The present invention relates to component structures and more particularly to component structures to form fan blades in gas turbine engines.
Referring to
The gas turbine engine 10 works in a conventional manner so that air entering the intake 11 is accelerated by the fan 12 which produce two air flows: a first air flow into the intermediate pressure compressor 13 and a second air flow which provides propulsive thrust. The intermediate pressure compressor compresses the air flow directed into it before delivering that air to the high pressure compressor 14 where further compression takes place.
The compressed air exhausted from the high pressure compressor 14 is directed into the combustion equipment 15 where it is mixed with fuel and the mixture combusted. The resultant hot combustion products then expand through, and thereby drive, the high, intermediate and low pressure turbines 16, 17 and 18 before being exhausted through the nozzle 19 to provide additional propulsive thrust. The high, intermediate and low pressure turbine 16, 17 and 18 respectively drive the high and intermediate pressure compressors 14 and 13, and the fan 12 by suitable interconnecting shafts which are concentric about the axis of rotation X-X.
It will be appreciated that fan blades require a component structure which provides good mechanical strength (in order to resist impact loads) as well as meeting operational requirements (for example with regard to centrifugal and gas loading). Previously, it has been known to provide fan blades having an internal core structure comprising a number of core elements, which extend in a Warren girder type configuration between panels or sides of the component. This structure is achieved by selective application of stop off to bonding surfaces, and subsequent super plastic forming in dies to the desired component shape. The underlying core elements provide an internal support structure for the component to enable it to resist operational loads or impacts from such objects as birds, with minimal damage to the panels or membrane of the fan blade structure. The properties of the core elements are determined by the alloy used, the thickness of the membrane and the bond widths and bond spacing between the core elements in the component structure forming the fan blade. There are limitations with regard to bond spacing and resultant web angles in order to produce a core element pattern which can be manufactured and inspected to determine core geometry and quality. Traditionally the core elements are continuous elements extending across the component structure. By varying the strain of the membrane between the core elements and the bond pitch, that is to say the spacing of the core elements, it is possible to produce variations in the required impact proprieties of the component structure and therefore fan blade particularly across blade cavities. There is greater potential for variation in one dimension/direction, because the Warren girder type structure extends essentially unidirectionally within the fan blade.
With such known component structures there is a limitation to the stiffness achievable by the core elements. Buckling behaviour can only be increased for bird impact resistance by decreasing the pitch of the core elements (that is to say, reducing the space in between the core elements) or by increasing the bond width (that is to say, increasing the width of each core element). Decreasing the pitch between core elements will increase the angle of the webs, which in turn will reduce the tolerance in manufacture for alignment of panels to an underlying core element pattern. Increasing the bond width will reduce the ratio of bond length to bonded panel span, resulting in greater “quilting” during the super plastic forming process.
A further alternative is to provide core elements in the form of dots or islands distributed between the panels, but such an approach creates a structure which is too stiff in fatigue, with resultant failure at high stress levels around the core element bonds. Thus, line core elements are advantageous to avoid over stiffness in fatigue but, as indicated, can cause problems with respect to achieving increased localised stiffness, for example for impact resistance.
In accordance with the present invention there is provided a component structure, and a gas turbine engine incorporating such a structure, as set out in the claims.
Embodiments of the present invention will now be described, by way of example, and with reference to the accompanying drawings in which:—
a is a schematic illustration of core elements utilised in the component structure as depicted in
b is a schematic illustration of core elements utilised in the component structure as depicted in
In order to create lightweight but sufficiently strong and robust components such as those required for fan blades in a gas turbine engine an expanded component structure is generally required.
As will be understood, as part of the super plastic forming process, essentially the structure 101 is extended by inflation, with so-called stop-off material applied to prevent bonding before expansion between parts of the material from which the core elements 102 are formed, in order to create the voids or cavities 107, whilst bonding is provided between the core elements and the panels 103, 104.
In view of the above it is possible to decrease pitch and bond width selectively at localised areas of a component such as component structure 101.
Aspects of the present invention as depicted in
It will be noted that the core elements 32 are generally configured such that the bond regions 36 are oblong or oval shaped within the core of the component structure between the panels (not shown).
As shown in
By provision of discontinuous core elements 36 in the direction of arrowhead X the bond area defined by the regions 36 can be adapted to suit component structure requirements. The widths of the regions 36 may be greater than will typically be acceptable within manufacturing tolerances or otherwise. Generally, in accordance with aspects of the present invention discontinuous core elements 32 will be provided only over those parts of the component structure where it is necessary to achieve a particular level of impact strength, so that the properties of different parts of the component can be tailored to their expected operational requirements, in contrast to a simple continuous line core element pattern in which the properties are essentially uniform throughout. The stiffness of a core in accordance with the present invention can be arranged to have an impact resistance which is increased without compromising manufacturing capability or inspection limitations otherwise found when changing bond pitch and width. The gaps 39 in effect provide flexibility with regard to sizing as well as providing areas of through panel stiffness, and configuration of the remaining parts of the discontinuous core elements 32. It is possible that the accumulated bonding area of the regions 32 along a discontinuous core element may be substantially the same as the bonding area of a regular bond width and pitch provided by a line core element.
It will be noted that generally the discontinuous core elements 32 would be arranged to have bond regions 36 on one side, the upper side as depicted in
Effectively, by providing gaps 39 which are only intermittent the benefits of line core configuration are provided in terms of resistance to fatigue failure. The bond regions 36 will achieve enhanced or otherwise regulated variation in support thereabout when associated with panels (not shown). The gaps 39 are generally unsupported but will be of limited width (typically of the order of the width of the bonded element 36) such that as with the pitch between core elements 32 in alignment across the component structure will not be overly detrimental to the strength of that structure.
By providing elongate oblong or oval shaped sections in the discontinuous core elements 32 as indicated, enhanced local stiffness can be provided in certain portions of a component structure such as a fan blade. Where there is relative predictability with regard to expected impact loads and sites, it is possible and is depicted in
The discontinuities or gaps 39 created in the core elements 32 extending across the component structure are typically achieved by providing stop off material in the gaps such that during formation, through super plastic forming in dies, bonding does not occur in the regions of the gaps 39 creating the intermittent discontinuous nature of the core elements 32. Therefore, discontinuous core elements in accordance with the present invention can be formed simultaneously with the remainder of the forming process.
As indicated above, generally discontinuous core elements will only be provided over certain sections or areas of a component such as a fan blade.
For illustrative purposes only, it will be noted that the discontinuous core elements 42, incorporating intermittent gaps 49, are in a region defined by boundaries 50. This region 50 will typically be the region of the component which will be most likely subject to impact loads in use, such that adjustment in the bond pitch and width provided by the bond regions 46 enables enhancement of stiffness resistance in the formed component in this region 50. It will be appreciated the core element structure, provided by the core elements 40, 42 as indicated, will be secured to a panel on the rear side to the plan view depicted in
The specific distribution, arrangement and configuration of the respective core elements 40, 42 will depend upon operational requirements. However, generally as depicted in
The present invention combines the ductility of line core element patterning with localised stiffness created by enhanced core element features, and particularly by providing, preferably, an oblong or oval shape to the bond regions. By creating these localised effects, selective areas of a component such as a fan blade can be produced with the intermittent discontinuous core element to provide enhanced overall strength under impact conditions whilst retaining full line core configuration in the remainder of the component structure. Although described particularly with regard to a fan blade for a gas turbine engine, it will be appreciated that other core structures can be formed, in accordance with the present invention, where provision of a discontinuous intermittent core element pattern will be useful in order to alter structural strength and performance in localised regions of that structure. It will be understood that utilisation of super plastic forming, in association with diffusion bonding, will enable provision of component structures in accordance with aspects of the present invention, which will normally combine discontinuous intermittent core elements with continuous core elements which may be conventional substantially straight line core elements, or wavy dependent upon requirements. It will be understood that by utilisation of aspects of the present invention components may be defined which preferentially deform under impact loads. For preferential deformation it will be appreciated, by creating areas of different stiffness, impacts upon that component may be deflected to areas of lower stiffness and therefore preferential deformation achieved possibly deflecting impact loads away from sensitive underlying regions.
As will be noted in
Generally, components in accordance with aspects of the present invention will be formed of metals utilising super plastic deformation techniques. However, plastic materials may be used and formed if required.
Number | Date | Country | Kind |
---|---|---|---|
0717009.5 | Sep 2007 | GB | national |