In various embodiments, the present invention relates to antennae and, in particular, to antenna components that are suitable for improving an antenna's performance and methods for the design thereof.
Various types of antennae, including patch antennae, are employed with wireless-communication devices such as cell phones, hand-held personal digital assistant (PDA) devices, GPS receivers, laptop and tablet PCs, etc. Patch antennae are generally well suited for use with many such devices, in part because they have a low profile (i.e., height) and are relatively easy and inexpensive to manufacture. A typical patch antenna includes a radiating element that is used to both transmit and receive signals, and a ground plane. The radiating element and the ground plane are typically “patches,” i.e., substantially flat pieces of metal such as copper. The radiating element and the ground plane are generally disposed substantially parallel to each other, separated by a dielectric substrate disposed therebetween.
In general, the amount of electromagnetic power to be transmitted using a patch antenna and/or the strength of the signal to be received affect, in part, the size of the radiating element. The greater the power to be transmitted (or the weaker the signal to be received), the larger the required radiating element. However, if the radiating element is too large the antenna can become unsuitable for use with small devices such as cell phones or Bluetooth transceivers.
In designing antennae, typically two objectives are important. First, it is desirable to manufacture an antenna having a high efficiency. The efficiency of an antenna is the ratio of the power of a transmitted (i.e., radiated) signal to the input power, i.e., the power of the signal received for subsequent transmission. The second objective is to increase the gain of the antenna. The antenna gain is the ratio of the intensity of the radiation of the antenna in a desired direction to the intensity of radiation that would be produced by a hypothetical ideal antenna that radiates equally in all directions, and has no losses. Thus, the antenna gain relates to a fraction of the total power transmitted by the antenna in a desired direction. Other objectives in antenna design may include the desired frequency of transmission/reception and bandwidth of the antenna.
The size of the antenna's ground plane substantially affects the various antenna parameters described above, including the antenna's efficiency and gain. To achieve high efficiency (e.g., about 57%) and gain (e.g., about +5 dB), a typical ground plane is designed to be significantly larger than the radiating element, adding to the overall size of the antenna. For example, appliances such as cell phones, Bluetooth devices, and GPS receivers often employ an antenna that includes a radiating element of about 25 mm×25 mm. A typical ground plane used with such an antenna overlaps the radiating element and extends from each side of the radiating element by about 25 mm, so that the antenna's efficiency is about 57%. The distance by which the ground plane extends beyond the radiating element is called the “border.” Thus, the size of a typical antenna is about 75 mm×75 mm. The requirement for a large ground plane can make the communication device large and bulky, and, as described above, the antenna may be so large in some instances that it may become unsuitable for certain applications. On the other hand, a relatively small ground plane can decrease the antenna's efficiency and/or gain substantially, also making it unsuitable for certain applications.
One approach to addressing this problem is to introduce “defects” in the ground plane or to provide a cavity adjacent the ground plane. In a defected ground plane, a portion of the electrically conductive material (e.g., copper) comprised within the ground plane is removed from one or more locations, altering current distributions within the ground plane. This can mitigate current-crowding losses, and thus increase the antenna's efficiency. But, the removal of the conductive material permits radiation to be emitted through the defect, causing a reduction in the antenna's front-to-back-gain ratio. In other words, an antenna having a defected ground plane may transmit less radiation in a desired direction than an antenna of a similar size and structure, but having a defect-free (i.e., continuous) ground plane. For its part, the addition of a cavity often makes the antenna thicker, bulkier, and/or heavier.
Accordingly, there is a need for an improved antenna that can meet the multiple goals of small size, high efficiency, and high gain.
In various embodiments, the present invention features an antenna that operates at a high efficiency (i.e., at an efficiency comparable to that achievable using a large ground plane), while being substantially smaller in size than an antenna having the large ground plane. In certain embodiments, this is achieved, in part, by providing a ground plane having i) a continuous portion that is about the same size as that of the radiating element of the antenna, and ii) stubs extending from the continuous portion. The stubs may be folded into various shapes such that the total size of the ground plane (including the stubs) is smaller than that of a conventional, large ground plane. The stubs may also be formed by removing sections of material (e.g., metallization) that would otherwise be a part of a conventional ground plane.
In general, in one aspect, embodiments of the invention feature an antenna that includes a radiating element, such as a metallic plate, and a ground plane. The ground plane includes a continuous portion (e.g., a metallic plate or layer) that is substantially overlapped by the radiating element. At least one stub extends from the continuous portion such that the stub(s) and the radiating element do not substantially overlap. The at least one stub may be coplanar with the continuous portion, and, in some embodiments, it extends at about a right angle with respect to a side of the continuous portion. One or more of the stubs may be L-shaped, inter-locking L-shaped, shaped as a meander-line, or shaped as a Hilbert-curve. In some embodiments, one or more of the stubs modify an electrical length of the ground plane (e.g., the distance over which currents are induced in the ground plane). As a result, the antenna's efficiency may be adjusted to a target efficiency. The continuous portion of the ground plane may be shaped as a rectangle, a square, a circle, or an oval. The antenna may also include a dielectric substrate positioned between the radiating element and the ground plane. In some embodiments, the radiating element includes a substantially continuous surface (e.g., a layer or foil of an electromagnetic material).
In general, in another aspect, embodiments of the invention feature a method of manufacturing an antenna. The method includes locating a first ground plane, having a continuous portion, in proximity to a radiating element such that the continuous portion is substantially overlapped by the radiating element. The method also includes providing at least one stub in electrical communication with and extending from the continuous portion such that the one or more stubs and the radiating element are substantially non-overlapping. The geometry (e.g., shape, one or more dimensions, etc.) of the one or more stubs is selected to achieve a target efficiency for the antenna.
In some embodiments, the method includes, prior to locating the first ground plane: positioning a second ground plane, different from the first ground plane, in proximity to the radiating element such that the second ground plane covers the radiating element; measuring an efficiency associated with the radiating element (i.e., the measured efficiency corresponds to an antenna that includes the radiating element and the second ground plane); changing a size of the second ground plan; repeating the positioning, measuring, and size-changing steps so as to determine a size of the second ground plane that maximizes the efficiency measured in the measuring step; and setting the target efficiency for the antenna to the maximum measured efficiency. These steps may be simulated, for example by using antenna modeling software.
The one or more stubs may be positioned to be coplanar with the continuous portion of the first ground plane and/or at about a right angle to a side of the continuous portion. In some embodiments, the stubs are L-shaped, inter-locking L-shaped, shaped as a meander-line, or shaped as a Hilbert-curve. The method may also include selecting a shape of the continuous portion of the first ground plane to be at least one of a rectangle, a square, a circle, or an oval. In some embodiments, a dielectric substrate is positioned between the radiating element and the first ground plane.
These and other objects, along with advantages and features of the embodiments of the present invention herein disclosed, will become more apparent through reference to the following description, the accompanying drawings, and the claims. Furthermore, it is to be understood that the features of the various embodiments described herein are not mutually exclusive and can exist in various combinations and permutations. As used herein, the term “substantially” means ±10%, and in some embodiments ±5%.
In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the following description, various embodiments of the present invention are described with reference to the following drawings, in which:
An exemplary patch antenna 100 shown in
Signal generating and/or receiving circuitry (not shown) is in electrical communication with the radiating element 102. When the antenna 100 is operated as a transmitter, the circuitry provides the electrical signal to be transmitted to the radiating element 102, and when the antenna 100 is operated as a receiver, the circuitry converts the electromagnetic radiation received by the radiating element 102 into a received signal. The transmitted and/or received signals can include messages to be transmitted and/or received using the antenna 100.
As described above, and as illustrated in
In part, the smaller antenna 100 depicted in
As can be seen (e.g., by comparing
In the antenna 250, illustrated in
In step 303, an antenna is constructed by appropriately positioning a test ground plane (i.e., a ground plane, without stubs, that is used for testing purposes) in proximity to the selected radiating element 102 and substrate 104. The test ground plane is different from the actual ground plane 106 having the stubs 110 that is ultimately selected for use in the antenna 100. Initially, the test ground plane has a size that is about the same as that of the radiating element 102 (i.e., the test ground plane initially has a border of 0 mm). A signal is then supplied to the radiating element 102 and parameters of the antenna, including its efficiency, are measured. As will be understood by one of ordinary skill in the art, in step 303, a physical antenna may be constructed and actual signals may be supplied thereto and parameters measured therefrom. Alternatively, the antenna may be modeled, and signals may be supplied thereto and parameters measured therefrom through simulation.
In step 305, the dimensions of the test ground plane are increased (e.g., the sides of the test ground plane are extended beyond the border of the radiating element 102 in each direction) by a predetermined value (e.g., 5 mm, 10 mm, etc.). Step 303 is then repeated to determine a new efficiency value for the antenna.
As indicated in step 307, steps 303 and 305 are repeated for a certain number of iterations, or until further increases in the border size do not yield a substantial change in the antenna's efficiency or in any other antenna parameter of choice. In particular, the antenna's efficiency does not monotonically increase with the increase in the size of the test ground plane, and may in fact decrease once the test-ground-plane size reaches a certain value. From the selected test-ground-plane sizes and measured efficiency values, a maximum measured efficiency value and the corresponding border size can be determined in step 309. The maximum measured efficiency value can be set as the target efficiency for the antenna 100 depicted in, for example,
In step 311, the geometry (e.g. total length, shape, etc.) of the one or more stubs 110 that is needed to achieve the target efficiency for the antenna 100 is determined. As further described below, the stubs 110 can be straight or may be “folded” (e.g., “L” shaped, shaped as a meander-line, or shaped as a Hilbert-curve, etc.). In some embodiments, the maximum size of the antenna 100 (and, thus, the ground plane 106) footprint will be pre-specified (e.g., due to customer specifications). For example, while a test ground plane having a border size of 25 mm may have been determined in step 309 to maximize the antenna's efficiency, the customer specifications may only permit a border size of 10 mm. In such a case, one works to shape the stubs 110 within the 10 mm border to achieve an efficiency for the antenna 100 that is as close as possible to the target, maximum efficiency. The border size of the test ground plane determined in step 309 may give an experienced designer intuitive feel or insight into the geometry that the stubs 110 should feature. Various different geometries, numbers, etc. of the stubs 110 may be tested (e.g., through simulation or through an actual physical model of the antenna) until the efficiency of the antenna 100 is as close as possible to the target efficiency. Once the desired geometry of the stubs 110 is determined, the stubs 110 are formed to extend from a continuous portion 108 (e.g., a metallic plate, foil, layer on the substrate 104, etc.) that has a size and shape about the same as that of the radiating element 102 selected in step 301. These stubs 110 and continuous portion 108 form the actual ground plane 106 of the antenna 100.
While the invention has been particularly shown and described with reference to specific embodiments, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. The scope of the invention is thus indicated by the appended claims and all changes that come within the meaning and range of equivalency of the claims are therefore intended to be embraced.