Component module for a reduced pressure treatment system

Information

  • Patent Grant
  • 7876546
  • Patent Number
    7,876,546
  • Date Filed
    Tuesday, September 18, 2007
    17 years ago
  • Date Issued
    Tuesday, January 25, 2011
    14 years ago
Abstract
A connectable component module for a reduced pressure treatment system is provided. The module includes a housing with a rim, a recessed end surface, and an extension. A mounting assembly is fixed to the recessed end surface and includes extendable latches. The latches include a fastener bar that is flush with the rim when the latches are not extended. The module also generally includes a control system contained within the housing. The control system has a communication controller, a communication plug coupled to the communication controller and protruding through an aperture in the mounting assembly and recessed end, and a communication port coupled to the communication controller and exposed to an aperture in the extension.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to tissue treatment systems and in particular to a component module for a reduced pressure treatment system.


2. Description of Related Art


Clinical studies and practice have shown that providing a reduced pressure in proximity to a tissue site augments and accelerates the growth of new tissue at the tissue site. The applications of this phenomenon are numerous, but application of reduced pressure has been particularly successful in treating wounds. This treatment (frequently referred to in the medical community as “negative pressure wound therapy,” “reduced pressure therapy,” or “vacuum therapy”) provides a number of benefits, including faster healing and increased formulation of granulation tissue. Typically, reduced pressure is applied to tissue through a porous pad or other manifold unit. The porous pad contains cells or pores that are capable of distributing reduced pressure to the tissue and channeling fluids that are drawn from the tissue. The porous pad often is incorporated into a dressing having other components that facilitate treatment.


While existing reduced pressure treatment systems have enjoyed wide commercial and medical success, it would be advantageous to expand the functionality of these systems to provide a more comprehensive treatment regimen.


A need exists, therefore, for an expandable reduced pressure treatment system that allows component modules to be combined with the expandable reduced pressure treatment system and other modules to provide additional treatment features and options.


BRIEF SUMMARY OF THE INVENTION

The limitations of conventional reduced pressure treatment systems are improved by the systems and methods of the present invention. A connectable component module for a reduced pressure treatment system is provided in accordance with the principles of the present invention. The module generally includes a housing having a rim, a recessed end surface, and an extension. A mounting assembly is fixed to the recessed end surface and includes an extendable first latch and an extendable second latch. The first latch and the second latch each include a fastener bar that is substantially flush with the rim when the first latch and the second latch are not extended. A first aperture extends through the mounting assembly and recessed end surface, and a second aperture extends through the extension. The module also generally includes a control system contained within the housing. The control system has a communication controller, such as a controller area network controller, a communication plug coupled to the communication controller and protruding through the first aperture, and a communication port coupled to the communication controller and exposed to the second aperture.


Also in accordance with the principles of the present invention, an expandable reduced pressure treatment system is provided. The system includes a control system having a treatment controller and a communication controller, such as a controller area network controller, a communication port coupled to the communication controller, and a reduced pressure source coupled to the treatment controller. A manifold unit is in fluid communication with the reduced pressure source. A removable component module is coupled to the control system through the communication port.


Other objects, features, and advantages of the present invention will become apparent with reference to the drawings and detailed description that follow.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic diagram of a reduced pressure treatment system according to an embodiment of the present invention;



FIG. 2 is a block diagram of an exemplary control system of a reduced pressure control unit according to an embodiment of the present invention;



FIG. 3 illustrates a front perspective view of one embodiment of a control unit that houses the control system of FIG. 2;



FIG. 4 illustrates an enlarged partial cross-section view of a control unit similar to the control unit of FIG. 3 along line 4-4;



FIG. 5 illustrates an enlarged partial cross-section view of a control unit similar to the control unit of FIG. 3 along line 5-5;



FIG. 6 illustrates a perspective view of a first end of a component module according to an embodiment of the present invention;



FIG. 7 illustrates a perspective view of a second end of the component module of FIG. 6;



FIG. 8 illustrates a perspective view of the first end of the component module of FIG. 6 with extended latches;



FIG. 9 illustrates a perspective view of the second end of the component module of FIG. 6 with extended latches; and



FIG. 10 illustrates an enlarged perspective view of a communication plug of the component module of FIG. 6.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific preferred embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, and electrical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the invention, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.


In the context of this specification, the term “reduced pressure” generally refers to a pressure less than the ambient pressure at a tissue site that is being subjected to treatment. In most cases, this reduced pressure will be less than the atmospheric pressure of the location at which the patient is located. Although the terms “vacuum” and “negative pressure” may be used to describe the pressure applied to the tissue site, the actual pressure applied to the tissue site may be significantly less than the pressure normally associated with a complete vacuum. Consistent with this nomenclature, an increase in reduced pressure or vacuum pressure refers to a relative reduction of absolute pressure, while a decrease in reduced pressure or vacuum pressure refers to a relative increase of absolute pressure.



FIG. 1 is a schematic diagram of a reduced pressure treatment system 100 according to the present invention. The reduced pressure treatment system 100 comprises a dressing 110, which generally includes a manifold unit that is applied to, or within, a tissue site 120 for treatment. The dressing 110 is fluidly connected to a reduced pressure source 120 by a conduit 130. In certain embodiments, the reduced pressure source 120 may be integrated with a reduced pressure control unit 140, as described below, and the reduced pressure treatment system 100 may also include a canister 150 for collecting liquid and other non-gaseous exudates extracted from the tissue site.



FIG. 2 is a block diagram of an exemplary control system 200 of the reduced pressure control unit 140. The control system 200 includes a treatment controller 202 and a graphical user interface (GUI) controller 204. The treatment controller 202 may include one or more processors 206 that execute software 208. The processor(s) 206 may be in communication with a memory 210 and input/output (I/O) unit 212. The software 208 may be configured to control a number of different operations of the reduced pressure treatment system 100, such as controlling tissue treatment, monitoring sensors and generating alarms and performing communications with systems and devices external to the control unit 140 in conjunction with the I/O unit 212 and GUI controller 204. It should be understood that the software 208 may further be configured to perform different and/or other functions.


The I/O unit 212 may enable the control system 200 to communicate with external modules, systems, and networks, for example. In one embodiment, the I/O unit 212 may operate in conjunction with a controller area network (CAN) or modified CAN, as described further herein. The processor 206 may further execute software to receive and process CAN data being received via the I/O unit 212.


A storage unit 214, such as a disk drive or storage medium, may be in communication with the treatment controller 202. Databases 216a-216n (collectively 216) may be used to store treatment or other information. The databases may be configured as relational databases or otherwise. Other information, such as software, may be stored on the storage unit 214.


The GUI controller 204 may include one or more processors 218 that execute software 220. The software 220 may be configured to generate a graphical user interface with which an operator, patient, technician, or other user may interface to control the system 100. The processor 218 may be in communication with a memory 222, I/O unit 224, and display driver 226. The memory 222 may store current parameters associated with displaying the GUI. For example, if the GUI is being used to display a particular screen shot, the screen shot may be stored in the memory 222. The I/O unit 224 may be used to interface with the treatment controller 202 and other devices.


A display and touch screen assembly 228 may be connected to the GUI controller 204 and be used to display the GUI generated by the GUI controller 204. The screen 228 enables an operator to merely touch the screen with his or her finger or stylus, as understood in the art, to interface with the GUI. By providing a touch screen, inclusion of a keyboard or keypad may be avoided. However, it should be understood that an external keyboard or keypad may be utilized in accordance with the principles of the present invention. A backlight inverter 230 may be connected to the GUI controller 204 and screen assembly 228. Alternatively, the backlight inverter 230 may be incorporated into the screen assembly 228. In operation, the backlight inverter may enable the screen assembly 228 to be inverted for different ambient lighting conditions. For example, a user of the system 100 may be treating a patient at night and use backlight inverter 230 to selectively turn on the backlight of the screen assembly 228 so that he or she can see the GUI better. Alternatively, the backlight inverter may be used to turn the light on the screen assembly 228 off at night to allow a patient to sleep in a darker environment.


A speaker 232 may be in communication with the GUI controller 204. The speaker may be used to provide sound notification to the user when action is required, or when an alarm condition has occurred.


A unified display interface (UDI) 234 may be utilized in accordance with the principles of the present invention. The UDI 234 may be used as a digital video interface to assist with video presentation. In addition, a number of communication ports 236 may be provided to enable a user to connect external devices to the control system 200. For example, the input ports 236 may include a CAN port 236a to enable the control system 200 to interface with other treatment systems, memory card port 236b to enable a user to transport data from one device to another, universal serial bus (USB) port to enable an operator to connect devices to the control system 200, such as printers, and Infrared Data Association (IrDA) port 236d to enable a user to interface other devices configured with an IrDA port to the system. It should be understood that other communication ports currently available or available in the future may be utilized in accordance with the principles of the present invention. For example, a communication port for connecting to a local or wide area network may be provided to enable a user to connect the control system 200 to a network.


A controller area network is a communication bus that was originally developed for automotive applications in the early 1980s. The CAN protocol was internationally standardized in 1993 as ISO 11898-1 and includes a data link of the seven layer IOS/OSI reference model. CAN, which is now available from a large number of semiconductor manufacturers in hardware form, provides two communication services: (i) sending a message (data frame transmission) and (ii) requesting a message (remote transmission request, RTR). All other services, such as error signaling and automatic re-transmission of erroneous frames, are user-transparent, which means that the CAN circuitry automatically performs these services without the need for specific programming.


A CAN controller is comparable to a printer or typewriter. Language, grammar, and vocabulary is defined for a particular use. CAN provides a multi-master hierarchy that allows for building of intelligent and redundant systems. The use of CAN with the tissue treatment system enables additional component modules, as described further herein, to operate in conjunction with the system. The component modules may operate as nodes, where each node on the CAN receives messages and decides whether a message is relevant. Data integrity is maintained because all devices in the system receive the same information. CAN also provides sophisticated error detection mechanisms and re-transmission of faulty messages.


In one embodiment, the language, grammar, and vocabulary may be customized for the system so that only devices that have the same language, grammar, and vocabulary can communicate with the system. By operating with such a customized or proprietary system, control over the quality of modules and devices that interface with the system may be maintained.


Referring still to FIG. 2, in operation, the communication ports 236 may be utilized to enable users to import or export data to and from the control system 200. For example, patient information, treatment information, and images associated with patient wounds may be communicated over a communication port 236. Other information, including software updates, may be communicated over one or more communication ports 236.


A lithium-ion (Li-Ion) battery 238 and DC socket 241 may be connected to the therapy controller 202. An external adapter (not shown) may be connected to a wall socket (not shown) to convert AC power to DC power for supplying DC power to the treatment controller 202 and other electrical components within the control system 200. If the external power should fail, then the Li-Ion battery 238 powers the control system 200. Alternatively, should the control system 200 be used in a location without power or be used in reliance on battery power, the Li-Ion battery 238 provides power to the control system 200.


A manifold controller 240 may be connected to the treatment controller 202 and be used to control various devices of the dressing 110 and receive feedback information from sensors disposed on the dressing 110. The manifold controller 240 may communicate with the treatment controller 202 while performing treatment. The manifold controller 240 may include analog and digital circuitry (not shown) for communicating with the various devices on the dressing 110. In one embodiment, the manifold controller 240 may include one or more digital-to-analog (D/A) and analog-to-digital (A/D) converters (not shown) to enable digital and analog signals to be passed between the various devices (e.g., sensors) on the dressing 110. Still yet, one or more amplifiers (not shown) may be included with the manifold controller 240.


As shown, a number of transducers (i.e., sensors) and devices may be connected to the manifold controller 240. A reduced pressure source, such as a vacuum pump 242, may be connected to the manifold controller 240. A valve 244 and pump valve 246 may be connected to the manifold controller 240 and used to control air being moved within the manifold unit. A number of sensors may also be connected to the manifold controller 240, including a flow sensor 248, ambient pressure sensor 250, feedback pressure sensor 252, and pump pressure sensor 254. These sensors may be conventional airflow and pressure sensors as understood in the art. A canister release button LED 256 may also be connected to the manifold controller 240.


In operation, the manifold controller 240 may communicate signals between the treatment controller 202 and devices coupled to the dressing 110. In communicating the signals, the manifold controller 240 may condition the signals by converting the signals between analog and digital signals, amplify signals and amplify drive signals for the vacuum pump 242 and valves 244 and 246. In one embodiment, the manifold controller 240 includes a processor (not shown) to perform local processing and control to offload some of the processing and control the processor 206 of the treatment controller 202.



FIG. 3 is a front perspective view of one embodiment of a control unit 300 that houses the control system 200. As FIG. 3 illustrates, the control unit 300 includes a housing 305 having a shoulder 310 and an extension 315. The extension 315 includes an end surface 320, a first ridge 325, and a second ridge 330. The second ridge is generally located on the end surface 320 substantially opposite the first ridge 325. The general steps of the control unit 300 illustrated in FIG. 3 is an elliptic cylinder, but any geometric configuration that provides sufficient interior capacity for the control system 200 and the reduced pressure source 120 is acceptable. The extension 315 includes an aperture 335, through which the CAN port 236a is exposed to the exterior of the end surface 320.



FIG. 4 is an enlarged partial cross-section view of a control unit similar to the control unit 300 along line 4-4. In particular, FIG. 4 illustrates a partial housing 405 having a shoulder 410 and an extension 415. The extension 415 includes an end surface 420, a first ridge 425, and a second ridge 430 substantially opposite the first ridge 425. An aperture 435 extends from the exterior of the end surface 420 to the interior of the housing 405.



FIG. 5 is an enlarged partial cross-section view of a control unit similar to the control unit 300 along line 5-5. In particular, FIG. 5 illustrates a partial housing 505 having a shoulder 510 and an extension 515 with an end surface 520.


In any embodiment of the control unit, the housing may be manufactured as separate components and subsequently assembled, or may be manufactured as a single unit.



FIG. 6 is a perspective view of a first end of an embodiment of a component module 600. The component module 600 may include a variety of equipment that is useful for tissue treatment, including without limitation a wound camera, cyclic/next generation skin stretching, capacitive volume and wound contour mapping, wound bed pH monitoring, wound warming/climate control, wound moisture and temperature monitoring, electrical stimulation, UV therapy, and wound healing marker measurement. The component module 600 typically includes a control system similar to the control system 200 described above. In particular, the component module 600 includes a CAN controller (not shown) and a CAN port (see FIG. 7). The component module 600 also includes a CAN plug 610, which protrudes through an aperture 615 and interfaces with the CAN port 236a of the control system 200. As FIG. 6 illustrates, the component module 600 includes a housing 620 having a rim 625, a recessed end surface 630, and notches 632. The component module 600 further includes a mounting assembly 635 fixed to the recessed end surface 630. The mounting assembly 635 includes a first latch 640 and a second latch 645 that are positioned within the notches 632. The first latch and the second latch each have a fastener bar 650 that is substantially flush with the rim 625 in the configuration illustrated in FIG. 6. The fastener bars 650 are configured to overlap the ridges on other modules or on a control unit, such as ridges 425 and 430 illustrated in FIG. 4.



FIG. 7 is a perspective view of a second end of the component module 600 illustrated in FIG. 6. This perspective view illustrates a configuration that is substantially similar to the configuration of the control unit 300 described above with reference to FIGS. 3-5, so that additional component modules may be connected in a chain or series as needed to expand the functionality of a reduced pressure treatment system. In particular, the component module 600 includes the outer surface 620 having a shoulder 705, an extension 710 fixed to the shoulder, and an end surface 715. The extension 710 further includes a first ridge 720 and a second ridge 725, which is generally located opposite the first ridge 720, and an aperture 730, through which a CAN port may be exposed to the exterior of the end surface 715.


Referring to FIG. 8 for illustration, the first latch 630 and the second latch 635 may be extended to mount the component module 600 to a control unit or another component module. In alternate embodiments, the first latch 630, the second latch 635, or both may be rotated about a pin so that only the fastener bar of the latch is extended. Extending the mounting assembly 625 allows the fastener bars 650 to be placed over the ridges on another component module or control unit, and then collapsed onto the extension to secure the component module 600.



FIG. 9 illustrates the second end of the component module 600 shown in FIG. 7, with the first latch 630 extended.



FIG. 10 is an enlarged perspective view of an embodiment of a CAN plug 610. In this embodiment, the CAN plug 610 consists of a plurality of pin connectors that align with corresponding plate connectors in a CAN port. Each pin connector may be wired as desired to a control system within a component module.


It should be apparent from the foregoing that an invention having significant advantages has been provided. While the invention is shown in only a few of its forms, it is not so limited and is susceptible to various changes and modifications without departing from the spirit thereof.

Claims
  • 1. A reduced pressure treatment component module comprising: a substantially elliptic cylindrical housing having a rim, a recessed end surface, and an extension;a mounting assembly fixed to the recessed end surface, the mounting assembly comprising an extendable first latch and an extendable second latch, wherein the first latch and the second latch each comprise a fastener bar that is substantially flush with the rim when the first latch and the second latch are not extended;a first aperture through the mounting assembly and recessed end surface;a second aperture through the extension;a control system contained within the housing, the control system having a communication controller;a communication plug coupled to the communication controller and protruding through the first aperture; anda communication port coupled to the communication controller and exposed to the second aperture.
  • 2. The module according to claim 1, wherein the communication controller is a controller area network controller.
  • 3. The module according to claim 1, wherein the extension comprises a first ridge and a second ridge opposite the first ridge.
  • 4. The module according to claim 1, wherein the second latch pivots about an axis to extend the fastener bar.
  • 5. A reduced pressure treatment system, comprising: a control system having a treatment controller and a communication controller;a communication port coupled to the communication controller;a reduced pressure source coupled to the treatment controller;a manifold unit in fluid communication with the reduced pressure source;a removable component module coupled to the control system through the communication port;a first housing that encloses the control system, the first housing comprising a shoulder and an extension surface;a second housing that enclosed the component module, the second housing comprising a rim and a recessed end surface;a mounting assembly having a latch;a first aperture through the mounting assembly and recessed end surface; anda second aperture through which the communication port is exposed to the extension surface, the second aperture aligned with the first aperture;wherein the recessed end surface receives the extension surface and the latch fastens to the extension surface to secure the second housing to the first housing.
  • 6. The system of claim 5, wherein the extension surface comprises a ridge and the latch fastens to the ridge to secure the second housing to the first housing.
  • 7. The system of claim 5, wherein the extension surface comprises a ridge and the latch comprises a fastener bar that overlaps the ridge to secure the second housing to the first housing.
  • 8. The system of claim 5, wherein the extension surface comprises a first ridge and a second ridge, and the mounting assembly comprises a first fastener bar and a second fastener bar that overlap the first right and the second ridge to secure the second housing to the first housing.
  • 9. The system of claim 5, wherein the first housing and second housing are substantially elliptic cylinders.
  • 10. A reduced pressure treatment system, comprising: a control system having a treatment controller and a communication controller;a communication port coupled to the communication controller;a reduced pressure source coupled to the treatment controller;a manifold unit in fluid communication with the reduced pressure source; anda removable component module coupled to the control system through the communication port;wherein the communication controller is a controller area network controller.
  • 11. A reduced pressure treatment system, comprising: a control system having a treatment controller and a communication controller;a communication port coupled to the communication controller;a reduced pressure source coupled to the treatment controller;a manifold unit in fluid communication with the reduced pressure source; anda removable component module coupled to the control system through the communication port;wherein the component module is a wound camera.
  • 12. A reduced pressure treatment system, comprising: a control system having a treatment controller and a communication controller;a communication port coupled to the communication controller;a reduced pressure source coupled to the treatment controller;a manifold unit in fluid communication with the reduced pressure source; anda removable component module coupled to the control system through the communication port;wherein the component module is a cyclic skin stretcher.
  • 13. A reduced pressure treatment system, comprising: a control system having a treatment controller and a communication controller;a communication port coupled to the communication controller;a reduced pressure source coupled to the treatment controller;a manifold unit in fluid communication with the reduced pressure source; anda removable component module coupled to the control system through the communication port;wherein the component module is a capacitive volume and wound contour mapping module.
  • 14. A reduced pressure treatment system, comprising: a control system having a treatment controller and a communication controller;a communication port coupled to the communication controller;a reduced pressure source coupled to the treatment controller;a manifold unit in fluid communication with the reduced pressure source; anda removable component module coupled to the control system through the communication port;wherein the component module is a wound bed pH monitor.
  • 15. A reduced pressure treatment system, comprising: a control system having a treatment controller and a communication controller;a communication port coupled to the communication controller;a reduced pressure source coupled to the treatment controller;a manifold unit in fluid communication with the reduced pressure source; anda removable component module coupled to the control system through the communication port;wherein the component module is a wound climate control module.
  • 16. A reduced pressure treatment system, comprising: a control system having a treatment controller and a communication controller;a communication port coupled to the communication controller;a reduced pressure source coupled to the treatment controller;a manifold unit in fluid communication with the reduced pressure source; anda removable component module coupled to the control system through the communication port;wherein the component module is a wound moisture and temperature monitor.
  • 17. A reduced pressure treatment system, comprising: a control system having a treatment controller and a communication controller;a communication port coupled to the communication controller;a reduced pressure source coupled to the treatment controller;a manifold unit in fluid communication with the reduced pressure source; anda removable component module coupled to the control system through the communication port;wherein the component module is an electrical stimulation module.
  • 18. A reduced pressure treatment system, comprising: a control system having a treatment controller and a communication controller;a communication port coupled to the communication controller;a reduced pressure source coupled to the treatment controller;a manifold unit in fluid communication with the reduced pressure source; anda removable component module coupled to the control system through the communication port;wherein the component module is an ultraviolet therapy module.
  • 19. A reduced pressure treatment system, comprising: a control system having a treatment controller and a communication controller;a communication port coupled to the communication controller;a reduced pressure source coupled to the treatment controller;a manifold unit in fluid communication with the reduced pressure source; anda removable component module coupled to the control system through the communication port;wherein the component module is a wound healing marker measurement module.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/845,993, filed Sep. 19, 2006, which is hereby incorporated by reference.

US Referenced Citations (124)
Number Name Date Kind
1355846 Rannells Oct 1920 A
2547758 Keeling Apr 1951 A
2632443 Lesher Mar 1953 A
2682873 Evans et al. Jul 1954 A
2910763 Lauterbach Nov 1959 A
2969057 Simmons Jan 1961 A
3066672 Crosby, Jr. et al. Dec 1962 A
3367332 Groves Feb 1968 A
3520300 Flower, Jr. Jul 1970 A
3568675 Harvey Mar 1971 A
3648692 Wheeler Mar 1972 A
3682180 McFarlane Aug 1972 A
3826254 Mellor Jul 1974 A
4018908 Gross Apr 1977 A
4080970 Miller Mar 1978 A
4096853 Weigand Jun 1978 A
4139004 Gonzalez, Jr. Feb 1979 A
4165748 Johnson Aug 1979 A
4184510 Murry et al. Jan 1980 A
4233969 Lock et al. Nov 1980 A
4245630 Lloyd et al. Jan 1981 A
4256109 Nichols Mar 1981 A
4261363 Russo Apr 1981 A
4275721 Olson Jun 1981 A
4284079 Adair Aug 1981 A
4297995 Golub Nov 1981 A
4333468 Geist Jun 1982 A
4338945 Kosugi et al. Jul 1982 A
4373519 Errede et al. Feb 1983 A
4382441 Svedman May 1983 A
4392853 Muto Jul 1983 A
4392858 George et al. Jul 1983 A
4419097 Rowland Dec 1983 A
4465485 Kashmer et al. Aug 1984 A
4475909 Eisenberg Oct 1984 A
4480638 Schmid Nov 1984 A
4525166 Leclerc Jun 1985 A
4525374 Vaillancourt Jun 1985 A
4540412 Van Overloop Sep 1985 A
4543100 Brodsky Sep 1985 A
4548202 Duncan Oct 1985 A
4551139 Plaas et al. Nov 1985 A
4569348 Hasslinger Feb 1986 A
4583546 Garde Apr 1986 A
4605399 Weston et al. Aug 1986 A
4608041 Nielson Aug 1986 A
4640688 Hauser Feb 1987 A
4655754 Richmond et al. Apr 1987 A
4664662 Webster May 1987 A
4673272 Suzuki et al. Jun 1987 A
4710165 McNeil et al. Dec 1987 A
4733659 Edenbaum et al. Mar 1988 A
4743232 Kruger May 1988 A
4758220 Sundblom et al. Jul 1988 A
4787888 Fox Nov 1988 A
4826494 Richmond et al. May 1989 A
4838883 Matsuura Jun 1989 A
4840187 Brazier Jun 1989 A
4863449 Therriault et al. Sep 1989 A
4872450 Austad Oct 1989 A
4878901 Sachse Nov 1989 A
4897081 Poirier et al. Jan 1990 A
4906233 Moriuchi et al. Mar 1990 A
4906240 Reed et al. Mar 1990 A
4919654 Kalt et al. Apr 1990 A
4941882 Ward et al. Jul 1990 A
4953565 Tachibana et al. Sep 1990 A
4969880 Zamierowski Nov 1990 A
4985019 Michelson Jan 1991 A
5037397 Kalt et al. Aug 1991 A
5086170 Luheshi et al. Feb 1992 A
5092858 Benson et al. Mar 1992 A
5100396 Zamierowski Mar 1992 A
5134994 Say Aug 1992 A
5149331 Ferdman et al. Sep 1992 A
5167613 Karami et al. Dec 1992 A
5176663 Svedman et al. Jan 1993 A
5215522 Page et al. Jun 1993 A
5232453 Plass et al. Aug 1993 A
5261893 Zamierowski Nov 1993 A
5278100 Doan et al. Jan 1994 A
5279550 Habib et al. Jan 1994 A
5298015 Komatsuzaki et al. Mar 1994 A
5310524 Campbell et al. May 1994 A
5342376 Ruff Aug 1994 A
5344415 DeBusk et al. Sep 1994 A
5358494 Svedman Oct 1994 A
5407310 Kassouni Apr 1995 A
5437622 Carion Aug 1995 A
5437651 Todd et al. Aug 1995 A
5527293 Zamierowski Jun 1996 A
5549584 Gross Aug 1996 A
5556375 Ewall Sep 1996 A
5607388 Ewall Mar 1997 A
5636643 Argenta et al. Jun 1997 A
5645081 Argenta et al. Jul 1997 A
5749842 Cheong et al. May 1998 A
5752688 Campbell et al. May 1998 A
5862803 Besson et al. Jan 1999 A
5986163 Augustine Nov 1999 A
6071267 Zamierowski Jun 2000 A
6134003 Tearney et al. Oct 2000 A
6135116 Vogel et al. Oct 2000 A
6241747 Ruff Jun 2001 B1
6287316 Agarwal et al. Sep 2001 B1
6292866 Zaiki et al. Sep 2001 B1
6345623 Heaton et al. Feb 2002 B1
6447537 Hartman Sep 2002 B1
6458109 Henley et al. Oct 2002 B1
6488643 Tumey et al. Dec 2002 B1
6493568 Bell et al. Dec 2002 B1
6553998 Heaton et al. Apr 2003 B2
6733537 Fields et al. May 2004 B1
6814079 Heaton et al. Nov 2004 B2
7004915 Boynton et al. Feb 2006 B2
7198046 Argenta et al. Apr 2007 B1
20020077661 Saadat Jun 2002 A1
20020095198 Whitebook et al. Jul 2002 A1
20020115951 Norstrem et al. Aug 2002 A1
20020120185 Johnson Aug 2002 A1
20020143286 Tumey Oct 2002 A1
20040138632 Bemis et al. Jul 2004 A1
20040143677 Novak Jul 2004 A1
20060195625 Hesse Aug 2006 A1
Foreign Referenced Citations (30)
Number Date Country
550575 Aug 1982 AU
745271 Apr 1999 AU
755496 Feb 2002 AU
2005436 Jun 1990 CA
26 40 413 Mar 1978 DE
43 06 478 Sep 1994 DE
295 04 378 Oct 1995 DE
0100148 Feb 1984 EP
0117632 Sep 1984 EP
0161865 Nov 1985 EP
0358302 Mar 1990 EP
1018967 Aug 2004 EP
692578 Jun 1953 GB
2 195 255 Apr 1988 GB
2 197 789 Jun 1988 GB
2 220 357 Jan 1990 GB
2 235 877 Mar 1991 GB
2 333 965 Aug 1999 GB
2 329 127 Aug 2000 GB
4129536 Apr 1992 JP
71559 Apr 2002 SG
WO 8002182 Oct 1980 WO
WO 8704626 Aug 1987 WO
WO 9010424 Sep 1990 WO
WO 9309727 May 1993 WO
WO 9420041 Sep 1994 WO
WO 9421312 Sep 1994 WO
WO 9605873 Feb 1996 WO
WO 9718007 May 1997 WO
WO 9913793 Mar 1999 WO
Related Publications (1)
Number Date Country
20080071216 A1 Mar 2008 US
Provisional Applications (1)
Number Date Country
60845993 Sep 2006 US