The present invention relates to a component with internal damping, a method of manufacturing such a component, and a precursor assembly for forming such a component. The invention is particularly, although not exclusively, concerned with components for use in gas turbine engines, for example fan blades.
In US 2004/0191069, a gas turbine blade is manufactured by a superplastic forming and diffusion bonding technique which results in a hollow blade, ie a blade having at least one internal cavity. A pair of panel precursors are laid in face-to-face contact with a membrane precursor. A predetermined pattern of stop-off material is applied to the panels. The precursors are diffusion bonded together, except where this is prevented by the stop-off material. Subsequently, internal pressure is created between the panels, causing the panels and membrane to deform superplastically to form a warren girder structure, with cavities in the regions where diffusion bonding was prevented by the stop-off material.
The blade is subject to vibration induced by flutter and distortions in the gas flow over the blades. US 2004/0191069 A1 describes a method of damping such vibrations by coating the inner surface of the blade with a suitable damping material.
In order to achieve damping, a degree of relative movement is required between the panels and the damping material. A problem with the arrangement of US 2004/0191069 A1 is that the warren girder structure is too stiff to permit a significant degree of such relative movement. Furthermore, the warren girder structure is relatively heavy.
A first aspect of the invention provides a method of manufacturing a component, the method comprising: disposing a plurality of webs between a plurality of panels; and deforming the panels and the webs by applying internal pressure between the panels, thereby forming a series of internal cavities partitioned by the webs, characterised in that the method further comprises:
A second aspect of the invention provides a component comprising:
The component is preferably manufactured by the method of the first aspect of the invention.
The following comments apply to both the first and second aspects of the invention.
The webs may be comprise separate and distinct web members. However preferably the webs comprise spaced-apart web regions of a membrane precursor, and the membrane precursor is bonded between the web regions to an opposed pair of the panels.
Stop-off material may be applied to prevent or minimise bonding between the web regions of the membrane precursor and the opposed pair of panels. This material may be applied to the web regions and/or to the opposed pair of panels. Typically the stop-off material is applied in a striped pattern, the spaces between adjacent stripes on one side of the membrane precursor being disposed opposite a stripe on the other side of the membrane precursor, whereby the webs forms a warren girder structure within the component.
The component may be any component which is subject to vibration or impact when in use, for example a rotating blade such as a fan blade of a gas turbine engine, a stationary vane such as an outlet guide vane of a gas turbine engine, or a containment ring which surrounds a rotating component and is able to withstand impact in the event of catastrophic failure of the rotating component.
In a specific embodiment in accordance with the present invention, the component is a component for a gas turbine engine, for example a rotor blade such as a fan blade. Such a component is commonly manufactured principally from a metallic material, for example a titanium alloy.
Where the component is a rotating component, then the webs preferably extend in a radial direction so that they can carry radial load when in use, although in general the webs may extend in any direction.
The damping material may be any flowable material with suitable damping properties. In the context of this invention “damping material” means a material which dissipates strain energy, for example as heat, to a significant extent, by which is meant an extent greater than the energy dissipation of the principal material from which the component is formed. Preferably the damping material is a visco-elastic material. Typically the damping material is hardened after it has flowed into the cavities. For example the damping material may be a resin which is heated to cure the resin. Alternatively the material may be a thermoplastic material which is heated before being injected into the component, and hardens on cooling.
The damping material may be injected into more than one of the cavities. However, a problem with this is that more than one of the cavities must be weakened with an inlet port, and more than one injection system is required. Therefore more preferably the material is introduced into only one of the cavities, preferably via only one port, and flows from that cavity into all other cavities.
The weakened regions may be formed by cutting the webs, typically through the full thickness of the web, or machining them in any other way.
During the machining process, material may be removed from the webs to form open holes, or the webs may be machined without removing material (for instance by cutting slits in the web).
A third aspect of the invention provides a precursor assembly for forming a component, the assembly comprising: a plurality of panel precursors; and a membrane precursor disposed between the panel precursors, characterised in that the assembly further comprises a plurality of weakened regions formed in a plurality of spaced-apart web regions of the membrane precursor.
The precursor assembly is suitable for use in manufacturing a component by the method of the first aspect of the invention.
Embodiments of the invention will now be described with reference to the accompanying drawings, in which:
The fan blade shown in
The blade shown in
A series of stripes 14 of stop-off material, for example yttria, are applied to the inner surface of the panel precursors, between the contact regions 12. The stop-off material may, for example be applied by a silk screen printing process.
It will be appreciated from
The precursors are pressed together at high pressure and temperature so that diffusion bonds are created between contacting metal-to-metal regions corresponding to the contact regions 12 in
When bonding has been achieved, the bonded precursor assembly is heated to a temperature at which the assembly can be hot formed into a desired configuration in which, for example, the assembly has an arcuate cross-section with a twist between the ends of the assembly, approximating to a desired blade profile.
Subsequently, the bonded and hot formed precursor assembly is heated to a temperature at which superplastic deformation of the elements of the assembly can occur, and the assembly is internally pressurised by the introduction of high pressure inert gas, such as argon. An inlet port is provided in a wall of the precursor assembly and a delivery tube is welded onto the inlet port to define an inlet passage to the interior of the assembly. The delivery tube provides a sealed passage for the high pressure inert gas and prevents contamination of the inert gas with oxygen, thus preventing oxidation of the material of the. precursor assembly. The high pressure gas forces the panels 2 and 4 apart from each other between their leading and trailing edges. Since the membrane precursor 6a is diffusion bonded at staggered intervals to the panels 2 and 4, but not bonded where the yttria stop-off material is present, the membrane will superplastically deform into the configuration shown in
In the example of
During the superplastic deformation step, the weakened regions open up to form a series of holes 30 as shown in
The weakened regions need to be constructed in such a way that the web does not tear during the subsequent forming steps. The holes in the webs may be regular or irregular shapes, and the weakened regions may be sized and shaped such that after the deformation process they open up to form a different and more beneficial shape (such as a flattened hexagon becoming a regular hexagon). A number of different arrangements and shapes of hole are possible, and six variants are shown in
After the superplastic deformation step, a liquid visco-elastic material 17 is injected into the hollow interior of the blade via a port 16 as shown in
Upon injection, the material first flows into the cavity 15 next to the port 16 as shown in
The internal surfaces of the blade cavity (ie the internal surfaces of the panels 2 and 4) may be cleaned by an acid etch technique prior to the injection of the filler material, thereby increasing the bond strength between the filler and the panel wall surfaces. The resulting structure is consequently that of a hollow component filled with visco-elastic damping material. The component therefore exhibits a reduction in the amplitude of vibration when subjected to excitation, for example by flow conditions around the blade. The reduced amplitude of vibration thus reduces the tendency of the blades to fail under high cycle fatigue conditions.
Furthermore, since the damping material is contained within the blade, it is not exposed to gas flow over the blade, nor to foreign objects striking the blade.
Furthermore, the outer surface finish of the blade is not influenced by the presence of damping material and so can be optimised to provide the desired aerodynamic characteristics of the blade.
The webs 20-22 are capable of carrying a radial load, hold the panels together to prevent panting of the blade or delamination of the panels during high centrifugal loads, and also bind the visco-elastic damping material in place.
The holes in the webs reduce the stiffness of the webs, enabling relative movement between the blade and the visco-elastic damping material. This enables the material to damp vibrations more efficiently, compared with an arrangement in which the webs have no holes. At the same time, the holes enable the damping material to flow between the internal cavities 15 and substantially fill the blade. Also, the holes reduce the total weight of the warren girder structure.
Although the invention has been described above with reference to one or more preferred embodiments, it will be appreciated that various changes or modifications may be made without departing from the scope of the invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
0713700.3 | Jul 2007 | GB | national |