The invention relates to cutting devices and more particularly to a cutting device that accepts programmable control instructions to produce wooden construction components of various designs.
Such various designs include without limitation the saw-tooth pattern of wooden stair stringers (not shown), or the components of wooden trusses and so on.
It is popular to cut the seat 27 and butt 28 with a saw machine (not shown). To do so in optimized mass-production fashion, preferably the saw machine will have two circular saws stationed at different stations relative the longitudinal run of the conveyance path. Lumber stock is sawed as it is conveyed past the saw stations.
The lumber stock is typically conveyed along the conveyance path in the following fashion. Briefly, a single board is understood needless to say as being elongated between two spaced ends and having two opposite broad sides (eg., indicated by reference character B in
Ordinarily, both circular saws on a saw machine will be adjustable such that their drive spindles can be inclined in various angles in a lateral plane. To cut the seat 27, one saw blade will have to be oriented to spin a plane angled about 20° up from the horizontal. To cut the butt 20, the other saw blade will have to be adjusted about plus 90° relative to the one saw blade, or in sum to about a 110° angle if measured from the same horizon as used to measure the 20° angle. Thus resultant seat 27 and butt 28 intersection is about 90°.
There are various shortcomings with the prior art saw machines. One is that, if the scarf 39 measures nearly two feet in length (−60 cm), then the circular saw for the scarf cut will have a blade that measures at least five feet in diameter (−150 cm). Other shortcomings include without limitation that circular saws are fairly limited to producing straight line cuts.
It is an object of the invention to overcome various shortcomings with the prior art.
A number of additional features and objects will be apparent in connection with the following discussion of preferred embodiments and examples.
There are shown in the drawings certain exemplary embodiments of the invention as presently preferred. It should be understood that the invention is not limited to the embodiments disclosed as examples, and is capable of variation within the scope of the appended claims. In the drawings,
The tool bit 60 comprises for example a wood end mill. In this illustration, it has two helical flutes with serrations on their lands. The tool bit 60 is designed to attack the wooden workpieces not with its tip end as by axial strokes like a drill but with its cylindrical lateral side. The high-speed drive motor 58 preferably operates at something like for example 18,000 rpm.
Workpieces (eg., 34) for the inventive component mill typically comprise at least lumberyard boards commonplace in the construction industry. For example and without limitation, a typical workpiece might comprise a 2×6 board (eg., 5 cm narrow by 15 cm broad when rough) in about any length between a short extreme described below and a long extreme that is determined by the length more or less of the roller table 56. In a preferred embodiment of the roller table 56, it spans about twenty feet (−6 m) in the longitudinal direction. It is preferred to feed one board to the roller table 56 at a time by an infeed conveyor (not shown), such that the board on the roller table 56 lies flat on one broad side (eg., indicated by character B in
In
Hence the board-positioning aspects of the invention include the following. Boards are launched one at a time onto the gravity-feed roller table 56, as by some suitable infeed conveyor (not shown). The roller table 56 is preferably sufficiently long to support all of even the longest boards expected to be workpieces (eg., perhaps twenty feet or −6 m long). The paddle 54 is driven by a combination servomotor and linear actuator package 62 that moves the paddle 54 forwards or backwards relative the direction of advance, and according to control instructions from the control system (not shown). When a board arrives onto the roller table 56, the paddle 54 is elevated slightly to give the board clearance underneath it, and then moves backwards over the under passing board until it, the paddle 54, clears the back end of the board, after which the paddle 54 will set back down to abut against the board's back end. Then the paddle 54 gently pushes the board forward by the back end until the board's front end abuts a nose actuator (not shown).
The main stand 52 comprises a rear pair of legs and front pair of legs. The rear pair of legs carry a proximity detection system 64 for determining a fairly exact position of the board's front end. The control system stores this position as sort of a “home” position, as for reckoning board position for all further operations. The paddle 54 also has a clamping system 66, comprising opposite jaws which move along the lateral front of the paddle 54 reversibly to and away from each other for squeeze and release strokes. Once the home position is determined by the control system, the clamping system 66 is operated to clamp securely onto the back end of the board so that the paddle 54 is capable of not only pushing the board forwards but also pulling it backwards.
The stand 52 furthermore includes a pair of side tracks 72 (only the near one of the side tracks is illustrated) as well as pair of overhead tracks 74, with each left and right ones of the pairs of tracks 72 and 74 extending between the left and right front and rear legs respectively. The side tracks 72 cooperatively carry a traveling carriage 70 (only a near upright arm and foot of the carriage is illustrated, wherein not illustrated are crosspieces of the carriage 70 as well as the far side counterparts to the near-side upright arm and foot since these have been omitted for convenience of illustration). The upright arms of the traveling carriage 70 support a pair of vertically-stacked pinch rollers 80 between them. These are the input pinch rollers 80, and in contrast to an output pair of pinch rollers 82, which extend between the stand 52's front legs. The pairs of pinch rollers 80 and 82 are covered in resilient sleeves of some suitable polymeric- or resin-based material for good frictional grabbing onto any workpiece which is fed into the mouth or vertical gap between either of the pairs 80 or 82 of the vertically-stacked pinch rollers. Preferably the gap is adjustable in order accept boards of different thicknesses. For each pair of pinch rollers 80 and 82, preferably the elevation for the lower roller is fixed such that its uppermost arch height is co-planar with the plane of conveyance. In contrast, preferably the elevations for the upper rollers are adjustable so that the vertical gap therebetween is adjustable. However, generally during a given job, the milling operations will process board after board in succession for long periods of time, and high numbers of count, such that gap adjustment between the pinch rollers 80/82 is a fairly seldom event.
Preferably the longitudinal position of the output pinch rollers 82 is fixed, such as being stationary between the stand 52's front legs. In contrast, preferably the longitudinal position of the input pinch rollers 80 is adjustable, in fact as carried in a tandem between the arms of the traveling carriage 70. A second combination servomotor and linear actuator package 84 is arranged to drive the traveling carriage 70 backwards and forwards relative the direction of advance. Third and fourth servomotors 86 and 88 are provided to drive the input and output pinch rollers 80 and 82 respectively. Each pair of pinch rollers 80 and 82 are driven counter-rotationally to each other at all times (except of course when held stopped). The pairs of pinch rollers 80 and 82 can be driven at varying speed to accelerate and decelerate the driven workpiece, as well as are instantly reversible in order to change direction of the workpiece from between forwards and backwards or vice versa.
In a preferred embodiment, the furthest that the traveling carriage 70 can be backed away from the output rollers 82 will result in a thirty-nine inch (1 m) span between centers of the input and output pinch rollers 80 and 82. In this furthest back position, the input pinch rollers 80 are about six inches (−15 cm) away from the roller table 56's nose actuator (not shown but, eg., where the board's front end is stopped when originally introduced to the roller table 56). This is a span of six inches (−15 cm) of free air and it corresponds to at least one reckoning of the short extreme for workpieces. More practically however, the short extreme might be some fractional percentage greater than that span.
To turn attention to the overhead tracks 74, they support a traveling gantry 90 which is movable between forwards and backwards directions by another combination servo motor and linear actuator package 92. The gantry 90 carries a traveling slide 94 that is driven laterally left or right across the gantry 90 by an additional combination servo motor and linear actuator package 96. The traveling slide 94 provides a mounting surface for the high-speed tool-bit motor 58. The high-speed tool-bit motor 58 is oriented so that its drive shaft extends straight down along a vertical axis, terminating in a chuck which allows exchange of different tool bits (eg., 60) as desired. Unlike a drill press, there is no provision with the invention to raise or lower the chuck, at least by any significant measure. As stated above, the tool bit 60 is designed to attack workpieces with its lateral cylindrical side, it being dually fluted so it has spiral lands which are serrated. But given the foregoing gantry 90 and slide 94, it is possible to control the X and Y positions of the tool bit 60 in the plane of conveyance by the combination servo motor and linear actuator packages 92 and 96.
In summary, the inventive mill 50 can produce innumerable designs in workpieces. For example, the butt-seat-scarf design 38-37-39 of
Although the description of the above process implicates only two (86 and 96) of the six servo motors (62, 84, 86, 88, 92 and 96), although preferably a third one (eg., 62) is used as well, it being the one that drives the paddle 54. That is, while the input pinch rollers 80 are relied upon to provide fine control over the board's ever-changing longitudinal position, preferably the paddle 54 retains its grip on the back end of the board for positional stability. To do so, the paddle 54 has to travel to and fro with the back end of the board as the input pinch rollers 80 thrust the board forwards and backwards so that the laterally-traversing tool bit 60 traces the correct lines. Hence the paddle 54 prevents the board from tipping or dipping, or the back end from kicking out a little to the left or right. But again, the input pinch rollers 80 are relied upon for the most part to provide fine control over longitudinal position. One advantage of combining pinch rollers 80 and 82 with servo motors 86 and 88 respectively includes that the pinch rollers 80 and 82 can be reversed virtually instantaneously, with almost no apparent hesitancy for a decelerate-stop-accelerate cycle between (i) the instant when one constant speed operation terminates and (ii) the next instant when a succeeding constant speed operation takes over, even if the workpiece is being thrust in the opposite direction. That way, the inventive mill 10 can produce very sharp corners.
The inventive mill 10 can also produce half circles in the ends of boards. Again, the tool bit 60 is driven to traverse laterally at constant speed through the lane of transit of the board. The input pinch rollers 80 manipulate the front end of the board originally so that it is at first pushed past the tool bit 60's traverse path, and then pulled backwards as the tool bit 60 hits the board's first side, pulling the board gradually slower to a stop and then accelerating the board forwards so that, by this means, a smooth half circle is formed on the front end of the board.
As soon as the front end's work is completed, the input pinch rollers 80 might “hand-off” the board to the output pinch rollers 82, which would discharge the board somewhere, as onto a discharge conveyor (not shown). Alternatively, the input and output rollers 80 and 82 can work together and allow the mill 10 to reverse direction and cut a new back end for the workpiece, after which the output pinch rollers 82 can eject the workpiece. In this way, stair stringers can be produced. That is, the input pinch rollers 80 alone (or that is, without assistance from the output pinch rollers 82) manipulate the front end of the board for producing the top step and butt lines, and then thereafter progress to shaping the intermediate step and riser lines in a process which eventually requires the output pinch rollers 82 to work cooperatively with the input pinch rollers 80, ultimately until the board passes past the input pinch rollers 80 such that the output pinch rollers 84 have sole control for completing the job, including production of the bottom seat and butt lines.
Throughput aside (ie., feed rates for saws are indeed faster), the invention provides several other advantages over saw machines. The inventive mill 50 is more accurate. There is no counterpart problem to the problem of deflection of saw blades. Additionally, the inventive mill 50 is not confined to the “two blades, two cuts,” “three blades, three cuts” (and so on) equation that saw machines are confined to. Also, the inventive mill 50 can produce curved lines.
The inventive mill 50 is compact. It has a smaller “foot print” in a factory, which means that it requires a whole lot less floor space. The inventive mill 50 minimizes waste. The scraps are just small odds and ends. Scraps aside, it only otherwise outputs shavings—and not sawdust—and, in contrast to sawdust, there is a good market for shavings.
The inventive mill 50 is quieter. On a comparative basis, the inventive mill 50 might produce about an 81 db work environment, whereas a saw machine will produce about a 94 db work environment. That's because here are no big sixteen inch (−40 cm) and thirty inch (−75 cm) diameter saw blades whirring about at 3,600 rpm. For the same reasons, the inventive mill 50 is safer.
Moreover, the inventive mill 50 affords economies over saw machines. At the time of this writing, a replacement tool bit 60 costs about US$12.00. In contrast, a replacement sixteen inch (−40 cm) diameter saw blade costs about US$170.00, while a replacement for thirty inch (−75 cm) diameter saw blade costs about US$500.00.
The invention having been disclosed in connection with the foregoing variations and examples, additional variations will now be apparent to persons skilled in the art. The invention is not intended to be limited to the variations specifically mentioned, and accordingly reference should be made to the appended claims rather than the foregoing discussion of preferred examples, to assess the scope of the invention in which exclusive rights are claimed.
This application claims the benefit of U.S. Provisional Application No. 60/604,766, filed Aug. 26, 2004, the disclosure of which is incorporated herein by this reference.
Number | Name | Date | Kind |
---|---|---|---|
5730195 | Riesmeier et al. | Mar 1998 | A |
5915429 | Pelletier et al. | Jun 1999 | A |
6817392 | Phillips | Nov 2004 | B2 |
6923227 | Robitaille | Aug 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
60604766 | Aug 2004 | US |