The present invention relates to a component, in particular a fuel line or a fuel manifold, for an injection system used for mixture-compressing, spark-ignition internal combustion engines. Specifically, the present invention relates to the field of motor vehicle injection systems, in which fuel is injected directly into combustion chambers of an internal combustion engine.
German Patent Application No. DE 10 2016 115 550 A1 describes a method for producing a fuel manifold, in which a manifold tube is produced from a forging blank in which austenitic steels with material numbers 1.4301, 1.4306, 1.4307 and 1.4404 can be used. It has been found in this connection that forging blanks exhibit production-related residual stresses from the forging process and that corrosion resistance is reduced by the formation of chromium carbides. In the conventional method, controlled heat treatment between 850° C. and 1100° C. for more than 60 seconds redissolves the chromium carbides produced by slow cooling. Mechanical properties and corrosion resistance are improved as a result. Since the heat treatment also improves machining characteristics for drilling, milling and thread cutting, it is preferably performed on the unmachined forging blank.
A component according to the present invention, an injection system according to the present invention, and a method according to the present invention may have an advantage of enabling improved configuration and functionality.
The measures disclosed herein enable advantageous further developments of the component, the injection system, and the method.
The injection system according to the present invention is used for mixture-compressing, spark-ignition internal combustion engines. The injection system according to the present invention is used for injecting gasoline and/or ethanol and/or comparable fuels and/or for injecting a mixture including gasoline and/or ethanol and/or comparable fuels. A mixture may be, for example, a mixture including water. The component according to the present invention is used for such injection systems.
According to an example embodiment of the present invention, at least the main body of the component is formed from a material which is preferably a special steel, in particular an austenitic special steel. In particular, the material can be based on an austenitic special steel with the material number 1.4301 or 1.4307 or on a special steel comparable therewith. A hydraulic connection provided on the main body may take the form of a high-pressure inlet, high-pressure outlet or other high-pressure connection. During production, the main body is then preferably formed and further machined as a forging blank together with the high-pressure inlet and the at least one high-pressure outlet and, optionally, one or more other high-pressure connections.
A configuration of a fuel manifold according to an example embodiment of the present invention thus involves significant differences from a brazing rail, in which a tube for the brazing rail is machined and deburred before the attached components are brazed on. The forged configuration can in particular enable a higher pressure design. One significant difference from a high-pressure rail for compression-ignition internal combustion engines resides in the choice of materials and machining, in particular in the forging of a special steel. There are significant differences in contrast with electrochemical deburring (ECM deburring). ECM deburring requires a separate installation and a subsequent cleaning process which account for a not inconsiderable proportion of manufacturing costs. The mechanical deburring according to an example embodiment of the present invention, on the other hand, can straightforwardly follow on from a machining process and in particular be carried out in the same machining center. This applies in particular to the retraction deburring proposed according to an advantageous further development of the present invention, since one or more retraction deburrers can advantageously be integrated into the machining process. Thus, production can be simplified and unit costs reduced.
A further advantage of the mechanical deburring according to the present invention over ECM deburring is obtained with respect to a material state. In ECM deburring, excess material or at least one burr at a bore intersection is dissolved electrochemically, resulting in a material state which is practically free of compressive residual stress. In contrast, in one example configuration of the present invention, a material state under compressive residual stress may be obtained which exhibits higher cyclic strengths, in particular under pulsating internal pressure stress. This is obtained in particular in an advantageous further development as disclosed herein. It is thus advantageously possible to avoid an additional strength-enhancing process, such as for example autofrettage. Advantageous further developments of the present invention disclosed herein are particularly advantageous in this respect.
An advantageous further development of the present invention may enable an advantageous geometric configuration. In particular, advantageous deburring with a rotating deburring tool, in particular a retraction deburrer, is consequently possible.
Another example embodiment of the present invention enables an advantageous configuration of the main body with the hydraulic connection or connections. Mechanical deburring here enables reliable process control. For example, in ECM deburring, when an electrode is energized, contact between the electrode and a burr to be removed may result in a short circuit if the burr to be removed is too large, so bringing the process to a standstill without material removal. This problem arises in particular with the proposed austenitic special steels, since they are comparatively difficult to machine.
In particular, forging may give rise to actually unwanted microstructure constituents such as delta ferrite and deformation martensite. Reliable process control can also be achieved in this case by the proposed mechanical deburring. ECM deburring, on the other hand, could result in nonuniform material removal since dissolution behavior is dependent on microstructure. The mechanical deburring according to the present invention also avoids such disadvantages in an advantageous configuration disclosed herein.
Corresponding advantages are obtained in an advantageous further development of a method according to the present invention.
Preferred exemplary embodiments of the present invention are explained in greater detail in the following description with reference to the figures, in which corresponding elements are provided with matching reference numbers.
The fuel manifold 2 is used for storing and distributing the fluid to injection valves 7 through 10 configured as fuel injection valves 7 through 10 and reduces pressure fluctuations and pulsations. The fuel manifold 2 can also be used to attenuate pressure pulsations that may arise during switching of the fuel injection valves 7 through 10. During operation, high pressures p may occur at least intermittently in an interior 11 of component 3. The high-pressure line 5 has hydraulic connections 12, 12′ configured as high-pressure inlet 12 and high-pressure outlet 12′, which can optionally be interchanged, and a main body 13.
The fuel manifold 2 has a tubular main body 14 which is formed by single stage or multistage forging. A hydraulic connection 15 configured as a high-pressure inlet 15 and a plurality of hydraulic connections 16 through 19 configured as high-pressure outlets 16 through 19 or cups 16 through 19 are provided on the tubular main body 14. A hydraulic connection 20 configured as a pressure sensor connection 20 is furthermore provided on the tubular main body 14. In this exemplary embodiment, the tubular main body 14, the high-pressure inlet 15, the high-pressure outlets 16 through 19 and the pressure sensor connection 20 are formed from a single forged part 14′. The high-pressure inlet 15, the high-pressure outlets 16 through 19 and the pressure sensor connection 20 are thus forged on the main body 14.
The fuel line 5 is connected at its high-pressure inlet 12 to the high-pressure pump 4 and at its high-pressure outlet 12′ to the high-pressure inlet 15 of the fuel manifold 2. The fuel injection valves 7 through 10 are in each case connected to the high-pressure outlets 16 through 19 of the fuel distributor 2. A pressure sensor 21, which is connected to the pressure sensor connection 20, is furthermore provided. The tubular main body 14 is closed at one end 22 by a screw plug 23. In a modified configuration, an axial high-pressure inlet may be provided at one end 24 instead of the lateral and/or radial high-pressure inlet 15.
After forging, the tubular main body 14 or the individual forged part 14′ is machined by at least one chip-removing machining operation. In this exemplary embodiment, after forging, a bore is additionally formed in the tubular main body 14 to form the interior 11. During operation, the fluid supplied to the high-pressure inlet 15 can be distributed via the interior 11 to the fuel injection valves 7 through 10 connected to the high-pressure outlets 16 through 19.
Bores 26 through 31 are moreover introduced into the individual forged part 14′ by chip-removing machining. Bores 27 through 30 are here used for the high-pressure outlets 16 through 19. Bore 26 is used for the high-pressure inlet 15. Bore 31 is used for the pressure sensor connection 20. A thread 22′ can furthermore be cut into the bore 25 at the end 22 of the main body 13.
Bores 32 through 37, which form connection chambers 32 through 37, can moreover be provided at the high-pressure inlet 15, the high-pressure outlets 16 through 19 and the pressure sensor connection 20. In this exemplary embodiment, the bore 25 is oriented axially with regard to a longitudinal axis 38. Bores 26 through 37 are oriented radially or radially eccentrically with regard to the longitudinal axis 38. In the case of a radial or radially eccentric orientation with regard to the longitudinal axis 38, it is then preferably possible, in the case of fastening for example in an engine compartment, to obtain an orientation of bores 26, 31, 32, 37 of connections 15, 20 or bores 27 through 30 and 33 through 36 of connections 16 through 19 above or below the longitudinal axis and/or from the longitudinal axis 38 which points away from or toward an engine.
Bores 26 through 31 form connection channels 26 through 31 which intersect with the interior 11. These connection channels 26 through 31 connect bores 32 through 37 to the interior 11. Bores 26 through 31 here intersect with the bore 25 which forms the interior 11. This results in intersection regions 40 through 45 on which burrs remain after chip-removing machining. The intersection regions 40 through 45 are deburred by mechanical deburring.
One possible configuration of connections 15, 20 is described by way of example on the basis of connection 15 and on the basis of
Deburring of the intersection region 40 may be carried out from the bore 32, as is also explained on the basis of
In this exemplary embodiment, the connection 15 can thus take the form of a valve cup 15.
Retracting the retraction deburring tool 50 in a retraction direction 55 results in mechanical deburring of the intersection region 40 by way of the cutting edge 52 as a result of the rotation 54. Rotation 54 and/or the supplied liquid cutting fluid here applies the cutting edge 52 against the intersection region 40. The chamfer 40′ can be formed in the process. The retraction deburring tool 50 can then be removed, the cutting edge 52 entirely or partially folding back into the circumferential surface 53.
Mechanical removal of a burr and chip-removing de-edging can thus be achieved in the intersection region 40. Depending on the configuration of the retraction deburring tool 50, the cutting edge 52 may for example also be held in place by a spring in order to facilitate insertion and removal of the retraction deburring tool 50.
The time sequence of the chip-removing machining for configuring bores 25 through 37 can be implemented in a suitable manner. Mechanical deburring of intersection regions 40 through 45 can here be suitably integrated into or follow on from this machining.
In one possible implementation of the method, the bore 25 can firstly be drilled to provide the interior 11. Bores 32 through 37 for the connection geometries of connections 15 through 20 and bores 26 through 31 serving as connection channels 26 through 31 to the interior 11 can then be drilled. Mechanical deburring of the intersection regions 40 through 45 can then proceed. Mechanical deburring can thus follow on from the chip-removing machining.
In one possible embodiment of the method, once bore 25 for the interior 11 has been drilled, all the connection geometries are machined, in particular all bores 32 through 37 are drilled, then all bores 26 through 31 serving as connection channels 26 through 31 or connection bores 26 through 31 are drilled and finally all intersection regions 40 through 45 are mechanically deburred.
One possible modification of this method involves carrying out drilling and deburring in a different sequence which integrates deburring into the chip-removing machining. If a plurality of intersection regions 40 through 45 are mechanically deburred, a machining sequence may in each case relate to one of connections 15 through 20. This means, for example at connection 15, that bore 32 is drilled, then bore 26 is drilled and then the intersection region 40 is mechanically deburred. These steps can be carried out correspondingly in succession for each of connections 15 through 20.
Mechanical deburring thus does not necessarily proceed after completion of chip-removing machining. In particular, mechanical deburring can thus also be integrated into the chip-removing machining. By suitable process parameters and the selection of a suitable cutting fluid, it is also possible for an internal wall 60 extending, inter alia, from the bore 25 over the intersection region 40 and through the bore 26 to be provided with a material state under compressive residual stress. This internal wall 60 can also extend into the transition 46 (
The present invention is not limited to the described exemplary embodiments.
Number | Date | Country | Kind |
---|---|---|---|
10 2020 203 174.6 | Mar 2020 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2021/051310 | 1/21/2021 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/180390 | 9/16/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20020157231 | Conrad | Oct 2002 | A1 |
20180051664 | Aul | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
102005048078 | Apr 2007 | DE |
102016211228 | Dec 2017 | DE |
102016115550 | Feb 2018 | DE |
102017111736 | Dec 2018 | DE |
102020203650 | Sep 2021 | DE |
102020207472 | Dec 2021 | DE |
102020208759 | Jan 2022 | DE |
102020213168 | Feb 2022 | DE |
202020215193 | Jun 2022 | DE |
H06198511 | Jul 1994 | JP |
2010159676 | Jul 2010 | JP |
2017186977 | Oct 2017 | JP |
2018158372 | Oct 2018 | JP |
WO 2004020815 | Mar 2004 | WO |
WO 2004070193 | Aug 2004 | WO |
2016042897 | Mar 2016 | WO |
WO 2021180390 | Sep 2021 | WO |
WO 2022012940 | Apr 2022 | WO |
WO 2022083934 | Apr 2022 | WO |
Entry |
---|
International Search Report for PCT/EP2021/051310, dated Mar. 18, 2021. |
Number | Date | Country | |
---|---|---|---|
20230099915 A1 | Mar 2023 | US |