. Nov 2009 A1
20100022874 Wang et al. Jan 2010 A1
20100039506 Sarvestani et al. Feb 2010 A1
20100125286 Wang et al. May 2010 A1
20100130986 Mailloux et al. May 2010 A1
20100228117 Hartmann Sep 2010 A1
20100228265 Prisco Sep 2010 A1
20100249571 Jensen et al. Sep 2010 A1
20100274120 Heuscher Oct 2010 A1
20100280363 Skarda et al. Nov 2010 A1
20100331858 Simaan et al. Dec 2010 A1
20110022229 Jang et al. Jan 2011 A1
20110077504 Fischer et al. Mar 2011 A1
20110098553 Robbins et al. Apr 2011 A1
20110137152 Li Jun 2011 A1
20110213384 Jeong Sep 2011 A1
20110224684 Larkin et al. Sep 2011 A1
20110224685 Larkin et al. Sep 2011 A1
20110224686 Larkin et al. Sep 2011 A1
20110224687 Larkin et al. Sep 2011 A1
20110224688 Larkin et al. Sep 2011 A1
20110224689 Larkin et al. Sep 2011 A1
20110224825 Larkin et al. Sep 2011 A1
20110230967 O'Halloran et al. Sep 2011 A1
20110238080 Ranjit et al. Sep 2011 A1
20110276058 Choi et al. Nov 2011 A1
20110282189 Graumann Nov 2011 A1
20110286573 Schretter et al. Nov 2011 A1
20110295062 Gratacos Solsona et al. Dec 2011 A1
20110295370 Suh et al. Dec 2011 A1
20110306986 Lee et al. Dec 2011 A1
20120035507 George et al. Feb 2012 A1
20120046668 Gantes Feb 2012 A1
20120051498 Koishi Mar 2012 A1
20120053597 Anvari et al. Mar 2012 A1
20120059248 Holsing et al. Mar 2012 A1
20120071753 Hunter et al. Mar 2012 A1
20120108954 Schulhauser et al. May 2012 A1
20120136372 Amat Girbau et al. May 2012 A1
20120143084 Shoham Jun 2012 A1
20120184839 Woerlein Jul 2012 A1
20120197182 Millman et al. Aug 2012 A1
20120226145 Chang et al. Sep 2012 A1
20120235909 Birkenbach et al. Sep 2012 A1
20120245596 Meenink Sep 2012 A1
20120253332 Moll Oct 2012 A1
20120253360 White et al. Oct 2012 A1
20120256092 Zingerman Oct 2012 A1
20120294498 Popovic Nov 2012 A1
20120296203 Hartmann et al. Nov 2012 A1
20130006267 Odermatt et al. Jan 2013 A1
20130016889 Myronenko et al. Jan 2013 A1
20130030571 Ruiz Morales et al. Jan 2013 A1
20130035583 Park et al. Feb 2013 A1
20130060146 Yang et al. Mar 2013 A1
20130060337 Petersheim et al. Mar 2013 A1
20130094742 Feilkas Apr 2013 A1
20130096574 Kang et al. Apr 2013 A1
20130113791 Isaacs et al. May 2013 A1
20130116706 Lee et al. May 2013 A1
20130131695 Scarfogliero et al. May 2013 A1
20130144307 Jeong et al. Jun 2013 A1
20130158542 Manzo et al. Jun 2013 A1
20130165937 Patwardhan Jun 2013 A1
20130178867 Farritor et al. Jul 2013 A1
20130178868 Roh Jul 2013 A1
20130178870 Schena Jul 2013 A1
20130204271 Brisson et al. Aug 2013 A1
20130211419 Jensen Aug 2013 A1
20130211420 Jensen Aug 2013 A1
20130218142 Tuma et al. Aug 2013 A1
20130223702 Holsing et al. Aug 2013 A1
20130225942 Holsing et al. Aug 2013 A1
20130225943 Holsing et al. Aug 2013 A1
20130231556 Holsing et al. Sep 2013 A1
20130237995 Lee et al. Sep 2013 A1
20130245375 DiMaio et al. Sep 2013 A1
20130261640 Kim et al. Oct 2013 A1
20130272488 Bailey et al. Oct 2013 A1
20130272489 Dickman et al. Oct 2013 A1
20130274761 Devengenzo et al. Oct 2013 A1
20130281821 Liu et al. Oct 2013 A1
20130296884 Taylor et al. Nov 2013 A1
20130303887 Holsing et al. Nov 2013 A1
20130307955 Deitz et al. Nov 2013 A1
20130317521 Choi et al. Nov 2013 A1
20130325033 Schena et al. Dec 2013 A1
20130325035 Hauck et al. Dec 2013 A1
20130331686 Freysinger et al. Dec 2013 A1
20130331858 Devengenzo et al. Dec 2013 A1
20130331861 Yoon Dec 2013 A1
20130342578 Isaacs Dec 2013 A1
20130345717 Markvicka et al. Dec 2013 A1
20130345757 Stad Dec 2013 A1
20140001235 Shelton, IV Jan 2014 A1
20140012131 Heruth et al. Jan 2014 A1
20140031664 Kang et al. Jan 2014 A1
20140046128 Lee et al. Feb 2014 A1
20140046132 Hoeg et al. Feb 2014 A1
20140046340 Wilson et al. Feb 2014 A1
20140049629 Siewerdsen et al. Feb 2014 A1
20140058406 Tsekos Feb 2014 A1
20140073914 Lavallee et al. Mar 2014 A1
20140080086 Chen Mar 2014 A1
20140081128 Verard et al. Mar 2014 A1
20140088612 Bartol et al. Mar 2014 A1
20140094694 Moctezuma de la Barrera Apr 2014 A1
20140094851 Gordon Apr 2014 A1
20140096369 Matsumoto et al. Apr 2014 A1
20140100587 Farritor et al. Apr 2014 A1
20140121676 Kostrzewski et al. May 2014 A1
20140128882 Kwak et al. May 2014 A1
20140135796 Simon et al. May 2014 A1
20140142591 Alvarez et al. May 2014 A1
20140142592 Moon et al. May 2014 A1
20140148692 Hartmann et al. May 2014 A1
20140163581 Devengenzo et al. Jun 2014 A1
20140171781 Stiles Jun 2014 A1
20140171900 Stiles Jun 2014 A1
20140171965 Loh et al. Jun 2014 A1
20140180308 von Grunberg Jun 2014 A1
20140180309 Seeber et al. Jun 2014 A1
20140187915 Yaroshenko et al. Jul 2014 A1
20140188132 Kang Jul 2014 A1
20140194699 Roh et al. Jul 2014 A1
20140130810 Azizian et al. Aug 2014 A1
20140221819 Sarment Aug 2014 A1
20140222023 Kim et al. Aug 2014 A1
20140228631 Kwak et al. Aug 2014 A1
20140234804 Huang et al. Aug 2014 A1
20140257328 Kim et al. Sep 2014 A1
20140257329 Jang et al. Sep 2014 A1
20140257330 Choi et al. Sep 2014 A1
20140275760 Lee et al. Sep 2014 A1
20140275985 Walker et al. Sep 2014 A1
20140276931 Parihar et al. Sep 2014 A1
20140276940 Seo Sep 2014 A1
20140276944 Farritor et al. Sep 2014 A1
20140288413 Hwang et al. Sep 2014 A1
20140299648 Shelton, IV et al. Oct 2014 A1
20140303434 Farritor Oct 2014 A1
20140303643 Ha et al. Oct 2014 A1
20140305995 Shelton, IV et al. Oct 2014 A1
20140309659 Roh et al. Oct 2014 A1
20140316436 Bar et al. Oct 2014 A1
20140323803 Hoffman et al. Oct 2014 A1
20140324070 Min et al. Oct 2014 A1
20140330288 Date et al. Nov 2014 A1
20140364720 Darrow et al. Dec 2014 A1
20140371577 Maillet et al. Dec 2014 A1
20150039034 Frankel et al. Feb 2015 A1
20150085970 Bouhnik et al. Mar 2015 A1
20150146847 Liu May 2015 A1
20150150524 Yorkston et al. Jun 2015 A1
20150196261 Funk Jul 2015 A1
20150213633 Chang et al. Jul 2015 A1
20150335480 Alvarez et al. Nov 2015 A1
20150342647 Frankel et al. Dec 2015 A1
20160005194 Schretter et al. Jan 2016 A1
20160166329 Langan et al. Jun 2016 A1
20160235480 Scholl et al. Aug 2016 A1
20160249990 Glozman et al. Sep 2016 A1
20160302871 Gregerson et al. Oct 2016 A1
20160320322 Suzuki Nov 2016 A1
20160331335 Gregerson et al. Nov 2016 A1
20170135770 Scholl et al. May 2017 A1
20170143284 Sehnert et al. May 2017 A1
20170143426 Isaacs et al. May 2017 A1
20170156816 Ibrahim Jun 2017 A1
20170202629 Maillet et al. Jul 2017 A1
20170212723 Atarot et al. Jul 2017 A1
20170215825 Johnson et al. Aug 2017 A1
20170215826 Johnson et al. Aug 2017 A1
20170215827 Johnson et al. Aug 2017 A1
20170231710 Scholl et al. Aug 2017 A1
20170258426 Risher-Kelly et al. Sep 2017 A1
20170273748 Hourtash et al. Sep 2017 A1
20170296277 Hourtash et al. Oct 2017 A1
20170360493 Zucher et al. Dec 2017 A1
Non-Patent Literature Citations (1)
Entry
US 8,231,638 B2, 07/2012, Swarup et al. (withdrawn)
Related Publications (1)
Number Date Country
20220240996 A1 Aug 2022 US
Continuations (1)
Number Date Country
Parent 16180381 Nov 2018 US
Child 17726696 US