The present invention relates to turbine engines, and, more particularly, to cooling structure provided in a component wall, such as an airfoil in a gas turbine engine.
In a turbomachine, such as a gas turbine engine, air is pressurized in a compressor then mixed with fuel and burned in a combustor to generate hot combustion gases. The hot combustion gases are expanded within a turbine of the engine where energy is extracted to power the compressor and to provide output power used to produce electricity. The hot combustion gases travel through a series of turbine stages. A turbine stage may include a row of stationary airfoils, i.e., vanes, followed by a row of rotating airfoils, i.e., turbine blades, where the turbine blades extract energy from the hot combustion gases for powering the compressor and providing output power.
Since the airfoils, i.e., vanes and turbine blades, are directly exposed to the hot combustion gases as the gases pass through the turbine, these airfoils are typically provided with internal cooling circuits that channel a coolant, such as compressor bleed air, through the airfoil and through various film cooling holes around the surface thereof. For example, film cooling holes are typically provided in the walls of the airfoils for channeling the cooling air through the walls for discharging the air to the outside of the airfoil to form a film cooling layer of air, which protects the airfoil from the hot combustion gases.
In accordance with a first aspect of the present invention, a component wall is provided in a turbine engine. The component wall comprises a substrate having a first surface and a second surface opposed from the first surface, and a plurality of diffusion sections located in the second surface. Each diffusion section is defined by a bottom surface between the first and second surfaces, an open top portion located at the second surface, and wall structure extending from the bottom surface to the second surface. The wall structure surrounds the respective diffusion section and comprises at least a first sidewall and a second sidewall opposed from the first sidewall. The first sidewall of each diffusion section comprises a protuberance extending toward the second sidewall of the respective diffusion section. Each diffusion section comprises a single cooling passage, the cooling passage of each diffusion section extending through the substrate from the first surface to the bottom surface of the respective diffusion section. An outlet of each cooling passage is arranged within the respective diffusion section such that cooling air exiting each cooling passage through the outlet is directed toward the protuberance of the respective first sidewall.
In accordance with a second aspect of the present invention, a component wall is provided in a turbine engine. The component wall comprises a substrate having a first surface and a second surface opposed from the first surface and a plurality of diffusion sections located in the second surface. Each diffusion section defined by a bottom surface between the first and second surfaces, an open top portion located at the second surface, and wall structure extending from the bottom surface to the second surface. The wall structure surrounds the respective diffusion section and comprises a first sidewall, a second sidewall opposed from the first sidewall, a third sidewall extending between the first and second sidewalls, and a fourth sidewall opposed from the third sidewall and extending between the first and second sidewalls. The bottom surface of each diffusion section is substantially parallel to the second surface and extends from the third sidewall to the fourth sidewall. The first sidewall of each diffusion section is substantially perpendicular to the second surface and comprises a protuberance extending toward the second sidewall of the respective diffusion section. Each diffusion section comprises a single cooling passage, the cooling passage of each diffusion section extending through the substrate from the first surface to the bottom surface of the respective diffusion section. An outlet of each cooling passage is arranged within the respective diffusion section such that cooling air exiting each cooling passage through the outlet is directed toward an apex of the respective protuberance to effect a diverging flow of cooling air along the respective first sidewall
In accordance with a third aspect of the present invention, a method is provided of forming cooling structure in a component wall of a turbine engine. An outer surface of an inner layer of the component wall is masked with a masking template. The masking template includes apertures defining shapes of a plurality of to-be-formed diffusion sections in the component wall. The apertures are spaced from each other corresponding to spacing between outlets of cooling passages extending through the inner layer of the component wall such that the outlets of the cooling passages are exposed through the apertures. A masking material is applied to the component wall into the apertures in the masking template so as to block the outlets of the cooling passages. The masking template is removed and a material is applied on the outer surface of the inner layer to form an outer layer of the component wall over the inner layer. The outer layer surrounds the plurality of to-be-formed diffusion sections in the component wall.
While the specification concludes with claims particularly pointing out and distinctly claiming the present invention, it is believed that the present invention will be better understood from the following description in conjunction with the accompanying Drawing Figures, in which like reference numerals identify like elements, and wherein:
In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration, and not by way of limitation, specific preferred embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized and that changes may be made without departing from the spirit and scope of the present invention.
Referring to
The component wall 10 comprises a substrate 12 having a first surface 14 and a second surface 16. The first surface 14 may be referred to as the “cool” surface, as the first surface 14 may be exposed to cooling air, while the second surface 16 may be referred to as the “hot” surface, as the second surface 16 may be exposed to hot combustion gases during operation. Such combustion gases may have temperatures of up to about 2,000° C. during operation of the engine. In the embodiment shown, the first surface 14 and the second surface 16 are opposed and substantially parallel to each other.
The material forming the substrate 12 may vary depending on the application of the component wall 10. For example, for turbine engine components, the substrate 12 preferably comprises a material capable of withstanding typical operating conditions that occur within the respective portion of the engine, such as, for example, ceramics and metal-based materials, e.g., steel or nickel, cobalt, or iron based superalloys, etc.
Referring to
As shown in
The diffusion sections 20 each comprise wall structure 22 that surrounds the respective diffusion section 20, an open top portion 24 located at the second surface 16 of the substrate 12, and a bottom surface 26. The wall structure 22 extends between the bottom surface 26 and the second surface 16 of the substrate 12. In the embodiment shown the wall structure 22 comprises a first sidewall 22A, a second sidewall 22B spaced from the first sidewall 22A, a third sidewall 22C extending between the first and second sidewalls 22A and 22B, and a fourth sidewall 22D spaced from the third sidewall 22C and also extending between the first and second sidewalls 22A and 22B. As shown in
The first, second, third, and fourth sidewalls 22A-22D each extend outwardly continuously from the bottom surface 26 of the each diffusion section 20 to the second surface 16 of the substrate 12. That is, the first, second, third, and fourth sidewalls 22A-22D extend continuously generally perpendicular between the bottom surface 26 and the second surface 16. Further, in the embodiment shown the first, second, third, and fourth sidewalls 22A-22D are each substantially perpendicular to the second surface 16 of the substrate 12 and also to the bottom surface 26 of the respective diffusion section 20. Moreover, the second sidewall 22B of each diffusion section 20 according to this embodiment comprises a generally straight wall section extending from the third sidewall 22C to the fourth sidewall 22D, as shown most clearly in
The bottom surface 26 in the embodiment shown is defined by an outer surface 28 of the inner layer 18A of the substrate 12, as shown in
As shown most clearly in
Referring to
The diameter of the cooling passages 42 may be uniform along their length or may vary. For example, throat portions 44 of the cooling passages 42 (see
As shown in
In operation, the cooling air CA, which may comprise, for example, compressor discharge air or any other suitable cooling fluid, travels from a source of cooling air (not shown) to the cooling passages 42. The cooling air CA flows through the cooling passages 42 and exits the cooling passages 42 via the outlets 46 thereof into the corresponding diffusion sections 20.
Subsequent to the cooling air CA flowing out of the outlet 46 of each cooling passage 42, the cooling air CA flows toward the apex 32 of the protuberance 30 of the respective first sidewall 22A. As shown in
The hot gas HG flows along the second surface 16 of the substrate 12 toward the diffusion sections 20, as shown in
As illustrated in
Referring to
At step 52, an outer surface 28 of an inner layer 18A of the component wall 10 is masked with a removable masking template 70, illustrated in
At step 54, a removable masking material 76 is applied to the component wall 10 into the apertures 72 of the masking template 70, as shown in
At step 56, the masking template 70 is removed from the component wall 10, wherein the masking material 76 remains on the component wall 10 where the apertures 72 of the masking template 70 were previously located. Hence, the masking material 76, at this stage of assembly, still blocks the outlets 46 of the cooling passages 42.
At step 58, the masking material 76 is cured. “Curing” of the masking material 76 generally refers to the cooling down and hardening of the masking material 76, although other methods of solidifying or hardening the masking material 76 could be used, as will be apparent to those skilled in the art. It is noted that the masking material 76 could be cured before removing the masking template 70 at step 56, in which case the masking template 70 could be cured along with the masking material 76. This may be desirable, for example, if the masking template 70 is to be disposed of after it is used to form the cooling structure in the component wall 10 as described herein.
At step 60, a material 80, e.g., a thermal barrier coating, may be disposed on the outer surface 28 of the inner layer 18A to form an outer layer 18B of the component wall 10 over the inner layer 18A, illustrated in
At step 62, the masking material 76 is removed from the component wall 10 such that a plurality of diffusion sections 20 are formed in the component wall 10 where the masking material 76 was previously located, see
Removing the masking material 76 at step 62 unblocks the outlets 46 of the cooling passages 42 such that cooling air CA may pass through the cooling passages 42 and out of the outlets 46 thereof toward the protuberance 30 of each respective first sidewall 22A, as described above.
It is noted that the component wall 10 disclosed herein may comprise one or a plurality of diffusion sections 20, craters, trenches, or slots, which may or may not extend over the entire second surface 16 of the substrate 12. If the component wall 10 comprises multiple diffusion sections 20, the number, shape, and arrangement of the corresponding cooling passages 42 and the outlets 46 thereof may be the same or different than as shown in the diffusion sections 20 described herein. Further, the shape of the protuberances 30, as well as the configuration of the first, second, third, and fourth sidewalls 22A-22D may be the same or different than those of the diffusion sections 20 described herein.
Advantageously, increased performance for both cooling and aerodynamics can be realized with the disclosed component wall 10 described herein as compared to existing film-cooled component walls. Further, the method 50 disclosed herein may be employed to efficiently form a plurality of diffusion sections 20 in a component wall 10. Specifically, with the use of the masking template 70 and the masking material 76, all of the cooling passage outlets 46 can be covered in a single step, i.e., with the masking material 76, rather than requiring each of the outlets 46 to be separately covered with individual portions of a masking material. Hence, the time required to form the cooling structure in the component wall 10 and the complexity thereof are reduced as compared to if the outlets 46 of the cooling passages 42 were to be individually covered. Further, with the use of the masking template 70, the shapes of the to-be-formed diffusion sections can be configured as desired.
Referring now to
In
The diffusion sections 20, 120 described herein may be formed as part of a repair process or may be implemented in new airfoil designs. Further, the diffusion sections 20, 120 may be formed by other processes than the one described herein. For example, the substrate 12 may comprise a single layer and the diffusion sections 20, 120 may be machined in an outer surface 16 of the substrate layer.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
5458461 | Lee et al. | Oct 1995 | A |
5605639 | Banks et al. | Feb 1997 | A |
5651662 | Lee et al. | Jul 1997 | A |
5660525 | Lee et al. | Aug 1997 | A |
5683600 | Kelley et al. | Nov 1997 | A |
5902647 | Venkataramani et al. | May 1999 | A |
6234755 | Bunker et al. | May 2001 | B1 |
6307175 | Blochlinger et al. | Oct 2001 | B1 |
6383602 | Fric et al. | May 2002 | B1 |
6617003 | Lee et al. | Sep 2003 | B1 |
7328580 | Lee et al. | Feb 2008 | B2 |
7351036 | Liang | Apr 2008 | B2 |
7411150 | Lavers et al. | Aug 2008 | B2 |
7553534 | Bunker | Jun 2009 | B2 |
20080057271 | Bunker | Mar 2008 | A1 |
20080298920 | Janssen et al. | Dec 2008 | A1 |
20090067998 | Beck et al. | Mar 2009 | A1 |
20090246011 | Itzel | Oct 2009 | A1 |
20110293423 | Bunker et al. | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
1043480 | Oct 2000 | EP |
1091090 | Apr 2001 | EP |
1609949 | Dec 2005 | EP |
2438861 | Dec 2007 | GB |
10089005 | Apr 1998 | JP |
2001173405 | Jun 2001 | JP |
2005522633 | Jul 2005 | JP |
2006009785 | Jan 2006 | JP |
2008248733 | Oct 2008 | JP |
2011247248 | Dec 2011 | JP |
Entry |
---|
Lu, Y. “Effect of hole configuration on film cooling from cylindrical inclined holes for the application to gas turbine blades”. Ph.D. dissertation, Louisiana State University, Dec. 2007. |
Varvel, T. “Shaped Hole Effects on Film Cooling Effectiveness and a Comparison of Multiple Effectiveness Measurement Techniques”. Master od Science Thesis, Texas A&M University, Dec. 2004. |
Colban, W. “A Detailed Study of Fan-Shaped Film-Cooling for a Nozzle Guide Vane for an Industrial Gas Turbine”. Ph.D dissertation, Virginia Polythechnic Institute and State University, Nov. 2005. |
Ching-Pang Lee et al.; U.S. patent application entitled “Film Cooled Component Wall in a Turbine Engine”. |
Number | Date | Country | |
---|---|---|---|
20110305583 A1 | Dec 2011 | US |