The present subject matter relates to marine barriers and movable gates. The present disclosure has applicability to floating barrier systems, and more particularly to a compliant single net marine barrier and gate system.
The disclosed embodiments herein improve upon conventional marine barriers. The function of these systems is based upon a single capture net, which must elongate a considerable amount in order to arrest the kinetic energy of accidental or intentional impact by vessels. The conventional approach of such marine barriers is to mount the vessel capture net to rigid structures. However, the considerable elongation required of the capture net is not physically possible for the rigid structures of those systems. This conventional approach is disadvantageous because the 3-dimensional system of structure and net needs to be compliant to suitably conform to wave forms, allow for flexible maneuvering of the barrier when used as a gate, and to actually elongate as required to arrest the kinetic energy of a vessel speeding into it. Furthermore, conventional marine barriers characterized by long rigid segments with mounted deformable capture nets and connected by short chain assemblies encased in elastomer, as described in several U.S. patents, cannot work as claimed due to the large differences in elastic behavior of each part of those barriers.
Legacy Barriers and Their Design Limitations
In conventional marine barriers, the capture net system (i.e. the impact net(s)) is the primary means of preventing breach of the barrier. Typically, the impact nets are secured to vertical posts or beams that are rigidly mounted to the main lengthwise structural elements and cannot move relative to the base floatation structure. See, for example, U.S. Pat. No. 6,681,709 (hereinafter “the '709 patent”) at
Additionally, in conventional barriers, the capture net is continuous over the length of the barrier, up to where the barrier is connected to buoys. More particularly, the capture net is fixed to the ends of barrier segments just prior to where the barriers are connected to buoys. Thus, a single point of connection exists where those barriers are connected to buoys. Disadvantageously, the single point of connection must carry environmental storm loads and loads from the capture net. The resulting single connection component is often very heavy, and difficult to operate in rough weather. As a result, conventional marine barrier gates, such as those currently in use by the U.S. Navy and described in the '709 patent, are often left secured by a single dock line rope, called a “soft close,” which does not provide any significant threat deterrence. The present disclosure describes a marine barrier and gate system wherein the capture net connections and the main barrier connections are separate.
Conventional barrier systems employ short flexible connection elements along the center axis of the barrier, in line with the rigid structural elements. The design of the system is predicated upon manufactured units of fixed consistent (i.e., non-adjustable) length. Thus, the ability to optimize the flotation requirements (hydrostatics and hydrodynamics) at the site assembly stage for select environments or site-specific conditions is absent. Furthermore, conventional barrier systems do not allow for component removal and replacement in-situ while maintaining system connectedness. The present disclosure provides for in-situ removal and replacement of any single component of the system while maintaining overall system connectedness.
As discussed immediately above, conventional barrier systems typically feature an elastically deformable capture net attached to inelastic rigid barrier segments interconnected with short chain-based flexible connectors. During an impact event, the difference in elastic modulus of these components disadvantageously results in the capture net breaking free from one of the rigid segments and elongating within the rigid length of the segment. As described in the '709 patent, these nets are expected to elongate two or three boat lengths in the area of the impact. In practice, the feasibility of capture nets elongating that amount is limited by the presence of the rigid inelastic barrier structure in the same space. This difference in component stiffness results in either the segment's rigid structures dominating the dynamics of the impact event (hence the nets do not functionally contribute), or the rigid barrier structure coming apart (i.e., failing), not being present, or otherwise disappearing from the impact area before the capture nets actually elongate and work as designed to deform, elongate and absorb the energy of the impacting vessel.
An alternative to the foregoing disadvantageous scenarios is to have a barrier system wherein the capture nets and main tension strength elements work in tandem as an elastic system. The disclosed systems provide a better match of elongation of their main tension strength elements with elongation of the capture net, allowing the barrier system to better absorb and arrest an impacting vessel.
The present disclosure further includes improvements to the interconnectedness between floating barrier modules, enabling easy adjustment of module spacing of the disclosed systems, modularity of the base flotation elements, and performance enhancements of the net capture system. The combination of these improvements results in a compliant barrier system with uniform elastic behavior, enabling distribution of storm or crash energy to many system elements. Herein, the term “compliant” refers to elastic behavior in all directions. This compliant design can be scaled up or down, for optimization in cost relative to the security requirements and environment in which it operates.
Herein the term “elasticity” is used to describe the system's or components' compliance and pliability as a behavior or trait. Thus, “elasticity” as used herein is defined as a behavior where a loaded, deformed component returns to its undeformed shape once the loading is removed, or where the loaded, deformed component remains in its deformed (loaded) shape to a certain extent when the loading is removed.
The capture net systems of conventional marine barriers cannot function as a system of components, since their components' elasticities are different by orders of magnitude. The ratio of lengthwise rigidity to short length flexible sections can cause wear and a stress/load concentration in places where the barrier motion is resolved (i.e., at connection points between barrier segments). Embodiments of the disclosed systems feature a balanced ratio of rigid to flexible section lengths, significantly improving barrier performance. The disclosed embodiments have design features that enable the components of the compliant marine barrier and gate to function with elastic uniformity in operation, and to not over stress components when subjected to high wave dynamic motion and loads.
The disclosed system improves upon conventional technology and can be utilized in a variety of configurations to resolve the significant cost of on-water maintenance operations. The disclosed barriers are easily optimized for site-specific requirements by allowing the axial positioning of the barrier module floats to be easily adjusted along the length of the barrier. The disclosed design features a versatile flotation module that can be mounted, altered, and swapped in-situ if needed. Also, in certain embodiments the disclosed barrier flotation modules enable dual main tension lines for redundancy in performance, and singular replacement of either main tension line with the remaining line retaining system connection. Furthermore, in some embodiments the system connections are operationally improved with a four-sided mooring connection buoy, enabling 90-degree corner designs and secondary divider lines within a protected barrier perimeter.
Thus, the present disclosure enables variability in the placement of float modules of its barrier systems, and a significantly different ratio of flexible length to rigid length when compared to conventional barrier systems.
Embodiments of the present disclosure include a floating marine barrier comprising a plurality of barrier modules, each barrier module having a first flotation device, a supporting framework attached to the first flotation device, and a plurality of impact net support posts attached to the supporting framework; an impact net attached to each of the support posts of each of the barrier modules and extending between the barrier modules along a longitudinal axis of the barrier from a first end of the barrier to a second end of the barrier; and a first main tension strength element attached to each of the barrier modules and extending between the barrier modules along the longitudinal axis of the barrier from the first end of the barrier to the second end of the barrier to space the barrier modules from each other. The impact net has a first elasticity, and the first main tension strength element has a second elasticity which is substantially equal to the first elasticity. When the barrier is floating in a body of water and a moving vessel impacts the impact net, the impact net deflects to transfer a force of the impact to at least one of the net support posts and to one or more of the barrier modules, which in turn engages the first main tension strength element and the water to transfer the force of the impact to the main tension strength element and the water to arrest the motion of the vessel.
The present disclosure includes methods and designs for capture net connections which are improvements over conventional barriers. Embodiments include a separate net connection from the main barrier rope connection, to transfer impact loads up and over mooring buoy connections, resulting in effective capture net performance even if an impact occurs near a mooring buoy connection. This continuous connection is augmented by an optional additional wrap-around line at the top line of the capture net. Thus, if a cut-through or failure of the net's top line occurs during an impact, there is a redundant line present with capacity to take up the load of the rated impact.
Objects and advantages of embodiments of the disclosed subject matter will become apparent from the following description when considered in conjunction with the accompanying drawings. Additionally, the different configurations discussed in the sections below may be performed in a different order or simultaneously with each other. Furthermore, the disclosed systems of marine barriers and gates can be scaled up or down in size to suit security, site environmental, and customer cost requirements.
Embodiments will hereinafter be described in detail below with reference to the accompanying drawings, wherein like reference numerals represent like elements. The accompanying drawings have not necessarily been drawn to scale. Where applicable, some features may not be illustrated to assist in the description of underlying features.
It should be understood that the principles described herein are not limited in application to the details of construction or the arrangement of components set forth in the following description or illustrated in the following drawings. The principles can be embodied in other embodiments and can be practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
Referring now to
Referring again to
Conventional barrier systems use steel beams, chain, and/or wire rope for the primary tension members, which cannot possibly elongate in similar amounts as any of the available fiber or wire mesh capture net systems.
Details of the floating marine barrier according to this embodiment are shown in
The impact net 15 is attached to each of the support posts 21 of each of the barrier modules 14 and extends between the barrier modules 14 along a longitudinal axis of the barrier from a first end of the barrier to a second end of the barrier. The first and second main tension strength elements 13, 15 are attached to each of the barrier modules 14 and extend between the barrier modules 14 along the longitudinal axis of the barrier from the first end of the barrier to the second end of the barrier to space the barrier modules 14 from each other.
Referring to
The relevant design characteristics of compliant net support posts 21 are based on the variables of net height, wave height, and spacing (pitch) of the posts 21. See, Table 2 above. The frame float module assemblies 14 are rigid bodies, due to their assembled configuration (see,
In other embodiments, a compliant net support post 21a shown in
A compliant net support post 21 or 21a is attached to the framework 31 at each longitudinal end of each barrier module 14 in certain embodiments, as shown in
Referring to
In addition to the nominal continuous top net line 16 of
Moreover, both knots and splices, such as net connections 26, reduce the capacity of each rope in the net. Wrap-around rope 27 is designed to augment the capacity of the net 15 at the top net line 16. The feature of wrapping the line 27 to attach it to the net 15, and not compromising it with knots or splices, enables full capacity of that line 27. Additionally, wrapping the additional wrap-around rope line 27 through each bay of the net 15 and underneath each top line net grommet 29 (described herein below) ensures the remaining parts of the net 15 are connected to it if the top rope 16 of the net fails during a severe impact.
As shown in
Referring now to
The plan view of
The impact capture nets 15 are built with knots or splices that fix the net into a mesh grid, intended to distribute an impact load outward into connected horizontal and vertical ropes of the net 15. One impact capture net embodiment utilizes polyester twelve-strand rope for horizontal lines with a modulus of elasticity of 4.64 GPa, while vertical net lines are smaller size but equal capacity Dyneema (or equivalent) twelve-strand rope, where the outer top and bottom connections of horizontal and vertical ropes are made with splices, and the center intersections are knotted.
Further embodiments of this system include the use of frame and flotation components of similar geometric configuration made of different materials such as polyethylene (high density polyethylene), thermoformed plastics, injection molded plastics and ferrous materials. In addition,
In further embodiments such as shown in
In show the criticality of matching the elasticity of system components to each other, a sensitivity analysis was conducted. The well-known software program MSC Marc/Mentat available at www.mscsoftware.com was employed to perform a dynamic, transient large strain analysis, which is required for this type of multi-physics impact model. Marc is a powerful, general-purpose, nonlinear finite element analysis solution to accurately simulate system behavior under static, dynamic, and multi-physics loading scenarios.
The first step was to construct the impact vessel body in the software. The impact event was simulated with a rigid body vessel using a conservative approach that assumed all energy was transferred to the barrier and no damage to the vessel would occur. Next, a 100-meter length of the barrier was constructed having geometric and material characteristics as those discussed herein. The barrier was properly discretized (using between 11,102-15,774 elements and 10,109-14,277 nodes—depending upon the simulation). The numerical model also incorporated all the barrier's critical structural components to ensure an accurate representation of the barrier.
The proper gravitational, buoyancy, fluid dynamic (both fluid drag and added mass) boundary conditions were specified to ensure an accurate representation of the barrier on the air-water interface. See,
The simulations were performed and the following data was processed: maximum barrier displacement, front line tension at the point of impact and 15 and 25 meters away from the point of impact (see,
indicates data missing or illegible when filed
As seen in Table 3, increased line and/or net component stiffness reduces the vessel displacement; that is, the distance the vessel travels after impacting the barrier's impact net. This is expected, as a stiffer component will not elongate as much as a more compliant component. Thus, the deformation when components having less elasticity are introduced is reduced. Inversely, however, it is clear that the tensions throughout the barrier are increased, sometimes significantly, regardless of which component was simulated to be less pliable. In addition, it can be shown that the difference in elasticity does not reduce system tensions in the more compliant member. Rather, once a barrier has a difference in load bearing component elasticity, both the rigid and compliant subsystems will experience more forces, loads, and/or stresses.
For example, for the simulation where the front line (i.e., main tension strength line 13) stiffness was increased to 40 times the stiffness of the baseline model, not only does the front line experience more loads (as expected), but the net—even though it is still compliant—experiences more forces both at the point of impact and along its length. Similarity, when the net components are simulated to be stiffer and the front line is more compliant, one sees a similar system response.
These results confirm that having a barrier system with similar elasticity in its net and main tension strength elements provides several advantages, such as optimized load distribution and barrier response. In addition, the wear on these components will be decreased, which will help reduce maintenance and replacement costs of these components.
While this disclosure has been described in conjunction with a number of embodiments, it is evident that many alternatives, modifications and variations would be or are apparent to those of ordinary skill in the applicable arts. Accordingly, applicants intend to embrace all such alternatives, modifications, equivalents and variations that are within the spirit and scope of this disclosure.
The present application claims priority from U.S. Provisional Application 63/041,585, filed Jun. 19, 2020, entitled “Compliant Single Net Marine Barrier,” which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63041585 | Jun 2020 | US |