Compliant stiffener for aircraft fuselage

Information

  • Patent Grant
  • 9359061
  • Patent Number
    9,359,061
  • Date Filed
    Monday, October 31, 2005
    18 years ago
  • Date Issued
    Tuesday, June 7, 2016
    8 years ago
Abstract
In accordance with the present invention an aircraft stringerless fuselage structure is provided comprising an impact compliant outer skin having a plurality of resin impregnated skin fibers forming an outer skin surface, an inner stringerless skin surface, and a skin thickness. A plurality of stiffeners is included, each comprising a plurality of resin impregnated stiffener fibers integrated into the inner stringerless skin structure. The plurality of resin impregnated skin fibers are not aligned with the plurality of resin impregnated stiffener fibers.
Description
TECHNICAL FIELD

The present invention relates generally to an apparatus and method for reducing the cost and complexity of the fuselage barrel section of an aircraft and more particularly to an apparatus and method for integrating a cost effective and compliant structure that absorbs energy during bird strike impact.


BACKGROUND OF THE INVENTION

Aircraft structures often provide complex and costly challenges to both design and manufacturing. The underlying structures must not only meet strength requirements, but must also survive constant weight reduction requirements and manufacturing cost and time restraints. As such, a reanalysis and creative investigation into existing structures bears the possible reward of considerable benefits during implementation.


Such is the case with the fuselage section of the aircraft. Specifically the forward section commonly referred to as section 41. This fuselage section includes complex geometry and structure by way of the inclusion of both the nose section as well as the cockpit windows and similar features. Additionally, this portion of the aircraft comes under close scrutiny for its ability to have bird strike resistance. As such, section 41 barrel sections are often over designed which may lead to excess weight and more commonly excess cost.


Present fuselage sections are commonly are centered around designs that are stout and heavy. Often the outer skin and other structural supports are formed from aluminum which when overloaded may result in costly damage or repair. Bird strike incidents, even on designs that are not overloaded, may leave large dents in the aluminum structure that eventually require costly repairs. When overloaded, however, portions of the aluminum structure may rupture requiring extremely expensive repair or replacement. The aluminum skin also requires complex manufacturing and assembly as the skin is commonly backed by very heavy and complex beam structures. Structures such as stringers are required for support and add both considerable cost in addition to weight to the aircraft. The complex curvatures of the skins, especially in the nose region, often require manufacturing using expensive computer controlled machines. The quantity and complexity of manufacturing and assembling these aluminum structures often make section 41 the most expensive barrel section in the entire aircraft body.


What is needed is a design and method for manufacturing this complex section of the fuselage that allowed for simplification of manufacturing while simultaneously allowing for a compliant approach to bird strike resistance. Additionally, it would be highly desirable to have such a design and method that provided opportunities to reduce section weight in addition to manufacturing costs.


SUMMARY OF THE INVENTION

In accordance with the present invention an aircraft stringerless fuselage structure is provided comprising an impact compliant outer skin having a plurality of resin impregnated skin fibers forming an outer skin surface, an inner stringerless skin surface, and a skin thickness. A plurality of stiffeners is included, each comprising a plurality of resin impregnated stiffener fibers integrated into the inner stringerless skin structure. The plurality of resin-impregnated skin fibers are not aligned with the plurality of resin impregnated stiffener fibers.


Other objects and features of the present invention will become apparent when viewed in light of the detailed description and preferred embodiment when taken in conjunction with the attached drawings and claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an illustration of an aircraft stringerless fuselage section in accordance with the present invention.



FIG. 2 is a detailed illustration of the impact compliant outer skin utilized in the fuselage section illustrated in FIG. 1.



FIG. 3 is a detailed cross-sectional illustration of a portion of the aircraft fuselage section illustrated in FIGS. 1 and 2. and



FIG. 4 is an illustration of a lay-up tool for use in the manufacturing of the aircraft fuselage section illustrated in FIGS. 1 and 2.



FIG. 5 is an illustration of orientations of skin fibers, stiffener fibers and cap fibers.





DESCRIPTION OF PREFERRED EMBODIMENTS

Referring now to FIG. 1, which is an illustration of an aircraft stringerless fuselage section 10 in accordance with the present invention. The section 10 is illustrated as the commonly known section forty-one section although it is contemplated that the present invention is applicable to a variety of aircraft build zones. The section 10 presented includes the nose portion 12 in addition to the cockpit windows 14 wherein the geometry of the barrel section 10 is varied considerably in addition to requiring additional strength requirements. One of these requirements is the ability to withstand bird impact loads during operation. Existing designs contemplate the use of aluminum skins and complex and costly support structures underneath such as the use of complex curved stringers or other beams. In addition, existing approaches often result in costly repairs during bird strike due to their rigid approach to bird strike protection.


The present invention accomplishes both weight savings and bird strike protection through a unique combination of the use of a uniquely bird strike compliant outer skin 16 (impact resistant) that allows a redirection of bird path without damage in combination with the integration therein of a plurality of stiffener members 18, preferably circumferentially orientated, that provide sufficient structural support of the skin 16 without debonding during bird strike and without diminishing the skin compliance. It should be understood that in addition to pure circumferential orientation, perpendicular to the axis, variations of angled circumferential orientation, including intersecting stiffeners angled relative to the axis, are contemplated. The present invention contemplates the use of an impact resistant outer skin 16 that is tailored to be compliant and absorb or redirect the impact of bird strikes. The present invention accomplishes this through the use of a skin 16 formed from a plurality of resin impregnated skin fibers 20 forming a skin 16 having an outer skin surface 22, an inner stringerless skins surface 24, and a skin thickness 26. It is contemplated that the plurality of impregnated skin fibers 20 is intended to include both pre-preg tape or dry fibers with infused resin.


A key characteristic, however, is that the skin thickness 26 is contemplated to be variable to accommodate the strength requirements of differing bird impact zones or structural zones (such as the cockpit windows 14) of the barrel section 10. It is contemplated that skin thickness 26 be variable between the range of 0.08 inches and 0.25 inches to provide the proper strength to weight ration. It is contemplated that the skin 16 be formed using high strain fibers such as Spectra® fibers, Vectran™ fibers, low modulus graphite (GR), or even fiberglass. These fibers are chosen to provide a compliant structure that instead of crushing or rupturing during impact, instead deforms and deflect the bird trajectory. Additional contemplated feature include the use of hybrid laminates wherein two or more fiber types are utilized in order to achieve the desired strength/compliance characteristics. One specific embodiment contemplates that the skin 16 be formed using an intermediate modulus (22-25 MSI) toughened carbon pre-preg tape. It is further contemplated that the use of 0/45/90 degree laminate mixture at 20/80/0 percentage ratios provides the preferably structural characteristics for the skin 16. The present invention contemplates the use of non-traditional fiber angles in laminates to achieve the desired strength/conformity properties.


By designing an impact conforming (resistant) outer skin 16 with unique construction and properties, the present invention paves the way for elimination of the need for stringers in the barrel section 10. This saves weight in addition to manufacturing costs. The present invention, instead, relies on the use of low profile and low modulus stiffener members 18 such as the hat frame assembly 28 illustrated in FIG. 3 for use as the circumferentially orientated stiffener members 18. Although hat frames are specifically described and illustrated, it is contemplated that the hat frame assemblies 28 may include, but are not limited to, hat frames, c-channels, Z-beams, J-beams, T-Beams and I-beams, and blade stiffened beams. The hat frames are preferably formed to comply with toughened outer skin 16 and are formed using a plurality of resin impregnated stiffener fibers 30 (preferably low-modulus fibers). These low modulus stiffener fibers 30 are preferably fully integrated into the skin fibers 20 of the inner stringerless skin surface 24 and co-cured to form a single element. The low modulus stiffener fibers 30 are preferably high strain fibers such as fiberglass, Spectra® fibers, Vectran™ fibers, or low modulus GR. Similar to the skin 16 it is contemplated that hybrid laminates and non-traditional lay-up angles may be utilized to achieve the desired conformity during impact while retaining sufficient structural support. In one embodiment, the low modulus frame stiffener fibers 30 are preferably laid up as ±60 degree laminates (see FIG. 5). Although a variety of lay-up arrangements may be utilized, it is preferably that the stiffener fibers 30 are not aligned (0 or 90 degrees) with the skin fibers 20 (see FIG. 5). The hat frame assembly 28 preferably is designed with both a low profile and a low modulus to resist debonding with the outer skin 16 during bird impact. It is contemplated that low profile is intended to comprise a profile height 31 of less than 3 inches and preferably less than 2 inches. It is further contemplated that low modulus is intended to comprise approximately 3-25 MSI. One embodiment contemplates the use of carbon fiber impregnated with epoxy for use in forming the hat frame of the hat frame assembly 28.


In one embodiment of the hat frame assembly 28, the hat frame includes a first frame foot 32 and a second frame foot 34. A first angled sidewall 36 and second angled sidewall 38 proceed out of their respective feet and extend toward a hat top portion 40 joining the sidewalls 36,38. This hat frame thereby defines a hat frame interior 42 which is located between the hat top 40 and the outer skin 16 when the feet 32, 34 are bonded to the inner stringerless skin surface 34. Although a variety of hat frames are contemplated, one embodiment contemplates a frame wall thickness 44 of approximately 0.05 inches. This, in combination with the low profile helps provide the low modulus characteristics suitable for impact protection and stringerless support.


The hat frame assembly 28 can further include one or more cap elements 46 integrated into the hat top portion 40 of the hat frame assembly 28. As is illustrated, one embodiment contemplates the use of a pair of vertically stacked cap elements. The cap elements 46 are preferably low density caps such as fiberglass caps or preferably S-2 glass plies. In one embodiment it is contemplated that the cap comprise a cap width 48 between the range of 0.08 inches and 0.15 inches. It is desirable that the cap elements 46 be comprised of 0 degree laminates interleaved with the resin impregnated stiffener fibers 30 (see FIG. 5). The hat frame assembly 28 may also include a pcf foam element 50 (3-7 pcf) that also may be tailored to individual impact zones or skin thicknesses 26. The use of the foam element 50 allows for a further tailoring of impact resistance without negatively impacting either weight or the low modulus nature of the hat frame assembly 28 and skin 16 interaction that provides compliance and prevents damage or debonding during impact while continuing to provide enough structural rigidity to allow for the elimination of stringers.


The present invention, in addition to providing a vastly improved structure and approach to bird strike damage reduction, also provides a vastly improved methodology of manufacturing and assembling the aircraft fuselage section. Prior approaches required the use of aluminum skin with complex multi-curved shapes and corresponding beam stringers with matching curves. The present invention, however, yields a far more cost effective and efficient method of manufacturing and assembly. The present invention contemplates the use of a fuselage lay-up tool 52 incorporating a plurality of multi-curved shapes 54 along its length. The lay-up tool 52 includes a plurality of stiffener grooves 56 on its upper tool surface 58. The stiffener grooves 56 are configured to allow the low modulus stiffener fibers 30 to be laid up directly onto the grooves 56 and thereby form a hat frame assembly 28 or other stiffener member 18. The stiffener grooves 56 further allow the stiffener members 18 to be located precisely in relation to both each other and the overall fuselage section 10. The skin fibers 20 may then be laid-up over the low modulus stiffener fibers 30 to complete the integrated skin/frame assembly and then the whole assembly may be cured as a single entity. This contemplates co-curing where the stiffener fibers 30 are laid in green, the skin fibers 20 are applied on top, and the whole assembly is simultaneously cured. This further contemplates co-bonding wherein the stiffener fibers 30 are cured prior to the application of the skin fibers 20. This allows the fuselage to be created as a single entity with double curved or multi-curved characteristics. Thereby complex skin shapes are accommodated in addition to the bonding of complex frames concurrently. This has the potential for generating both savings as well as performance improvements to fuselage design and production.


While the invention has been described in connection with one or more embodiments, it is to be understood that the specific mechanisms and techniques which have been described are merely illustrative of the principles of the invention, numerous modifications may be made to the methods and apparatus described without departing from the spirit and scope of the invention as defined by the appended claims.

Claims
  • 1. An aircraft fuselage nose section having a longitudinal axis, and comprising: a unitary circumferentially extending composite skin;a plurality of composite fiber stiffeners; each stiffener including at least one foot, at least one sidewall, and a cap,the at least one foot bonded to an interior circumference of the composite skin,each stiffener extending in a circumferential direction,said plurality of composite fiber stiffeners spaced orthogonally with respect to the longitudinal axis to define a spaced parallel array,each stiffener defining a continuous circumferential structural component of the nose section,the cap spaced apart from the skin;wherein the cap includes plies of carbon fibers that extend at an angle with respect to the circumferential direction;wherein the cap further includes plies of glass fibers that extend orthogonally with respect to the longitudinal axis; andwherein the interior circumference of the composite skin is stringerless.
  • 2. The nose section of claim 1, wherein the plies of the carbon fibers are interleaved with the plies of the glass fibers.
  • 3. The nose section of claim 1, wherein the glass fibers and the carbon fibers are configured to protect the nose section against strike impact loads.
  • 4. The nose section of claim 1, wherein the carbon fibers are oriented at angles of +60 degrees and −60 degrees with respect to the circumferential direction.
  • 5. The nose section of claim 1, wherein the glass fibers are S-2 fibers or fiberglass.
  • 6. The nose section of claim 1, wherein the stiffener is a hat stiffener.
US Referenced Citations (49)
Number Name Date Kind
1932430 Weyerbacher Oct 1933 A
2420292 Baer et al. May 1947 A
2762419 Prewitt Sep 1956 A
3490983 Lee Jan 1970 A
3768760 Jensen Oct 1973 A
3995080 Cogburn et al. Nov 1976 A
4051290 Jutte et al. Sep 1977 A
4086378 Kam et al. Apr 1978 A
4331723 Hamm May 1982 A
4636422 Harris et al. Jan 1987 A
4909655 Anderson Mar 1990 A
4966802 Hertzberg Oct 1990 A
5106568 Honka Apr 1992 A
5139405 Krone et al. Aug 1992 A
5165627 Amano et al. Nov 1992 A
5170967 Hamamoto et al. Dec 1992 A
5223067 Hamamoto et al. Jun 1993 A
5242523 Willden et al. Sep 1993 A
5622733 Asher Apr 1997 A
5641366 Hohman Jun 1997 A
5707576 Asher Jan 1998 A
6007894 Barnes et al. Dec 1999 A
6105902 Pettit Aug 2000 A
6132542 Cutler et al. Oct 2000 A
6155450 Vasiliev et al. Dec 2000 A
6458309 Allen et al. Oct 2002 B1
6510961 Head et al. Jan 2003 B1
6511570 Matsui Jan 2003 B2
6612217 Shockey et al. Sep 2003 B1
6641893 Suresh et al. Nov 2003 B1
6692681 Lunde Feb 2004 B1
6702911 Toi et al. Mar 2004 B2
6719865 Kasahara et al. Apr 2004 B2
6951162 Shockey et al. Oct 2005 B1
7052572 Miura et al. May 2006 B2
7059034 Anderson et al. Jun 2006 B2
7074474 Toi et al. Jul 2006 B2
7100871 Assler et al. Sep 2006 B2
7195203 Livingstone et al. Mar 2007 B2
7226559 Maxwell et al. Jun 2007 B2
7249943 Benson et al. Jul 2007 B2
7377752 Mohamed May 2008 B2
20010035118 Matsui et al. Nov 2001 A1
20020069962 Maxwell et al. Jun 2002 A1
20020192467 Secrist et al. Dec 2002 A1
20040070108 Simpson et al. Apr 2004 A1
20050211843 Simpson et al. Sep 2005 A1
20060208135 Liguore et al. Sep 2006 A1
20060290028 Pleite et al. Dec 2006 A1
Foreign Referenced Citations (2)
Number Date Country
1134069 Sep 2001 EP
2004011169 Feb 2004 WO
Non-Patent Literature Citations (1)
Entry
Federal Aviation Administration (FAA), Feder Aviation Regulation Part 25, Mar. 31, 1998, http://rgl.faa.gov/Regulatory—and—Guidance—Library/rgFAR.nsf/0/7385FBFAE1021F328525667200503E10?OpenDocument&Highlight=bird, Sec. 25.571.
Related Publications (1)
Number Date Country
20070095982 A1 May 2007 US