Component identification and tracking system for telecommunication networks

Information

  • Patent Grant
  • 9064022
  • Patent Number
    9,064,022
  • Date Filed
    Wednesday, May 16, 2012
    12 years ago
  • Date Issued
    Tuesday, June 23, 2015
    9 years ago
Abstract
Identification elements (e.g., tracking elements, tracing elements, locating elements, etc.) (22A, 100) are provided on various communication components (20, 24, 26, 28, 30, 32, 34, 35, 36, 40, 42, 48, 49, 60, 62, 64, 120) provided within a communication network such as a fiber optic network or a copper network. Fiber optic hubs 20 can be identified and/or managed. Data centers (110) with patch panels (120) can also be identified and/or managed. Example passive identification elements include bar codes (e.g., 2d barcodes) and radio frequency identification (RFID) tags. In certain embodiments, RFID tags and the bar codes can include network information included therein. In certain embodiments, bar codes can be used to direct technicians to network links at which additional information stored elsewhere is provided. In certain embodiments, identification elements can be provided on communication components through an application downloaded to a mobile device by scanning the bar code. Such application on the mobile device can then be used to manage the network connections, change the network connections, or check the status of the network connections. Multiple mobile devices can be used and synchronized together with a central application, website or network. One example bar code useful for reading information from a network device and linking to a management application is a QR code (100).
Description

This application is being filed on 8 Nov. 2013, as a US National Stage PCT International Patent application No. PCT/US2012/038152, filed 16 May 2012 in the name of ADC Telecommunications, Inc., a U.S. national corporation, and Tyco Electronics Raychem BVBA, a Belgium national corporation, applicants for the designation of all countries except the U.S., and, Trevor D. Smith, a citizen of the U.S., and Danny Ghislain Thijs, a citizen of Belgium, applicants for the designation of the U.S. only, and claims priority to U.S. patent application Ser. No. 61/487,178 filed on 17 May 2011 and U.S. patent application Ser. No. 61/591,576 filed on 27 Jan. 2012, the disclosures of which are incorporated herein by reference in their entirety. To the extent appropriate, a claim of priority is made to each of the above disclosed applications.


BACKGROUND

Telecommunication systems typically employ a network of telecommunication cables capable of transmitting large volumes of data and voice signals. The signals can be transmitted over relatively long distances in a wide area network or a local network. The signals can also be part of a data communications network, such as in a data center of a building or a campus. The telecommunications cable can include fiber optic cables, electrical cables, or combinations of electrical and fiber optic cables. A typical long distance telecommunications network also includes a plurality of telecommunications enclosures integrated throughout the network of telecommunications cables. The telecommunications enclosures are adapted to house and protect telecommunication components such as splices, splice trays, termination panels, power splitters and wave length division multiplexers. Data centers include telecommunications equipment, storage systems, power supplies, and other equipment.


SUMMARY

The present disclosure relates to providing identification elements (e.g., tracking elements, tracing elements, locating elements, etc.) on various telecommunication components provided within a telecommunication network, such as a fiber optic network or a copper network. Example passive identification elements include bar codes (e.g., 2d barcodes) and radio frequency identification (RFID) tags. In certain embodiments, RFID tags are preferred over bar codes because they typically allow for significantly more information to be included therein. In certain embodiments, bar codes can be used to direct technicians to interne links at which additional information of the type described herein is provided. In certain embodiments, identification elements can be provided on telecommunication components through an application downloaded to a mobile device, such as handheld device, by scanning the bar code. Such application on the handheld device can then be used to manage the network connections, change the network connections, or check the status of the network connections. Multiple handheld devices can be used and synchronized together with a central application, website, or network. One example bar code useful for reading information from a network device and linking to a management application is a QR code.


A telecommunications system comprises a telecommunications component; and an identifying element on the telecommunications component, wherein the identifying element includes at least one of: information about connectivity of the telecommunications component, information about the telecommunications component, a link to a website, or a link to an application for downloading to a handheld device for managing the information about connectivity of the telecommunications component.


A method of using a telecommunications system comprises providing a telecommunications component; providing an identifying element on the telecommunications component, wherein the identifying element includes at least one of information about connectivity of the telecommunications component, information about the telecommunications component, a link to a website, or a link to an application for downloading to a handheld device for managing the information about connectivity of the telecommunications component; and scanning the identifying element.


The above noted systems and methods can also be used with any supporting hardware, such as hardware which supports, houses, or checks the equipment, including frames, racks, screens, cameras.


The above noted systems and methods and as further described and claimed can also be used with any type of network (copper or fiber) and whether the network is localized, or used or a wide area. The systems and methods can be used by the system operator for the equipment, the connections, and/or the supporting hardware, as desired.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is an example of a fiber distribution hub including a component identification system in accordance with the principles of the present disclosure;



FIG. 2 shows steps for using a component identification element in one implementation of the present disclosure;



FIG. 3 shows various steps in additional implementations of the present disclosure using a component identification element;



FIG. 4 is an example telecommunications rack including the plurality of patch panels.





DETAILED DESCRIPTION

Some telecommunication networks include a large number of components distributed over a large area. Often, the as-built configuration of a telecommunications network (e.g., a passive fiber optic network) differs from the configuration of the telecommunication network as originally planned. Because components of a given telecommunication network are spread out over a relatively large area, it can be difficult to track and confirm the as-built configuration of the telecommunications network. Similar problems exist in local networks, such as in data centers, where high density is desired.


The present disclosure relates to various systems and methods for maximizing the amount of data available for defining the as-built configuration of a telecommunication network. The present disclosure also relates to various methods and systems for utilizing as-built data to improve the reliability of telecommunication systems, to improve the ability to efficiently maintain telecommunication systems, and to improve the ability to efficiently upgrade telecommunication systems.


Certain aspects of the present disclosure relate to providing identification elements (e.g., tracking elements, tracing elements, locating elements, etc.) on various telecommunication components provided within a telecommunication network such as a fiber optic network or copper network. Example passive identification elements include bar codes (e.g., 2d barcodes) and radio frequency identification (RFID) tags. In certain embodiments, RFID tags are preferred over bar codes because they typically allow for significantly more information to be included therein. In certain embodiments, bar codes can be used to direct technicians to network links, such as internet links at which additional information of the type described herein is provided. In certain embodiments, identification elements can be provided on passive telecommunication components such as: splitter modules; fiber optic connectors; fiber optic adapters; individual fiber optic adapters provided at a termination region; termination panels themselves; power splitter modules; individual outputs of power splitter modules (e.g., either connectorized outputs or non-connectorized outputs); multiplexers such as wavelength division multiplexers; individual outputs of multiplexing devices; fiber distribution hub housings; adapters used to interconnect with plug and play splitters; drop terminals; individual ports corresponding to drop terminals; ruggedized connectors that plug into drop terminals or elsewhere; single fiber ruggedized connectors; multi-fiber ruggedized connectors; individual fiber optic splices; splice trays; splice enclosures; parking modules; individual parking ports; fiber optic trays and drawers; wall boxes; receptacles for receiving parking modules; MTP/MFC connectors; and/or on other structures. Identification elements can be provided on active component as well.


Example parking modules are disclosed in U.S. Pat. No. 7,809,233 which is hereby incorporated by reference in its entirety. An example network interface device is disclosed in U.S. patent application Ser. No. 11/607,676 which is hereby incorporated by reference in its entirety. An example single fiber ruggedized connector is disclosed at U.S. patent application Ser. No. 12/203,508 which is hereby incorporated by reference in its entirety. An example splice tray is disclosed at U.S. application Ser. No. 12/425,241 which is hereby incorporated by reference in its entirety. Example fiber optic drawer/trays are disclosed at U.S. patent application Ser. Nos. 12/840,834 and 61/378,710 which are hereby incorporated by reference in their entireties. Example fiber optic enclosures are disclosed at U.S. Pat. Nos. 7,715,679; 7,756,379; and 7,869,682, which are hereby incorporated by reference in their entireties. An example aerial splice enclosure is disclosed at U.S. patent application Ser. No. 12/350,337 that is hereby incorporated by reference in its entirety. Example plug and play splitters are disclosed at U.S. Pat. Nos. 7,376,322; 7,593,614; 7,400,813; 7,376,323; and 7,346,254, which are hereby incorporated by reference in their entireties. An example drop terminal is disclosed in U.S. Pat. No. 7,512,304, which is hereby incorporated by reference in its entirety. An example ruggedized multifiber connector is disclosed at U.S. Pat. No. 7,264,402, which is hereby incorporated by reference in its entirety. Example fiber distribution hubs are disclosed in U.S. Pat. Nos. 7,873,255; 7,720,343; 7,816,602; 7,728,225; and U.S. patent application Ser. No. 12/827,423, the disclosures of which are hereby incorporated by reference in their entireties. An example splice closure is disclosed in U.S. Provisional Patent Application Ser. No. 61/468,405, which is hereby incorporated by reference in its entirety. In accordance with the principles of the present disclosure, identification elements can be incorporated into the various components of the systems disclosed in the above-identified patents and patent applications.



FIG. 1 shows an example fiber distribution hub (FDH) 20 having a component identification element in accordance with the principles of the present disclosure. The fiber distribution hub 20 includes an outer housing 22. An FDH identifying element 22A is provided on the housing 22. In one embodiment, the identifying element 22A is an RFID tag or a bar code. In the case of an RFID tag, the RFID tag can include various embedded information such as a photo of the FDH, an installation manual, information regarding FDH accessories, reorder information, and a specific identifying number for identifying the particular FDH.


The FDH 20 includes a termination field/panel 24 supporting a plurality of fiber optic adapters 26. Each of the fiber optic adapters 26 includes first and second ports 28, 30. The termination field 24 has an identifying element 24A corresponding to the field as a whole. Additionally, each of the fiber optic adapters 26 includes identifying elements corresponding to each of the first and second ports 28, 30. For example, each of the first ports 28 includes its own identifying element 28A and each of the second ports includes its own identifying element 28A.


The FDH 20 also includes a splitter module 32 containing a splitting component, such as power splitter or wave length splitter components. The splitting module 32 has its own identifying element 32A. The splitting module 32 includes a plurality of outputs 34 (e.g., 16 pigtail outputs, 32 pigtail outputs, etc.). Each of the outputs 34 can include its own identifying element 34A. If the outputs 34 are connectorized, the identifying elements 34A can be provided on connectors 35 terminated to the ends of the outputs 34. If the outputs 34 are not connectorized, the identifying elements 34A can be provided directly on the pigtails routed out from the splitter module 32. The splitter module 32 can also include an input 36 which can have its own identifying element 36A. The input 36 can be connectorized or connectorized. In the case of a connectorized input, the identifying element 36A can be provided on the connector. It will be appreciated that the splitter module includes components for providing a one to many optical connection. In the case of a power splitter, a signal input to the splitter module 32 by the input 36 is split in power and divided equally to the various outputs 34. In the case of a splitting component in the form of a wave length division multiplexer, a signal input through the input 36 is split or divided based on wave length and signals within predefined wave length ranges are transmitted to the various outputs 34.


Referring still to FIG. 1, the FDH 20 also includes a plurality of optical fibers 40 having ends that are connectorized by connectors 42. The optical fibers 40 can be optically connected to various subscriber locations via distribution or drop cables. Each of the connectors 42 can include its own identifying element 42A.


It will be appreciated that the outputs 34 of the splitting module 32 can be plugged into the first ports 28 of the fiber optic adapters 26 and the connectors 42 corresponding to the optical fibers 40 can be inserted into the second ports 30 of the fiber optic adapters 26. In this way, the fiber optic adapters 26 are used to optically connect the outputs 34 of the splitter module 32 to the optical fibers 40. This allows subscribers to be optically connected to the fiber optic network.


In certain embodiments, the identifying elements corresponding to the fiber optic connectors can include various information about the connectors. Example information includes: a unique identification number; test results from final factory validation testing (e.g., end face geometry, insertion loss information, return loss information), warranty information, installation information, accessories information, re-order information, or other information.


In certain embodiments, the FDH 20 can include a splicing region 48 including one or more splice trays. Each of the splice trays can include its own identifying element. It will be appreciated that splices are held within the splice tray. It will be appreciated that each of the splices can have its own identifying element. Similarly, each of the fibers connected by a given splice can have there own identifying element. The splicing region 48 can be used to splice the fibers 40 to outgoing distribution cables routed to subscriber locations. A further splice region 49 can be provided for splicing the feeder fibers to the splitter inputs. Identifiers can be provided at each of the splice trays and can also be provided for each of the incoming and outgoing fibers routed to the spliced trays.


The FDH 20 also includes a connector storage location 60 having parking modules 62 with module identifiers 62A. The parking modules include ports/receptacles 64 for receiving individual connectors (e.g., connectors 35). The modules and each of the ports can include individual identifying elements 64A.


In practice, the FDH 20 is installed by a technician in the field. During the installation process, a technician can use a handheld scanner to scan the FDH identifying element 22A. The scanning element can also access positioning data (e.g., global positioning coordinates) corresponding to the location the FDH 20 is being installed. In this way, by scanning the FDH identifying element 22A, the exact geographic position at which the FDH has been installed can be saved and later downloaded into a database recording the as-built configuration of the telecommunications system. Scanning of the identifying element 22A can also provide the technician with necessary installation information, such as installation manuals or other materials. The scanning ties a unique identifying number assigned to the FDH 20 with a particular geographic position at which the FDH 20 has been installed. Information relating to the technician (e.g., identification, training record) can also be saved and linked to the given installation at the time of the scan.


As the technician continues the installation process, the technician plugs the outputs 34 into the first ports 28 and also plugs the connectors 42 into the second ports 30. During this installation process, the technician can scan the identifying elements 34A corresponding to the splitter outputs and the identifying elements 28A corresponding to the first port. In this way, information can be saved into the as-built database showing exactly which outputs 34 are plugged into exactly which first ports 28. Specifically, specific identifying numbers corresponding to each of the outputs 34 are tied to corresponding identifying numbers corresponding to each of the first ports 28. In certain embodiments, the identifying elements 34A and the identifying elements 28A are scanned separately. In other embodiments, the identifying elements 34A and the identifying elements 28A are required to be scanned together or can be scanned together to reduce the likelihood of error in the scanning process. In a similar way, the technician can scan each of the identifying elements 42A and each of the identifying elements 30A to record a record of exactly which connectors 42 are inserted into which second ports 30. In this way, identification numbers corresponded to each of the connectors 42 are linked to corresponding identification numbers corresponding to each of the second ports 30 so that an accurate as-built data base can be generated. Similarly, information linking specific storage ports 64 to specific outputs 34 can be scanned and saved.


In certain embodiments, the scanner/RFID reader can be a separate piece of equipment. In other embodiments, the scanner/RFID reader can be incorporated into a cellular phone or tablet, or can be an add-on to a cellular phone or tablet. Other information that can be recorded includes: the name of the technician conducting the installation; technician training records; and the time at which each operation was conducted.


Example information that can be included in the identification elements (e.g., RFID tags) which would be available to the customer/technician upon accessing the information on the identification element include:


Information List No. 1

    • Test results (IL, RL, geometry, etc.)
    • User manuals and videos
    • Re-order information
    • Ancillary products
    • Product pricing and availability
    • Warranty information
    • Product recall notices
    • Extended warranty offers
    • LSL information
    • Installation date and technician


Scanning the identification elements can generate the following information:


Information List No. 2

    • Installation rates—actual consumption
    • End user information
    • Installation locations—GPS coordinates
    • Actual installer name and training records
    • Verify improper use of LSL items
    • Frequency of use/visit
    • Automated record keeping


At least some of the information outlined above can be used for implementing product warranties. For example, warranties could be started by the product seller when the product is actually installed in the field. The information derived from the scanning operation can be used to confirm that all product was be installed by a certified installer and suitably scanned upon installation. Violation of this could void the warranty. An application (e.g., a Smartphone application) can be developed that verifies training records of installer, records installation location; determines installation rate used an input to demand prediction, as a locator for any warranty concerns; and to bring extended warranty information to customers as records indicate warranty runs out. Registered users can become part of a seller database of customer contacts—allows follow-up on ease of use.


The above-description includes an example implementation of component identification elements included in a fiber distribution hub (FDH) 20. Various other telecommunications equipment and cable management systems and networks are anticipated for use with one or more component identification elements. For example, the identifying elements can be utilized in a data center including an identifying element associated with each patch panel. Identifying elements can be associated with each port of the patch panel and each patch cord connected to the patch panel if desired. Fiber or copper cables can be used in the data center. One example copper patch panel is disclosed in U.S. Pat. No. 6,504,726 which is hereby incorporated by reference in its entirety.


With reference to FIG. 2, one specific implementation of an identifying element, which is useful in a data center, on a fiber distribution hub, or in other telecommunications systems and networks, is a 2d bar code in the form of a QR code. The QR code can be scanned at step 202 by a handheld device (e.g., cell phone) by the technician, which can then direct the technician to a company's website at step 204. The company's website can be the product manufacturer's website or the user's website. The QR code can also link to one or more of the items in the Information List No. 1 above. The QR code could also be coded to include one or more of the items in the Information List No. 1 above.


The QR code can also direct the technician to download an application for use with the handheld device in managing the telecommunications equipment at step 206. At the same time the technician downloads the application, the technician can also request or enter a company identification code and/or user specific identification code at step 208. These steps are illustrated in FIG. 2.


Referring now to FIG. 3, once the handheld device includes the application, the QR code 100 of the network device (e.g., patch panel) can be scanned and the technician can enter the company ID, and the password if necessary, at step 302, to begin implementation of the application. If the handheld device is already linked to the user, the user can begin the application to manage the network device at step 304.


The QR code gives the technician a tool to maintain connection information for their network connections in a data center, such as the network connections between patch panels 120, of the type shown in FIG. 4. Instead of scanning all of the connections, the technician can enter them manually into the handheld device to document the network connections.


Each patch panel 120 will be labeled with a unique QR code 100. In one preferred embodiment, the QR code will contain a URL and a unique ID. The URL will bring the technician to a website where the technician can see installation instructions or other information about the network. The application will give the technician the possibility to maintain the port 122 connections for all the patch panels 120 adjacent to the scanned panel 120.


The first time that the technician starts the application, the application preferably requests a company identification and a password at step 302 of FIG. 3. Once the handheld device is linked to the website, the technician will be able to identify the panel at step 304. In one implementation, the panel information can include information such as: 1) a room number, 2) a row number, 3) a rack number, and 4) a panel number as shown in steps 306 and 308. Together with the unique ID, and the QR code of the panel, this information will be stored locally on the handheld device. This information can be uploaded to the network or main storage device.


At a later date, when the technician reads the QR code on the patch panel 120, the technician will see the port information on the handheld device. The port information can be updated if the technician makes a change in the connections between the ports 122 at step 310. Scanning the QR code and/or updating the information can update the items in the Information List No. 2 above.


In one application, the technician can view existing connections between ports 122 to make a manual check and verification of the connections.


The technician can also synchronize the handheld device with other handheld devices and also to the home network database so that the full network information is current.


A further application of the component identification and tracking system for telecommunication networks includes situations where internet and/or cell service is unavailable. The technician can utilize the QR code to access information stored on a handheld device. If the technician then makes changes to the network connections, the information can be entered on the handheld device and later synchronized with the main network or other handheld devices for updating the main database.


A still further application of the present invention includes situations where the QR code includes the actual connection data of the network connections. Such information might be useful when there is no internet or cell coverage where the technician is accessing the network. If the technician reads the QR code and reads the network connections, the technician is able to see a current status of the network connections. If a change is made by the technician, the technician can enter the change on the handheld device, and print out a new QR code on a portable printer. The new QR code is left on the network device, and the previous code is removed or covered up since it is now out-of-date. In this manner, a technician can access network information merely by reading the QR code, and updating the QR code to reflect changes.


Within the present invention, various passive identification elements can be utilized including the noted barcodes and the radio frequency identification (RFID) tags. Barcodes can be one dimensional or two dimensional. More information is capable of being stored on the two dimensional bar codes, such as the noted QR codes. The information can be transferred to other network devices for network management, especially for larger networks where multiple technicians may be managing the network connections.


Parts List





  • 20 fiber distribution hub


  • 22 outer housing


  • 22A identifying element


  • 24 termination field/panel


  • 24A identifying element


  • 24 splitter module


  • 26 fiber optic adapters


  • 28 first ports


  • 28A identifying element


  • 30 second ports


  • 30A identifying elements


  • 32 splitter module


  • 32A identifying element


  • 34 outputs


  • 34A identifying element


  • 35 connectors


  • 36 input


  • 36A identifying element


  • 40 optical fibers


  • 42 connectors


  • 42A identifying element


  • 48 splicing region


  • 49 splice region


  • 60 connector storage location


  • 62 parking modules


  • 62A module identifiers


  • 64 ports/receptacles


  • 64A individual identifying elements


  • 100 identifying element


  • 110 data center


  • 120 patch panel


  • 122 port


  • 200 handheld device


  • 202-208 initiation steps


  • 302-310 usage steps


Claims
  • 1. A communications system configured to carry communications signals over a communications network, the communications system comprising: a communications component of the communications network;an identifying element disposed at the communications component; anda mobile device that is configured to scan the identifying element;wherein the identifying element includes information about connectivity of the communications component, information about the communications component, a link to a website, and a link to an application for downloading to the mobile device for managing the information about connectivity of the communications component;wherein the mobile device also is configured to communicate the information about connectivity to the management network.
  • 2. The communications system of claim 1, wherein the identifying element is an RFID tag.
  • 3. The communications system of claim 1, wherein the identifying element is a bar code.
  • 4. The communications system of claim 3, wherein the bar code is a two dimensional barcode.
  • 5. The communications system of claim 4, wherein the two dimensional barcode is a QR code.
  • 6. The communications system of claim 1, wherein the communications component is configured to receive an optical fiber that carries the communications signals.
  • 7. The communications system of claim 1, wherein the communications component is configured to receive an electrical cable that carries the communications signals.
  • 8. The communications system of claim 1, wherein the communications component includes a plug connector.
  • 9. The communications system of claim 1, wherein the communications component includes a structure defining a port to receive a plug connector.
  • 10. The communications system of claim 1, wherein the information about the communications component includes test results.
  • 11. The communications system of claim 1, wherein the information about the communications component includes user manuals.
  • 12. The communications system of claim 1, wherein the information about the communications component includes reorder information.
  • 13. The communications system of claim 1, wherein the information about the communications component includes product pricing and availability.
  • 14. The communications system of claim 1, wherein the information about the communications component includes warranty information.
  • 15. The communications system of claim 1, wherein the application for managing the information enables a user to manually enter network connections made at the communications component.
  • 16. The communications system of claim 1, wherein the mobile device is configured to locally store information obtained from scanning the identifying element and to communicate the information about the connectivity to the management network at a subsequent time.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2012/038152 5/16/2012 WO 00 11/8/2013
Publishing Document Publishing Date Country Kind
WO2012/158806 11/22/2012 WO A
US Referenced Citations (197)
Number Name Date Kind
3243761 Piorunneck Mar 1966 A
RE26692 Ruehlemann Oct 1969 E
3954320 Hardesty May 1976 A
4127317 Tyree Nov 1978 A
4679879 Triner et al. Jul 1987 A
4684245 Goldring Aug 1987 A
4737120 Grabbe et al. Apr 1988 A
4953194 Hansen et al. Aug 1990 A
4968929 Hauck et al. Nov 1990 A
4978310 Shichida Dec 1990 A
5041005 McHugh Aug 1991 A
5052940 Bengal Oct 1991 A
5064381 Lin Nov 1991 A
5107532 Hansen et al. Apr 1992 A
5161988 Krupka Nov 1992 A
5166970 Ward Nov 1992 A
5199895 Chang Apr 1993 A
5222164 Bass, Sr. et al. Jun 1993 A
5265187 Morin et al. Nov 1993 A
5305405 Emmons et al. Apr 1994 A
5353367 Czosnowski et al. Oct 1994 A
5393249 Morgenstern et al. Feb 1995 A
5394503 Dietz, Jr. et al. Feb 1995 A
5413494 Dewey et al. May 1995 A
5415570 Sarkissian May 1995 A
5418334 Williams May 1995 A
5419717 Abendschein et al. May 1995 A
5448675 Leone et al. Sep 1995 A
5467062 Burroughs et al. Nov 1995 A
5470251 Sano Nov 1995 A
5473715 Schofield et al. Dec 1995 A
5483467 Krupka et al. Jan 1996 A
5579425 Lampert et al. Nov 1996 A
5660567 Nierlich et al. Aug 1997 A
5674085 Davis et al. Oct 1997 A
5685741 Dewey et al. Nov 1997 A
5712942 Jennings et al. Jan 1998 A
5764043 Czosnowski et al. Jun 1998 A
5800192 David et al. Sep 1998 A
5821510 Cahen et al. Oct 1998 A
5854824 Bengal et al. Dec 1998 A
5871368 Erdner et al. Feb 1999 A
5910776 Black Jun 1999 A
6002331 Laor Dec 1999 A
6079996 Arnett Jun 2000 A
6095837 David et al. Aug 2000 A
6095851 Laity et al. Aug 2000 A
6116961 Henneberger et al. Sep 2000 A
6222908 Bartolutti et al. Apr 2001 B1
6222975 Gilbert et al. Apr 2001 B1
6227911 Boutros et al. May 2001 B1
6234830 Ensz et al. May 2001 B1
6238235 Shavit et al. May 2001 B1
6280231 Nicholls Aug 2001 B1
6285293 German et al. Sep 2001 B1
6300877 Schannach et al. Oct 2001 B1
6330148 Won et al. Dec 2001 B1
6330307 Bloch et al. Dec 2001 B1
6350148 Bartolutti et al. Feb 2002 B1
6364694 Lien Apr 2002 B1
6409392 Lampert et al. Jun 2002 B1
6421322 Koziy et al. Jul 2002 B1
6422895 Lien Jul 2002 B1
6424710 Bartolutti et al. Jul 2002 B1
6437894 Gilbert et al. Aug 2002 B1
6456768 Boncek et al. Sep 2002 B1
D466479 Pein et al. Dec 2002 S
6499861 German et al. Dec 2002 B1
6511231 Lampert et al. Jan 2003 B2
6522737 Bartolutti et al. Feb 2003 B1
6554484 Lampert Apr 2003 B2
6574586 David et al. Jun 2003 B1
6612856 McCormack Sep 2003 B1
6626697 Martin et al. Sep 2003 B1
6636152 Schannach et al. Oct 2003 B2
6684179 David Jan 2004 B1
6725177 David et al. Apr 2004 B2
6743044 Musolf et al. Jun 2004 B2
6793408 Levy et al. Sep 2004 B2
6802735 Pepe et al. Oct 2004 B2
6808116 Eslambolchi et al. Oct 2004 B1
6811446 Chang Nov 2004 B1
6814624 Clark et al. Nov 2004 B2
6847856 Bohannon Jan 2005 B1
6850685 Tinucci et al. Feb 2005 B2
6890197 Liebenow May 2005 B2
6898368 Colombo et al. May 2005 B2
6905363 Musolf et al. Jun 2005 B2
6932517 Swayze et al. Aug 2005 B2
D510068 Haggay et al. Sep 2005 S
6939168 Oleynick et al. Sep 2005 B2
6961675 David Nov 2005 B2
6968994 Ashwood Nov 2005 B1
6971895 Sago et al. Dec 2005 B2
6976867 Navarro et al. Dec 2005 B2
7077710 Haggay et al. Jul 2006 B2
7081808 Colombo et al. Jul 2006 B2
7088880 Gershman Aug 2006 B1
7112090 Caveney et al. Sep 2006 B2
7123810 Parrish Oct 2006 B2
7153142 Shifris et al. Dec 2006 B2
7165728 Durrant et al. Jan 2007 B2
7193422 Velleca et al. Mar 2007 B2
7207819 Chen Apr 2007 B2
7210858 Sago et al May 2007 B2
7226217 Benton et al. Jun 2007 B1
7234944 Nordin et al. Jun 2007 B2
7241157 Zhuang et al. Jul 2007 B2
7297018 Caveney et al. Nov 2007 B2
7312715 Shalts et al. Dec 2007 B2
D559186 Kelmer Jan 2008 S
7315224 Gurovich et al. Jan 2008 B2
7352285 Sakama et al. Apr 2008 B2
7352289 Harris Apr 2008 B1
7356208 Becker Apr 2008 B2
7370106 Caveney May 2008 B2
7374101 Kaneko May 2008 B2
7384300 Salgado et al. Jun 2008 B1
7396245 Huang et al. Jul 2008 B2
7458517 Durrant et al. Dec 2008 B2
7479032 Hoath et al. Jan 2009 B2
7481681 Caveney et al. Jan 2009 B2
7497709 Zhang Mar 2009 B1
7519000 Caveney et al. Apr 2009 B2
7534137 Caveney et al. May 2009 B2
7552872 Tokita et al. Jun 2009 B2
7559805 Yi et al. Jul 2009 B1
7563116 Wang Jul 2009 B2
7570861 Smrha et al. Aug 2009 B2
7575454 Aoki et al. Aug 2009 B1
7588470 Li et al. Sep 2009 B2
7591667 Gatnau Navarro et al. Sep 2009 B2
7605707 German et al. Oct 2009 B2
7607926 Wang Oct 2009 B2
7635280 Crumlin et al. Dec 2009 B1
7648377 Naito et al. Jan 2010 B2
7682174 Chen Mar 2010 B2
7722370 Chin May 2010 B2
7727026 Qin et al. Jun 2010 B2
7753717 Belopolsky et al. Jul 2010 B2
7785154 Peng Aug 2010 B2
7798832 Qin et al. Sep 2010 B2
7811119 Caveney et al. Oct 2010 B2
7814240 Salgado et al. Oct 2010 B2
7867017 Chen Jan 2011 B1
7869426 Hough et al. Jan 2011 B2
7872738 Abbott Jan 2011 B2
7880475 Crumlin et al. Feb 2011 B2
8157582 Frey et al. Apr 2012 B2
8272892 McNeely et al. Sep 2012 B2
8282425 Bopp et al. Oct 2012 B2
8287316 Pepe et al. Oct 2012 B2
8447510 Fitzpatrick et al. May 2013 B2
8449318 Beller et al. May 2013 B2
20020008613 Nathan et al. Jan 2002 A1
20020081076 Lampert et al. Jun 2002 A1
20040052471 Colombo et al. Mar 2004 A1
20040052498 Colombo et al. Mar 2004 A1
20040117515 Sago et al. Jun 2004 A1
20040240807 Frohlich et al. Dec 2004 A1
20050249477 Parrish Nov 2005 A1
20060148279 German et al. Jul 2006 A1
20060160395 Macauley et al. Jul 2006 A1
20060193591 Rapp et al. Aug 2006 A1
20060228086 Holmberg et al. Oct 2006 A1
20070116411 Benton et al. May 2007 A1
20070176745 Gibson et al. Aug 2007 A1
20070237470 Aronson et al. Oct 2007 A1
20070254529 Pepe et al. Nov 2007 A1
20080090450 Harano et al. Apr 2008 A1
20080090454 Hoath et al. Apr 2008 A1
20080100456 Downie et al. May 2008 A1
20080100467 Downie et al. May 2008 A1
20080175532 Ruckstuhl et al. Jul 2008 A1
20080175550 Coburn et al. Jul 2008 A1
20080200160 Fitzpatrick et al. Aug 2008 A1
20080250122 Zsigmond et al. Oct 2008 A1
20090034911 Murano Feb 2009 A1
20090097846 Kozischek et al. Apr 2009 A1
20090098763 Below et al. Apr 2009 A1
20090166404 German et al. Jul 2009 A1
20090195363 Downie et al. Aug 2009 A1
20090215310 Hoath et al. Aug 2009 A1
20090232455 Nhep Sep 2009 A1
20090262382 Nobutani Oct 2009 A1
20100048064 Peng Feb 2010 A1
20100210135 German et al. Aug 2010 A1
20100211664 Raza et al. Aug 2010 A1
20100211665 Raza et al. Aug 2010 A1
20100211697 Raza et al. Aug 2010 A1
20100215049 Raza et al. Aug 2010 A1
20100303421 He et al. Dec 2010 A1
20110092100 Coffey et al. Apr 2011 A1
20110262077 Anderson et al. Oct 2011 A1
20120003877 Bareel et al. Jan 2012 A1
20120021636 Debenedoctos et al. Jan 2012 A1
20120208401 Petersen Aug 2012 A1
Foreign Referenced Citations (16)
Number Date Country
2 499 803 Apr 2004 CA
102 44 304 Mar 2004 DE
10 2004 033 940 Feb 2006 DE
1 199 586 Apr 2002 EP
1 237 024 Sep 2002 EP
1 467 232 Oct 2004 EP
1 662 287 May 2006 EP
2 236 398 Apr 1991 GB
2 393 549 Mar 2004 GB
10-2008-0015345 Feb 2008 KR
WO 0065696 Nov 2000 WO
WO 0247215 Jun 2002 WO
WO 2007061490 May 2007 WO
WO 2010001400 Jan 2010 WO
WO 2010081186 Jul 2010 WO
WO 2010121639 Oct 2010 WO
Non-Patent Literature Citations (22)
Entry
Avaya's Enhanced SYSTIMAX® iPatch System Enables IT Managers to Optimise Network Efficiency and Cut Downtime, Press Release, May 20, 2003, obtained from http://www.avaya.com/usa/about-avaya/newsroom/news-releases/2003/pr-030520 on Jan. 7, 2009.
Avaya's Enhanced SYSTIMAX® iPatch System Enables IT Managers to Optimise Network Efficiency and Cut Downtime, Press Release, May 9, 2003, obtained from http://www.avaya.com/usa/about-avaya/newsroom/news-releases/2003/pr-030509 on Jan. 7, 2009.
Intelligent patching systems carving out a ‘large’ niche, Cabling Installation & Maintenance, vol. 12, Issue 7, Jul. 2004 (5 pages).
IntelliMAC: The intelligent way to make Moves, Adds or Changes! NORDX/CDT © 2003 (6 pages).
International Search Report and Written Opinion for PCT/US2010/052872 mailed Jan. 12, 2011 (11 pages).
International Search Report and Written Opinion for PCT/US2010/053228 mailed Mar. 28, 2011 (26 pages).
International Search Report and Written Opinion mailed May 23, 2011 in related Application No. PCT/US2011/024650 (17 pages).
International Search Report and Written Opinion mailed Sep. 12, 2011 in related Application No. PCT/US2011/024652 (28 pages).
International Search Report and Written Opinion mailed Sep. 19, 2011 in related Application No. PCT/US2011/024649 (27 pages).
International Search Report and Written Opinion mailed Sep. 22, 2011 in related Application No. PCT/US2011/024653 (25 pages).
International Search Report for International Application No. PCT/US2012/038152 mailed Jan. 2, 2013 (3 pages).
Invitation to Pay Additional Fees with Partial International Search for PCT/US2012/053228 mailed Feb. 14, 2011 (9 pages).
iTRACS Physical Layer Manager FAQ, obtained on Jun. 11, 2008 from http://www.itracs.com/products/physical-layer-manager-faqs.mtml (6pages).
Meredith, L., “Managers missing point of intelligent patching,” Daa Center News, Jun. 21, 2005, obtained Dec. 2, 2008 from http://searchdatacenter.techtarget.com/news/article/0,289142,sid80—gcil099991,00.html.
Ohtsuki, F. et al., “Design of Optical Connectors with ID Modules,” Electronics and Communications in Japan, Part 1, vol. 77, No. 2, pp. 94-105 (Feb. 1994).
Partial International Search and Invitation to Pay Additional Fees mailed Jun. 8, 2011 in related Application No. PCT/US2011/024649 (8 pages).
Partial International Search and Invitation to Pay Additional Fees mailed Jun. 16, 2011 in related Application No. PCT/US2011/024652 (9 pages).
Partial International Search Report and Invitation to Pay Additional Fees mailed May 19, 2011 in related Application No. PCT/US2011/024653 (6 pages).
SYSTIMAX® iPatch System Wins Platinum Network of the Year Award, Press Release, Jan. 30, 2003, obtained from http://www.avaya.com/usa/about-avaya/newsroom/news-releases/2003/pr-030130a on Jan. 7, 2009.
TrueNet; TFP Series Rack Mount Fiber Panels, Spec Sheet; May 2008; 8 pages.
European Search Report for Application No. 12785141.8 mailed Nov. 6, 2014.
How to scan QR codes to download Android apps, http://mobiputing.com/2010/04/how-to-scan-qr-codes-to-download-android-apps/, 5 pages (Apr. 2010).
Related Publications (1)
Number Date Country
20140061297 A1 Mar 2014 US
Provisional Applications (2)
Number Date Country
61487178 May 2011 US
61591576 Jan 2012 US