Components for breathing circuits

Information

  • Patent Grant
  • 10286174
  • Patent Number
    10,286,174
  • Date Filed
    Thursday, December 6, 2018
    6 years ago
  • Date Issued
    Tuesday, May 14, 2019
    5 years ago
Abstract
An expiratory limb for a breathing circuit includes an enclosing wall defining a flexible singular expiratory flow passage between an inlet and an outlet and bounding the flexible singular expiratory flow passage and ambient air. The expiratory limb includes one or more regions of the enclosing wall that made from a material that allows passage of water vapor without allowing passage of liquid water, thereby forming a water vapor flow path from the flexible singular expiratory flow passage to the ambient air through the material. The expiratory limb is configured to allow diffusion of water vapor along the flexible singular expiratory flow passage and dry the flow of expiratory gases between the inlet and the outlet.
Description
BACKGROUND TO THE INVENTION
1. Field of the Invention

The present invention relates to components for breathing circuits and in particular to components for use in the expiratory arm of a breathing circuit.


2. Summary of the Prior Art

In assisted breathing, particularly in medical applications, gases having high levels of relative humidity are supplied and returned through conduits of a relatively restricted size. Buildup of condensation on the inside wall of the conduit is a frequent result of this high humidity. In the prior art, attempts have been made to reduce the adverse effect of this condensation by either reducing the level of condensation or providing collection points in the conduit for draining condensed liquid from the conduit Reducing the condensation has generally been by maintaining or elevating the temperature of the gases flow and/or of the conduit wall to reduce the formation of condensation.


SUMMARY OF THE INVENTION

It is an object of the present invention to provide a component, with particular application to the expiratory limb of a breathing circuit, which will at least go some way towards improving on the above or which will at least provide the public and the medical profession with a useful choice.


In a first aspect the invention consists in a breathing circuit component including an inlet, an outlet and an enclosing wall defining a gases passageway between said inlet and said outlet, at least a region of said wall being of a material that allows the passage of water vapor without allowing the passage of liquid water or respiratory gases.


In a further aspect the invention consists in a breathing circuit limb having both inspiratory and expiratory gases passageways, each having a respective inlet and outlet and a wall defining a gases passageway extending from said inlet to said outlet, at least a region of the wall of the expiratory conduit being of a material that allows the passage of water vapor without allowing the passage of liquid water or respiratory gases.


In a still further aspect the invention consists in a catheter mount including:


a short length of breathing conduit for connecting at one end to a patient interface component and at the other end to, directly or indirectly, the dual arms of a breathing circuit,


a dividing partition extending for at least a substantial part of the length of said breathing conduit and dividing, in cross section, said conduit into a plurality of gases passageways each having a defining passageway wall,


at least one of:


an inspiratory flow director for directing at least the bulk of an inspiratory air flow to a first selection of said passageways, and


an expiratory flow director for directing at least the bulk of an expiratory flow to a second selection of said passageways, said second selection being exclusive of said first selection,


and at least a region of the walls of said second selection of passageways being of a material that allows the passage of water vapor without allowing the passage of liquid water or respiratory gases.


In a still further aspect the invention consists in a dedicated water vapor exchanger including an inspiratory gases pathway and an expiratory gases pathway having a common wall therebetween, said common wall including one or more regions of a material that allows the passage of water vapor without allowing the passage of liquid water or respiratory gases.


In a still further aspect the invention consists in apparatus for forming a breathing circuit conduit comprising:


a former, onto which a tube wall can be deposited and which advances said deposited tube wall in an advance axis and rotates said deposited tube wall about said advance direction, the speed of said advance and the speed of said rotation together defining a pitch,


at least one film laying head which deposits a film on said former, the combined width of said film deposited by said film laying heads being wider than said pitch such that adjacent turns of laid film overlap to form an overlap seam,


a bead laying head for each said film laying head, each said bead laying head laying a reinforcing bead on an overlap seam,


an axial thread laying head, said thread laying head fitted over and around said former and carrying a plurality of thread feeds, each thread feed allowing the drawing of a thread from a reserve, and


a rotator to rotate said axial thread laying head at substantially the same speed as the expected rotation speed of said tube.


Hereinafter, throughout the description, a material that allows the passage of water vapor without allowing the passage of liquid water or respiratory gases is described as a “breathable” material. Materials may be breathable due to their composition, physical structure a combination thereof.


To those skilled in the art to which the invention relates, many changes in construction and widely differing embodiments and applications of the invention will suggest themselves without departing from the scope of the invention as defined in the appended claims. The disclosures and the descriptions herein are purely illustrative and are not intended to be in any sense limiting.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross sectional elevation of a conduit for the expiratory limb of a breathing circuit according to one embodiment of the present invention,



FIG. 2 is a cross sectional view of a section of conduit wall according to one possible construction,



FIG. 3 is a cross sectional view of a co extrusion die head for extruding a conduit including two longitudinal strips of permeable material, similar to the conduit of FIG. 1,



FIG. 4 is a cross sectional elevation of a coaxial breathing circuit according to a further embodiment of the present invention and incorporating a conduit in accordance with the present invention,



FIG. 5 is a side elevation in partial cross section of the coaxial breathing circuit of FIG. 4,



FIG. 6 is a side elevation partially in cross section of an expiratory limb conduit according to a further embodiment of the present invention,



FIG. 7 is a cross sectional side elevation of an expiratory limb for a breathing circuit according to a further embodiment of the present invention,



FIG. 8 is a cross sectional side elevation of an expiratory limb for a breathing circuit according to a still further variant,



FIGS. 9A-9I demonstrate a range of conduit constructions including longitudinal reinforcement of varying types,



FIG. 10 is plain view of a conduit forming device for forming a reinforced twin walled conduit according to the present invention, such as the conduit depicted in FIG. 9H or 9I,



FIG. 11 is a plain view of a conduit forming device for forming a reinforced conduit according to FIG. 7,



FIG. 12 is a plain view of a similar conduit forming device for forming a reinforced conduit according to FIG. 8, and



FIGS. 13A and 13B are cross sectional side elevations of catheter mounts incorporating the present invention.





DETAILED DESCRIPTION

Referring to FIG. 1 in one embodiment of the invention the conduit 4 of the expiratory limb of a breathing circuit is formed having one or more longitudinal strips 2, 3 of breathable membrane as part of the wall 1 thereof.


One possible material for the breathable regions is an activated perfluorinated polymer material having extreme hydrophilic properties. An example of this polymer material is marketed under the trade mark NAFION by DuPont Fluoro products of Fayetteville USA. This material is useful due to its extreme hydrophilic properties and due to its ability to be extruded, particularly to be co-extruded in combination with other plastic materials.


Alternative materials are also envisaged including:


(a) Hydrophilic thermoplastics,


(b) woven treated fabric products exhibiting breathable characteristics


The preferred material is a hydrophilic polyester block copolymer formed into a homogeneous flat film. An example of such a film is sold under the brand SYMPATEX. This material is particularly suited to thin film productions.


Referring to FIG. 6 an alternative embodiment of the expiratory limb is shown in which the entire flexible wall membrane of the conduit is formed from a breathable plastic membrane, extruded and wound helically with edges of adjacent turns sealed to one another.


Further variations on the embodiment of FIG. 6 are depictured in FIGS. 9A to 9I, 7 and 8. In these figures the flexible wall membrane of the conduit is supplemented by reinforcing to provide resistance to lateral crushing and to longitudinal stretching of the conduit. Further variations are shown including variants having multiple breathable plastic membranes. Apparatus for forming such conduits is described with reference to FIGS. 10, 11 and 12.


Referring to FIGS. 4 and 5 a further aspect of the present invention is shown in which an expiratory limb conduit according to the present invention is provided as the inner conduit of a coaxial conduit configuration, such that expiratory gases and inspiratory gases each flow in one of the inner conduit or the space between the inner conduit and the outer conduit and in use water vapor but not liquid water is transmitted from the expiratory gases passageway to the inspiratory gases passageway.


A further component that may usefully include the present invention is a catheter mount. The application of the invention to a catheter mount is described with reference to FIG. 13.


It would be possible alternatively, to have one or more longitudinal sections (lengths) of the conduit being formed of the breathable material or isolated regions of the conduit wall being formed from the material. However the embodiments described herein are preferred due to their apparent simplicity of manufacture, being capable of linear manufacture, either by continuous stitching, gluing or welding, by co-extrusion or by winding onto a former.


As a corollary of material cost it is preferred that the conduit wall be manufactured to have a relatively low wall thickness, so much so that the conduit wall membrane may be insufficiently sturdy to be self-supporting.


Referring to FIGS. 2, 6, 9A to 9I, 7 and 8, a spiral or helical internal (or external) reinforcing members, or a series of annular hoop reinforcing members, may be provided outside (or inside) the tubular membrane to provide support. The helical, spiral or hoop supporting members may for example be formed from polymer plastic materials, such as the material used in the wall of the conduit (not being the breathable regions), or alternatively may for example be a metal wire support, such as drawn steel wire.


The conduit shown in FIG. 2 may be formed in any one of a number of methods. For example the tubular membrane may be supplied in a continuous tube. Alternatively it might be supplied in tape form, which may result in the conduit of FIG. 6. Supplied as extruded tape, the membrane may be wound helically onto a former. The helical supporting rib, provided in a semi molten state is then laid on the overlap between adjacent turns. The heat from the helical supporting rib bonds the two adjacent strips with the rib forming a flexible resilient conduit once cooled.


Referring to FIG. 6 an additional sheathing layer 83 may be provided over the outside of the conduit. The sheathing layer 83 is supported on the apexes of the ribs 30. The sheathing layer 83 may be a further strip or tape of extruded plastic film wound helically onto the conduit formed on the former. This additional sheath may have a number of purposes and benefits. The sheathing layer 83 may be formed to provide additional strength, reinforcement and protection, for example by selecting an appropriate material or by selecting an appropriate material thickness. The material may be a breathable material, such as that which may be the basis of the inner conduit wall or may be formed from a less expensive non-permeable material. In that case a series of holes or perforations 85 are preferably provided along the strip or tape 84 to provide egress of water vapor or collected condensed water. The holes or perforations 85 may advantageously be formed by pricking holes in the tape 84 using a heated lance during the forming process. Shrinking of the plastic film away from the heated lance has been found to produce consistent and suitably sized holes with an annulus of built up material providing reinforcing at the lip of the hole. The sheath 83, in addition to providing reinforcement and protection for the inner conduit, also provides a barrier to air flow over the inner conduit thereby providing an insulating effect. The insulating effect is greater where there are no perforations 85 through the sheath 83.


Referring to FIGS. 9A-9I it has been found that one of the difficulties with using a breathable membrane such as SYMPATEX is its low elastic yield strength. Accordingly under longitudinal force the SYMPATEX membrane may be easily stretched non-elastically leading to loss of aesthetic appearance and a constriction in the tube diameter. The multiple walled embodiment described with reference to FIG. 6 goes some way toward overcoming this difficulty, providing as it does a second layer of breathable material. Furthermore in the perforated form the outer plastic membrane may be formed from a plastic material having a greater elastic yield strength than the preferred SYMPATEX.


An alternative structure may be used as a longitudinal reinforcement for the tube. This reinforcement is preferably provided in a form of an additional sheath having an open or mesh structure. For example the sheath may be provided by a plurality of parallel extruded polymer threads running parallel to the axis of the conduit, a plurality of extruded polymer threads braided or similarly arranged about the conduit and having a substantial axial component in their direction, or by a preformed or continuously formed mesh, formed to make a sheath in a similar fashion to the method used for forming the breathable wall. Such a mesh material may be produced by forming a non-woven or woven mesh of individual polymer threads or by stretching a micro perforated sheet to make an expanded mesh, or by other suitable processes. Part or each of these processes may be conducted at the time of, or immediately preceding, using the mesh in forming the reinforcing sheath.


A variety of alternative conduit embodiments incorporating a reinforcing sheath, such as introduced above, are depicted in FIGS. 9A to 9I. Two other preferred forms are depicted in FIGS. 7 and 8. These embodiments have various advantages and/or disadvantages.


Referring to FIG. 9A a conduit is formed from an extruded tape 200 helically wound on a former to form the breathable wall. A mesh sheath 202 is formed from a mesh tape helically wound onto the outside of the breathable membrane 200. The overlapping edges of the mesh tape and the breathable membrane tape coincide and a molten plastic bead 201 is laid along these edges. The molten bead preferably provokes thermal bonding of all four coinciding layers, two of breathable membrane and two of polymer mesh. It will be appreciated that the polymer mesh may be on the inside or outside of the breathable membrane. However it is preferred that the internal surface of the conduit wall be smooth and hence it is preferred that the mesh tape be applied to the outside of the breathable membrane. It will be appreciated that each turn of mesh tape may be applied directly over each turn of breathable membrane contemporaneously so that the edges of adjacent turns overlap an edge of mesh tape comes between the edges of adjacent turns of breathable membrane tape, which is alternative to how it is depicted in FIG. 9A. It will also be appreciated that either or both of the breathable membrane tape and the mesh tape may be formed contemporaneously with forming the conduit therefrom and the mesh and membrane may accordingly bond over some or all of their contacting surfaces in addition to bonding achieved by heat from the bead 201.


Referring to FIG. 9B a conduit is formed having the same construction of breathable membrane 200, mesh 202 and bead 201. In addition a further sheath of breathable membrane 203 may be applied to the outside of the conduit, with the edges of adjacent urns 203 pressed onto and bonded to the outside of bead 201. This provides additional thermal insulation while allowing for dehumidification of the space between the inner and outer walls.


Referring to FIG. 9C the conduit of FIG. 9A is shown having breathable membrane wall 200, mesh sheath 202 and bead 201. In the embodiment of FIG. 9C a further breathable membrane sheath 204 is provided on the outside of the mesh sheath 202. The effect of this is to encapsulate the mesh 202 providing an improved aesthetic appearance and more acceptable external surface. A disadvantage of his constriction is the multitude of layers which the heat from bead 201 is required to thermally bond. Accordingly a construction of this type may require additional localized heating to thermally weld the overlapping edges of adjacent turns of membranes 200, 202, and 204.


Referring to FIG. 9D a variation on the embodiment shown in FIG. 9C is depicted. In this embodiment the outer breathable membrane 205 is inflated away from the mesh membrane 202 where in FIG. 9C the outer breathable membrane 204 lay against or bonded with the mesh membrane 202. In FIG. 9D the breathable 205 is supported away from the underlying membranes 200, 202 by an inflated pocket 211. This may be considered a variant of FIG. 9B wherein the bead 201 is provided entirely on the outside of the conduit. The multitude of layers at adjoining edges poses the same forming difficulties as the embodiment of FIG. 9C.


Referring to FIG. 9E a section of the conduit in which the mesh sheath is provided spaced from the breathable membrane conduit wall 200. The mesh sheath 206 is provided over the bead 201 at least in the vicinity of the joining of adjacent turns of the breathable membrane 200. Where the mesh sheath is formed from a wound tape, then adjacent turns 206 of the wound tape bond over the bead 201 upon action of the heat residing in the bead 201. This embodiment reduces the number of adjacent layers required to be bonded by the bead 201 and allows the layers of breathable membrane and mesh respectively to operate independently making this tube more supple than for example for tube in FIG. 9A.



FIG. 9F is a variation of the embodiment of FIG. 9E. While an air space was provided between the mesh layer 206 and the breathable membrane layer 200 in FIG. 9E, in FIG. 9F the mesh layer 207 is shrunk, vacuumed or collapsed to lie adjacent the breathable membrane layer 200. Where one or more of the breathable membrane and mesh are formed contemporaneous with forming of the conduit then where these layers 207 and 200 meet they may bond across some or all of their contacting area. This embodiment provides the formative advantages of FIG. 9E and a construction having similar qualities to that of FIG. 9A.


Referring to FIG. 9G, in a further embodiment, an additional breathable membrane is provided to the embodiment of FIG. 9F, spanning between turns of bead 201 and the outside of the mesh 207. To assist with bonding and for further reinforcement purposes a further bead 209 may be provided on the outside of the second breathable layer 208.


Referring to FIG. 9H a still further embodiment is shown, which is a variation of the embodiment shown in FIG. 9G. In the embodiment of FIG. 9H a second layer of breathable membrane 210 is provided on the outside of second bead 209. This is instead of being between the second bead 209 and the mesh layer 207 as the second breathable layer 208 was in the embodiment FIG. 9G. This provides a larger included air space between breathable layers 202 and 210 and at any time only a double thickness of polymer, film or mesh is required to be bonded by the beads 201 or 209.


Referring to FIG. 9I a still further embodiment is shown, being a variation of the embodiment shown in 9H. In the embodiment of FIG. 9I the mesh layer 206 rather than being the deflated, collapsed or vacuumed form as in FIGS. 9F-9H, it is taut between turns of bead 201, in the fashion of 9E. This provides a pair of air spaces between the breathable layers 200 and 210, with the mesh layer 206 partially inhibiting the free air flow between the layers. However, this construction has the disadvantage that the freely suspended mesh 206 may encourage rain out in the space enclosed between the breathable membranes 200 and 210, thereby retaining liquid water within the helical wall cavity.


All of the above described configurations are considered to provide additional longitudinal reinforcement, with each having advantages and disadvantages, some of which have been specified. In forming these constructions bonding is required between some or all of the various layers, for example between the breathable membrane and one or other bead, the bead and the mesh, the mesh and breathable membrane. Accordingly, it is preferred that appropriately compatible materials are used for each element of the construction. For example while a molten polyester bead may mechanically bond adequately with nylon or polypropylene mesh a brittleness may develop and/or this impeded the simultaneous bonding of the bead with an adjacent layer of polyester based breathable membrane, for example in the embodiment of FIG. 9A. Consequently it is preferred that all three elements have the same base polymer, and for example, for SYMPATEX which is polyester based product, a polyester bead and mesh are preferred.


Further variations on the above embodiments may include replacement of the outer breathable layer in FIGS. 9B, 9C, 9D, 9G, 9H and 9I with a perforated non permeable layer, as desired. However, such variation does not provide the full insulative effect while retaining liquid vapor transmission from the insulating space to allow for further transmission through the conduit wall.


An example of forming apparatus suitable for manufacturing the product the breathing tube according to the embodiments described in FIGS. 9A-9I is shown in FIG. 10. In particular the apparatus is shown forming a conduit according to FIG. 9H or 9I. The apparatus includes a former 300 preferably of a known type including a plurality of rotating rods arranged around a central support rod. The rods extend from and are rotated by a gearbox within a machine stock 301. At least in the tube forming region the rotating rods follow a helical path. The pitch angle of the rods relative to the support rod controls the pitch angle of the tube being formed. An example of such a machine is a spiral pipeline mandrel available from OLMAS SRL of Italy. Tube being formed on the former is rotated and advanced in the direction of arrow 303 by the movement of the rotating rods. The advance speed of the former is selected relative to the rotational speed so that the pitch of the helical laying of the strip or tape on to the former 300 is a little less than the width of the strip so that adjacent turns narrowly overlap. A first extruder 304 extrudes a tape 314 of breathable polymer materials. The tape 314 deposits on the former 300 in a helical fashion by action of the former. The pitch of the helical disposition of tape 314 is slightly less than the width of tape 314. The helical deposition of tape 314 forms the inner breathable wall 200 of the conduit. A second extruder 305 extrudes a bead 315 of polymer material. The bead 315 deposits on the former over the joint or overlap between adjacent turns of tape 314 forming a raised bead 201 along this join. A tape 316 of reinforcing membrane is unrolled from a reel 306 to have edges depositing on adjacent turns of bead 201. The helically deposited reinforcing tape 316 forms reinforcing layer 206. A third extruder 307 extrudes a second molten polymer bead 317. The bead 317 is helically deposited along the overlap between adjacent turns of reinforcing tape 316. A fourth extruder 308 extrudes a second tape 318 of breathable polymer. The second tape 318 of breathable polymer is deposited on the former 300 to span between adjacent turns of second bead 317. Adjacent us of tape 318 overlap while sufficiently molten to fuse above the second bead 209, forming outer breathable sheath 210.


In addition to the bonding of the film overlap by application of the molten bead other active fusing techniques may be applied. This may be particularly useful where a layer of longitudinal reinforcement or scrim is provided immediately adjacent the breathable film layer. Active methods may include hot air welding, hot rollers or radio frequency welding. In hot air welding a stream of hot air is blown on to the overlap of adjacent turns of breathable film, melting or fusing the adjacent edges together. This method has been found reasonably successful.


For hot roller welding a heated roller or rollers run in contact with the overlap and melt the film together. Like hot air welding hot roller welding relies on the application of a localized direct heating to the film overlap.


For radio frequency welding the film acts as an insulation layer between a pair of plates. A charge is passed between the plates melting and fusing the plastic film overlap together. The plates may take the form of a pair of rollers, one inside and one outside the tube, or a roller and one of the rotating rods of the former. Providing the plates as rollers (or as roller and forming mandrel) may render the radio frequency welding a continuous process with similar advantages to hot air welding and hot roller welding.


In a further variation on the manufacturing process the breathable film tube may be manufactured having a longitudinal seam rather than being formed as a continuous helical strip. In such an embodiment a wider web of film would be wrapped around a mandrel as it is extruded or unrolled from a reel. Longitudinal edges would overlap and be seam welded by any of the above mentioned methods. A rotary extruder may then extrude a reinforcing bead or beads on to the plastic film. Further reinforcing or film layers and helical beads may be applied by additional wrapping stations or rotating extruders as required.


Still other embodiments of a expiratory breathing conduit including longitudinal reinforcement are depicted in FIGS. 7 and 8. These embodiments utilize longitudinal reinforcing threads running parallel to the axis of the conduit.


In the embodiment of FIG. 7 the conduit includes an inner breathable polymer wall 250 with a plurality of axially extending reinforcing reads 251 running the length of said wall and spaced around the perimeter of the tube. The threads 251 are aligned parallel to one another and to the major axis of the conduit. A layer of additional longitudinal reinforcement 252, such as described earlier, and which may be a woven or non-woven mesh, aligned in any suitable orientation (although preferably aligned with the principal threads running at an angle to the major axis of said conduit) encloses the breathable permeable wall and reinforcing threads. A helical bead 253 is fused or adhered to the outside of the mesh 252.


A preferred method of forming the tube according to the embodiment of FIG. 7 is described with reference to the apparatus shown in FIG. 11. In particular in the apparatus of FIG. 11 both the inner, breathable, tube 250 and longitudinal reinforcement layer 252 are formed by helically wrapping a preformed tape or strip of the base material (breathable polymer strip 260 or mesh strip 262 respectively) on to a rotating former 270 (such as described earlier with reference to FIG. 10). The strip 260 or 262 unrolls from reels 273 and 274 respectively. Adjacent turns of breathable polymer 260 overlap at their edges. These overlapping edges are fused by thermal welding. Thermal welding is conducted as a continuous process by a hot air welding head 275. Rotation and advancement of the former 270 by the rotation head 271 continually passes the seam between adjacent edges of tape 260 past the head 275. A freely rotatable thread laying head 276 is located over the former 270 at a position between the hot air welding head 275 and the mesh spool 274. The rotating head 276 carries a plurality of spools 279 holding the reinforcing threads 251. The head 276 is rotatable by an electric motor and drive belt 277 and 278 respectively. The head 276 is preferably rotated at a speed synchronized with the speed of rotation of the former 270. Advancement of the former 270 draws thread 280 from the spools 279 to be laid as parallel threads 251 on the outside of the breathable membrane 250. The tape 262 of longitudinal reinforcement is subsequently applied over the threads 251 as a helical arrangement with edges of adjacent turns overlapping to form a continuous sheath. A bead 263 is extruded by an extruder 281 on to the overlap between adjacent turns of the mesh tape 262 to thereby form the helical reinforcing bead 253.


This embodiment of the invention provides a breathable exhalation limb reinforced against crushing by the helical bead and against longitudinal extension by the axial threads 251. The mesh sheath 252 protects the axial threads from snagging or pulling.


In the embodiment of FIG. 8 the conduit includes an inner breathable polymer wall 350. A helical bead 353 is fused or adhered to the inner breathable wall 350. A plurality of reinforcing threads 251 running the length of the wall and spaced around the perimeter of the tube are aligned parallel to one another and to the major axis of the conduit. The threads 351 are supported on the helical bead 353, with the threads spanning the spaces between turns of the helical bead. In this embodiment it is important to choose the reinforcing threads (material, gauge and number) such that the threads are sufficiently stiff to resist buckling under the transiently reduced internal pressures that could be expected during patient breathing. Unrestrained or excessive buckling of the threads could lead to unacceptable levels of conduit axial contraction. The axial threads 351 may be a spun or braided fibers, drawn or extruded mono filaments or other equivalent forms.


A preferred method of forming the tube according to the embodiment of FIG. 8 is described with reference to the apparatus shown in FIG. 12. In particular in the machine of FIG. 12 the breathable tube 350 is formed by helically wrapping a preformed tape or strip of breathable polymer strip 360 on to a rotating former 370. The strip 360 unrolls from reels 373. Adjacent turns of breathable polymer 360 overlap at their edges. These overlapping edges are fused by thermal welding. Thermal welding is conducted as a continuous process by a hot air welding head 375. Rotation and advancement of the former 370 continually passes the seam between adjacent turns of tape 360 past the head 375. A bead 363 is extruded by an extruder 381 on to the overlap between adjacent turns of the breathable tape 362 to thereby form the helical reinforcing bead 353. A freely rotatable threadlaying head 376 is located over the former after the bead extruder 381. The rotating head 376 carries a plurality of spools 379 holding the reinforcing threads 351. The head 376 is rotatable by an electric motor and drive belt 377 and 378 respectively. The head 376 is preferably rotated at a speed synchronized with the speed of rotation of the former 370. Advancement of tube along the former 370 draws thread 380 from the spools 379 to be laid as parallel threads 351 on the outside of the reinforcing bead.


This embodiment of the invention provides a breathable exhalation limb reinforced against crushing by the helical bead and against longitudinal extension by the axial threads 351. The spanning threads prevent direct contact between a user and the surface of the breathable tube, reducing the risk of punctures and the like.


It should be appreciated that with all of the forming methods involving winding of a narrow tape or strip to create a tube, it would be possible to wind two or more tapes or strips simultaneously onto the former so that the turns created by each tape are interposed by turns of other tapes, edges overlapping and being bonded together. For example a pair of tapes may be laid as a double helix. This would require a multiplication in the number of forming stations associated with the wound on components of the tube or conduit.


Referring to FIG. 3 other forms of the conduit, such as that shown in FIG. 1, may be formed by co extrusion of the breathable material (where the material is a suitable extrudable material) with a plastic material forming the remainder of the conduit wall. A suitable co extrusion die 9 is depicted in FIG. 3 in which a pair of circumferential sections 7 of the die opening have the breathable plastic material extruded therethrough, and the remainder sections 8 of the annular extrusion opening have the non-permeable plastic wall material extruded therethrough.


The purpose of the breathable region or regions of the conduit wall is to allow diffusion of water vapor from the expiratory limb of the breathing circuit along the path thereof independent of specific drain locations. This eliminates the buildup of condensation within the expiratory limb by drying the humidified gases during their flow through the expiratory limb. This furthermore reduces the humidity of the gases arriving at ancillary equipment, such as filters, ventilators and the like reducing the risk of condensation accumulation, thereby improving their operation.


In accordance with a further aspect of the invention, and as exemplified in FIGS. 4 and 5 the conduit incorporating one or more longitudinal strips of breathable membrane may further be incorporated in a coaxial breathing circuit as a passive humidification device. In particular referring to the cross section in FIG. 4 the coaxial breathing circuit may include an outer conduit 11 and an inner conduit 10. Preferably, for heat transfer reasons, the inner conduit 10 carries the inspiratory flow in the space 12 there within. The expiratory flow is preferably carried in the space 13 between the inner conduit 10 and the outer conduit 11. This airflow configuration is indicated by arrows 20, 19 respectively in FIG. 5.


The inner conduit 10 is formed having one or more longitudinal strips 2, 3 of breathable membrane in the wall 1 thereof, as has previously been described with reference to FIGS. 1, 2 and 3. Thus humidity in the expiratory flow space 13 may pass through the sections 2, 3 of breathable membrane to humidify the inspiratory flow in inspiratory flow space 12.


The breathable membrane works on relative partial pressures of water vapor so, with the flows in a counter flow arrangement substantial passive humidification of the inspiratory flow can be achieved.


Referring to FIG. 5 a circuit configured including the coaxial conduit depicted in FIG. 4 is represented. In this circuit the conduit has a patient end connector 15 and a ventilator end connector 16 having inspiratory port 17 and an expiratory port 18. The inspiratory 20 and expiratory 19 counter flows are indicated.


With the coaxial conduit the ventilator may not become aware of the leak in the interior conduit. Such a leak may short circuit the patient meaning that the patient will not be supplied with sufficient oxygen. Such a short circuit may be detected by placement of a sensor at the patient end. Preferably this sensor may be located in the patient end connector 15. A short circuit closer to the ventilator will lead to continued patient rebreathing of the air volume close to the patient. This will lead to a rise in the concentration of carbon dioxide in the conduit close to the patient which can be detected directly by a CO2 sensor. Such a sensor may comprise any one of a number of such sensors as is currently commercially available. Alternatively this re breathing may be detected by monitoring the temperature of the gases at the patient end connector 15, wherein a rise in temperature above a predetermined level indicates that rebreathing is occurring.


In addition to the above to reduce or eliminate the formation of condensation within either the inner or outer conduit, 10 or 11 respectively, and to maintain a substantially uniform temperature in the gases flow through the conduit, a heater means, such as a resistance heater wire, may be provided within either the inner or outer conduit, disposed within the gases spaces 12 or 13 or within the conduit walls themselves. In one possibility the heater wire may also serve as a reinforcing support (helical wire 25 in FIG. 4) within the inner conduit 10 or in the outside conduit as with coaxial conduit.


A further breathing circuit component to which the present invention can be applied is catheter mounts. A catheter mount connects between a patient interfacing component such as a mouth piece, nasal mask or endotracheal tube and the dual limbs of a breathing circuit. Connection with the dual limbs of the breathing circuit is generally via a wye connector. In the patient inhalation and exhalation cycle the dual limbs of the breathing circuit each have a distinct role, one as inhalation conduit and one as exhalation conduit. The catheter mount serves a dual role, transporting both inhaled and exhaled gases. Accordingly, the catheter mount can have significant disadvantages.


A volume of exhaled air remains in the catheter mount between exhalation and inhalation. Accordingly some air is re-breathed by the patient. While not unacceptable, rebreathing is not generally desirable and where significant rebreathing is likely, a boost in oxygen supply levels may be required.


Gases inhaled by a patient are, in a well-managed ventilation system, delivered in a condition having humidity near a saturation level and at close to body temperature, usually at a temperature between 33° C. and 37° C. This temperature may be maintained by a heater in the inhalation conduit right up to the point where the gases enter the catheter mount. Gases exhaled by a patient are returned fully saturated and are subjected to further cooling as they flow through the catheter mount. Accordingly, although little condensation forms on the interior walls during patient inhalation, significant condensation levels may form during patient exhalation. The condensation, or rain out, occurring inside the catheter mount is particularly deleterious due to its proximity to the patient. Mobile condensate breathed or inhaled by a patient may lead to coughing fits or other discomfort.


A catheter mount incorporating the present invention is depicted in FIG. 13. The catheter mount incorporates the wye connector at the ventilator end. An internal conduit 455 extends coaxially with the outer conduit 456. The internal conduit 455 is supported at its patient end on an internal conduit connector 457 which is turn is supported via support struts 458 from patient end connector 459. The inner conduit 455 is supported at its other end on an inner conduit connector 460 which forms part of the ventilator end connector 461.


In the catheter mounts of FIGS. 13A and 13B the ventilator end inner conduit connector 460 communicates with the inspiratory conduit connector 462. The outer conduit 456 has at least a part of its wall being made from a breathable material. Preferably the outer conduit 456 is formed entirely from breathable material, and as shown in FIG. 13A may also include lateral reinforcement (a spiral reinforcing bead 467) and longitudinal reinforcement (axially oriented threads 490) on the outside thereof. When constructed according to the manner earlier described with respect to FIGS. 12 and 8 the spiral bead 467 is laid on the overlap between consecutive turns of the extruded tape and assists fusion of the overlap and reinforcement against crushing.


Therefore in use each of the catheter mounts according to FIGS. 13A and 13B has an inspiratory flow entering the catheter mount as indicated by arrow 470. The inspiratory flow passes through the inner conduit to exit to the patient through the patient end connector 459 as indicated by arrows 471. Upon patient exhalation, whether assisted or otherwise, expired gases pass through connector 459 and into the space surrounding the inner conduit 455 as indicated by arrows 472. These gases pass along the inside of the wall of outer conduit 456 as indicated by arrows 473 and out through the expiratory tube connector 463 of ventilation connector 461 as indicated by arrow 474. In passing through the catheter mount within the space between the inner conduit 455 and the outer wall 456 water vapor may pass through the water vapor permeable portions of the outer conduit 456. Preferably the entire of outer conduit 456, apart from any reinforcing rib, is breathable. In this way, although the expired gases may experience some temperature drop as they pass through the catheter mount to the expiratory conduit connector 463, hand in hand with this temperature drop is a reduction in humidity by water vapor passing through the breathable membrane of the outer conduit. Accordingly, relative saturation of the expiratory flow is reduced and rain out is reduced.


The catheter mounts incorporating features according to the present invention include explicit division of the inspiratory and expiratory flows through the catheter mount, significantly reducing rebreathing. Rain out is also reduced by reducing the humidity of the expired gases even as the temperature of those gases reduces.


1. A breathing circuit component including an inlet, an outlet and an enclosing wall defining a gases passageway between said inlet and said outlet, at least a region of said wall being of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases.


2. A breathing circuit component of paragraph no. 1 wherein said material is selected from:

    • (a) hydrophilic thermoplastics,
    • (b) perfluorinated polymers
    • (c) woven treated fabrics.


3. A breathing circuit component of paragraph no. 1 wherein said material is a perfluorinated polymer membrane.


4. A breathing circuit component of paragraph no. 1 wherein said material is a hydrophilic polyester block copolymer.


5. A breathing circuit component of paragraph no. 1 wherein said gases passageway is an expiratory conduit and said region or regions is or are distributed over the length of said conduit.


6. A breathing circuit component of paragraph no. 5 wherein said region or regions are elongate and run at least a substantial part of the length of said conduit.


7. A breathing circuit component of paragraph no. 5 including a series of said regions spaced along the length of said conduit.


8. A breathing circuit component of paragraph no. 5 wherein said conduit including said regions is extruded.


9. A breathing circuit component of paragraph no. 8 wherein the entire of said extruded tube is of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases.


10. A breathing circuit component of paragraph no. 8 wherein said regions of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases are one or more longitudinal strips running the complete length of said conduit.


11. A breathing circuit component of paragraph no. 5 wherein said conduit includes at least one helically wound polymer tape or strip, part or all of said strip being of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases, respective edges of adjacent turns of said strip being adjoining or overlapping and bonded.


12. A breathing circuit component of paragraph no. 5 wherein said conduit includes at least one longitudinal strip, part or all of said strip being of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases, said strip or strips extending parallel to the axis of said conduit, edges of said strip or strips adjoining or overlapping to form an enclosed tube and bonded.


13. A breathing circuit component of paragraph no. 5 wherein said conduit is a blown film tube of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases.


14. A breathing circuit component as claimed in any one of claims 10 to 13 including lateral reinforcement against crushing.


15. A breathing circuit component of paragraph no. 14 wherein said lateral reinforcement includes a plurality of annular corrugations distributed over the length of said conduit.


16. A breathing circuit component of paragraph no. 14 wherein said lateral reinforcement is a helical bead or a series of annular ring beads or ribs distributed over the length of said conduit.


17. A breathing circuit component of paragraph no. 11 including lateral reinforcement against crushing wherein said lateral reinforcement is a helical bead disposed over said adjoining or overlapping edges between turns of strip.


18. A breathing circuit component of paragraph no. 14 wherein said lateral reinforcement is a skeletal reinforcing structure within said conduit.


19. A breathing circuit component of any one of paragraph nos. 11 to 13 wherein said conduit includes longitudinal reinforcement against longitudinal stretching of said conduit.


20. A breathing circuit component of paragraph no. 17 wherein said conduit includes longitudinal reinforcement against longitudinal stretching of said conduit.


21. A breathing circuit component of paragraph no. 19 wherein said longitudinal reinforcement includes a plurality of longitudinally extending threads spaced around the perimeter of the conduit wall, each said thread aligned substantially parallel with the overall axis of said tube.


22. A breathing circuit component of paragraph no. 20 wherein said longitudinal reinforcement includes a plurality of longitudinally extending threads spaced around the perimeter of the conduit wall, each said thread aligned substantially parallel with the overall axis of said tube and said threads are supported away from said conduit wall by said helical bead.


23. A breathing circuit component of paragraph no. 22 wherein said thread is bonded to said bead at crossings of said bead, and spans the gaps between adjacent turns of said bead.


24. A breathing circuit component of paragraph no. 22 wherein said longitudinal reinforcement includes an outer sheath disposed about said conduit and supported on said bead.


25. A breathing circuit component of paragraph no. 24 wherein said outer sheath includes at least regions which are of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases.


26. A breathing circuit component of paragraph no. 24 wherein said outer sheath has a plurality of holes or apertures therethrough.


27. A breathing circuit component of paragraph no. 20 wherein said longitudinal reinforcement includes an outer sheath disposed about said conduit and bonded with said conduit wall.


28. A breathing circuit component of paragraph no. 27 wherein said outer sheath is bonded to said conduit wall by action of a helical bead.


29. A breathing circuit component of paragraph no. 28 wherein said outer sheath includes a plurality of longitudinally extending polymer threads, either parallel with the axis of said conduit or braided about said conduit.


30. A breathing circuit component of paragraph no. 16 including a further wall of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases is spaced from said first wall by at least said helical bead.


31. A breathing circuit component of paragraph no. 20 wherein where said longitudinal reinforcement is supported on said bead from said first wall, a second bead is disposed over said first bead, and said longitudinal reinforcement is held between said first and second beads.


32. A breathing circuit component of paragraph no. 31 including a further said 1 wall of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases disposed on the outer surface of said second bead.


33. A breathing circuit component of paragraph no. 31 including a further said conduit wall of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases adjacent said longitudinal reinforcement and between said first and second beads.


34. A breathing circuit limb having both inspiratory and expiratory gases passageways, each having a respective inlet and outlet and a wall defining a gases passageway extending from said inlet to said outlet, at least a region of the wall of the expiratory conduit being of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases.


35. A breathing circuit limb of paragraph no. 34 wherein said material is selected from:

    • (a) hydrophilic thermoplastics,
    • (b) perfluorinated polymers
    • (c) woven treated fabrics.


36. A breathing circuit limb of paragraph no. 34 wherein one said gases passageways is defined by an inner conduit, said inner conduit is disposed substantially coaxially within an external surrounding conduit, and the other of said gases passageways is defined between the inner and outer conduits.


37. A breathing circuit limb of paragraph no. 36 wherein the expiratory gases pathway is between the outer conduit and the inner conduit and the inspiratory flow path is within the inner conduit and said regions are in the wall of said inner conduit.


38. A breathing circuit limb of paragraph no. 36 wherein the expiratory gases pathway is between the outer conduit and the inner conduit and the inspiratory flow path is within the inner conduit and said regions are in the wall of said outer conduit.


39. A breathing circuit limb of paragraph no. 36 wherein the inspiratory flow path is between the outer conduit and the inner conduit and the expiratory flow path is within the inner conduit, and said regions are in the wall of said inner conduit.


40. A breathing circuit limb of paragraph no. 36 wherein said conduit including said regions is extruded.


41. A breathing circuit limb of paragraph no. 40 wherein the entire of said extruded tube is of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases.


42. A breathing circuit limb of paragraph no. 40 wherein said regions of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases are one or more longitudinal strips running the complete length of said conduit.


43. A breathing circuit limb of paragraph no. 36 wherein said conduit includes at least one helically wound polymer tape or strip, part or all of said strip being of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases, respective edges of adjacent turns of said strip being adjoining or overlapping and bonded.


44. A breathing circuit limb of paragraph no. 36 wherein said conduit includes at least one longitudinal strip, part or all of said strip being of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases, said strip or strips extending parallel to the axis of said conduit, edges of said strip or strips adjoining or overlapping to form an enclosed tube and bonded.


45. A breathing circuit limb of paragraph no. 36 wherein said conduit is a blown film tube of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases.


46. A breathing circuit limb of any of paragraph nos. 42 to 45 including lateral reinforcement against crushing.


47. A breathing circuit limb of paragraph no. 46 wherein said lateral reinforcement includes a plurality of annular corrugations distributed over the length of said conduit.


48. A breathing circuit limb of paragraph no. 46 wherein said lateral reinforcement is a helical bead or a series of annular ring beads or ribs distributed over the length of said conduit.


49. A breathing circuit limb of paragraph no. 43 including lateral reinforcement against crushing wherein said lateral reinforcement is a helical bead disposed over said adjoining or overlapping edges between turns of strip.


50. A breathing circuit limb of paragraph no. 46 wherein said lateral reinforcement is a skeletal reinforcing structure within said conduit.


51. A breathing circuit limb of any one of paragraph nos. 43 to 45 wherein said conduit includes longitudinal reinforcement against longitudinal stretching of said conduit.


52. A breathing circuit limb of paragraph no. 49 wherein said conduit includes longitudinal reinforcement against longitudinal stretching of said conduit.


53. A breathing circuit limb of paragraph no. 51 wherein said longitudinal reinforcement includes a plurality of longitudinally extending threads spaced around the perimeter of the conduit wall, each said thread aligned substantially parallel with the overall axis of said tube.


54. A breathing circuit limb of paragraph no. 52 wherein said longitudinal reinforcement includes a plurality of longitudinally extending threads spaced around the perimeter of the conduit wall, each said thread aligned substantially parallel with the overall axis of said tube and said threads are supported away from said conduit wall by said helical bead.


55. A breathing circuit limb of paragraph no. 54 wherein said thread is bonded to said bead at crossings of said bead, and spans the gaps between adjacent turns of said bead.


56. A breathing circuit limb of paragraph no. 54 wherein said longitudinal reinforcement includes an outer sheath disposed about said conduit and supported on said bead.


57. A breathing circuit limb of paragraph no. 56 wherein said outer sheath includes at least regions which are of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases.


58. A breathing circuit limb of paragraph no. 56 wherein said outer sheath has a plurality of holes or apertures therethrough.


59. A breathing circuit limb of paragraph no. 52 wherein said longitudinal reinforcement includes an outer sheath disposed about said conduit and bonded with said conduit wall.


60. A breathing circuit limb of paragraph no. 59 wherein said outer sheath is bonded to said conduit wall by action of a helical bead.


61. A breathing circuit limb of paragraph no. 60 wherein said outer sheath includes a plurality of longitudinally extending polymer threads, either parallel with the axis of said conduit or braided about said conduit.


62. A breathing circuit limb of paragraph no. 48 including a further wall of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases is spaced from said first wall by at least said helical bead.


63. A breathing circuit limb of paragraph no. 52 wherein where said longitudinal reinforcement is supported on said bead from said first wall, a second bead is disposed over said first bead, and said longitudinal reinforcement is held between said first and second beads.


64. A breathing circuit limb of paragraph no. 53 including a further said wall of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases disposed on the outer surface of said second bead.


65. A breathing circuit limb of paragraph no. 53 including a further said conduit wall of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases adjacent said longitudinal reinforcement and between said first and second beads.


66. A catheter mount including:

    • a short length of breathing conduit for connecting at one end to a patient interface component and at the other end to, directly or indirectly, the dual arms of a breathing circuit,
    • a dividing partition extending for at least a substantial part of the length of said breathing conduit and dividing, in cross section, said conduit into a plurality of gases passageways each having a defining passageway wall,
    • at least one of:
      • an inspiratory flow director for directing at least the bulk of an inspiratory air flow to a first selection of said passageways, and
      • an expiratory flow director for directing at least the bulk of an expiratory flow to a second selection of said passageways, said second selection being exclusive of said first selection, and
      • at least a region of the walls of said second selection of passageways being of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases.


67. A catheter mount of paragraph no. 66 wherein said material is selected from:

    • (a) hydrophilic thermoplastics,
    • (b) perfluorinated polymers
    • (c) woven treated fabrics.


68. A catheter mount of paragraph no. 66 wherein said partition comprises an inner conduit coaxial with said breathing conduit, freely suspended to be substantially coaxial with said breathing conduit.


69. A catheter mount of paragraph no. 66 wherein said first selection of passages at least substantially surrounds said second selection of passages, and said breathing conduit is insulated from ambient conditions on its outer surface.


70. A catheter mount of paragraph no. 66 wherein said second selection of passages at least substantially surrounds said first selection of passages, and said breathing conduit includes at least a region of said wall being of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases.


71. A catheter mount of paragraph no. 66 wherein said inspiratory flow director and/or said expiratory flow director comprises flow influencing barriers or baffles at either end of said breathing tube.


72. A catheter mount of paragraph no. 66 wherein at least one of said flow directors is a valve operated by the prevailing gasses pressures.


73. A catheter mount of paragraph no. 66 wherein said conduit includes said regions and is extruded.


74. A catheter mount of paragraph no. 73 wherein wherein the entire of said extruded tube is of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases.


75. A catheter mount of paragraph no. 73 wherein said regions of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases are one or more longitudinal strips running the complete length of said conduit.


76. A catheter mount of paragraph no. 66 wherein said conduit includes at least one helically wound polymer tape or strip, part or all of said strip being of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases, respective edges of adjacent turns of said strip being adjoining or overlapping and bonded.


77. A catheter mount of paragraph no. 66 wherein said conduit includes at least one longitudinal strip, part or all of said strip being of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases said strip or strips extending parallel to the axis of said conduit, edges of said strip or strips adjoining or overlapping to form an enclosed tube and bonded.


78. A catheter mount of paragraph no. 66 wherein said conduit is a blown film tube of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases.


79. A catheter mount of any of paragraph nos. 75 to 78 including lateral reinforcement against crushing.


80. A catheter mount of paragraph no. 79 wherein said lateral reinforcement includes a plurality of annular corrugations distributed over the length of said conduit.


81. A catheter mount of paragraph no. 79 wherein said lateral reinforcement is a helical bead or a series of annular ring beads or ribs distributed over the length of said conduit.


82. A catheter mount of paragraph no. 76 including lateral reinforcement against crushing wherein said lateral reinforcement is a helical bead disposed over said adjoining or overlapping edges between turns of strip.


83. A catheter mount of paragraph no. 79 wherein said lateral reinforcement is a skeletal reinforcing structure within said conduit.


84. A catheter mount of any of paragraph nos. 76 to 78 wherein said conduit includes longitudinal reinforcement against longitudinal stretching of said conduit.


85. A catheter mount of paragraph no. 82 wherein said conduit includes longitudinal reinforcement against longitudinal stretching of said conduit.


86. A catheter mount of paragraph no. 84 wherein said longitudinal reinforcement includes a plurality of longitudinally extending threads spaced around the perimeter of the conduit wall, each said thread aligned substantially parallel with the overall axis of said tube.


87. A catheter mount of paragraph no. 85 wherein said longitudinal reinforcement includes a plurality of longitudinally extending threads spaced around the perimeter of the conduit wall, each said thread aligned substantially parallel with the overall axis of said tube and said threads are supported away from said conduit wall by said helical bead.


88. A catheter mount of paragraph no. 87 wherein said thread is bonded to said bead at crossings of said bead, and spans the gaps between adjacent turns of said bead.


89. A catheter mount of paragraph no. 87 wherein said longitudinal reinforcement includes an outer sheath disposed about said conduit and supported on said bead.


90. A catheter mount of paragraph no. 89 wherein said outer sheath includes at least regions which are of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases.


91. A catheter mount of paragraph no. 89 wherein said outer sheath has a plurality of holes or apertures therethrough.


92. A catheter mount of paragraph no. 85 wherein said longitudinal reinforcement includes an outer sheath disposed about said conduit and bonded with said conduit wall.


93. A catheter mount of paragraph no. 92 wherein said outer sheath is bonded to said conduit wall by action of a helical bead.


94. A catheter mount of paragraph no. 93 wherein said outer sheath includes a plurality of longitudinally extending polymer threads, either parallel with the axis of said conduit or braided about said conduit.


95. A catheter mount of paragraph no. 81 including a further wall of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases is spaced from said first wall by at least said helical bead.


96. A catheter mount of paragraph no. 85 wherein where said longitudinal reinforcement is supported on said bead from said first wall, a second bead is disposed over said first bead, and said longitudinal reinforcement is held between said first and second beads.


97. A catheter mount of paragraph no. 96 including a further said wall of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases disposed on the outer surface of said second bead.


98. A catheter mount of paragraph no. 96 including a further said conduit wall of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases adjacent said longitudinal reinforcement and between said first and second beads.


99. A dedicated water vapour exchanger including an inspiratory gases pathway and an expiratory gases pathway having a common wall therebetween, said common wall including one or more regions of a material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases.


100. A water vapour exchanger of paragraph no. 99 wherein said material is selected from:

    • (a) hydrophilic thermoplastics,
    • (b) perfluorinated polymers
    • (c) woven treated fabrics.


101. Apparatus for forming a breathing circuit conduit comprising:

    • a former, onto which a tube wall can be deposited and which advances said deposited tube wall in an advance axis and rotates said deposited tube wall about said advance direction, the speed of said advance and the speed of said rotation together defining a pitch,
    • at least one film laying head which deposits a film on said former, the combined width of said film deposited by said film laying heads being wider than said pitch such that adjacent turns of laid film overlap to form an overlap seam,
    • a bead laying head for each said film laying head, each said bead laying head laying a reinforcing bead on an overlap seam,
    • an axial thread laying head, said thread laying head fitted over and around said former and carrying a plurality of thread feeds, each thread feed allowing the drawing of a thread from a reserve, and
    • a rotator to rotate said axial thread laying bead at substantially the same speed as the expected rotation speed of said tube.


102. Apparatus of paragraph no. 101 wherein, in said advance direction said bead laying head precedes said thread laying head.


103. Apparatus of paragraph no. 101 wherein, in said advance direction, said bead laying head succeeds said thread laying head.


104. Apparatus of paragraph no. 103 including at least one, but less than the number of said bead laying heads, reinforcement laying head, between said thread laying head and said bead laying head in said advance direction, said reinforcement laying head depositing a mesh tape onto said former, the combined width of said mesh tapes deposited by said mesh laying heads being greater than said pitch.


While some embodiments of the present invention have been described as preferred and convey particular advantages over other embodiments many other combinations may prove commercially useful.

Claims
  • 1. An elongate flexible expiratory breathing conduit comprising: an inlet connector configured to connect to and receive a flow of expiratory gases from a patient interface component;an outlet connector configured to connect to and deliver the flow of expiratory gases to other equipment, anda single flexible corrugated tube connecting the inlet connector to the outlet connector, the tube formed of a breathable hydrophilic thermoplastic material that allows passage of water vapor from the flow of expiratory gases directly to ambient without allowing passage of liquid water, the single flexible corrugated tube comprising a diameter sufficient to allow an entirety of the flow of expiratory gases from the patient to pass through the tube.
  • 2. The elongate flexible expiratory breathing conduit of claim 1, wherein the other equipment comprises a filter or a ventilator.
  • 3. The elongate flexible expiratory breathing conduit of claim 1, wherein the flexible corrugated tube is extruded as a continuous tube.
  • 4. The elongate flexible expiratory breathing conduit of claim 3, wherein the flexible corrugated tube comprises a longitudinal seam.
  • 5. The elongate flexible expiratory breathing conduit of claim 3, wherein the entire flexible corrugated tube comprises the material that allows passage of water vapor without allowing passage of liquid water.
  • 6. The elongate flexible expiratory breathing conduit of claim 1, wherein the flexible corrugated tube comprises a plurality of annular corrugations.
  • 7. The elongate flexible expiratory breathing conduit of claim 6, wherein the plurality of annular corrugations provide lateral reinforcement against crushing.
  • 8. The elongate flexible expiratory breathing conduit of claim 6, wherein the plurality of annular corrugations are distributed over the length of the flexible corrugated tube.
  • 9. The elongate flexible expiratory breathing conduit of claim 1, further comprising a heater wire internal to the single flexible corrugated tube.
  • 10. The elongate flexible expiratory breathing conduit of claim 1, wherein the inlet connector is configured to connect to a wye connector.
  • 11. The elongate flexible expiratory breathing conduit of claim 10, wherein the wye connector and a sensor are located at a patient end.
  • 12. The elongate flexible expiratory breathing conduit of claim 10, wherein the inlet connector connects directly to the wye connector.
  • 13. An elongate flexible expiratory breathing conduit comprising: an inlet connector means which connects to and receives a flow of expiratory gases from a patient interface component;an outlet connector means which connects to and delivers the flow of expiratory gases to other equipment, anda single flexible corrugated tube means connecting the inlet connector means to the outlet connector means, the tube means formed of a breathable hydrophilic thermoplastic material that allows passage of water vapor from the flow of expiratory gases directly to ambient without allowing passage of liquid water, the tube means comprising a diameter sufficient to allow an entirety of the flow of expiratory gases to flow through.
  • 14. The elongate flexible expiratory breathing conduit of claim 13, wherein the other equipment comprises a filter or a ventilator.
  • 15. The elongate flexible expiratory breathing conduit of claim 13, wherein the flexible corrugated tube means is extruded as a continuous tube.
  • 16. The elongate flexible expiratory breathing conduit of claim 15, wherein the flexible corrugated tube means comprises a longitudinal seam.
  • 17. The elongate flexible expiratory breathing conduit of claim 15, wherein the entire flexible corrugated tube means comprises the material that allows passage of water vapor without allowing passage of liquid water.
  • 18. The elongate flexible expiratory breathing conduit of claim 13, wherein the flexible corrugated tube means comprises a plurality of annular corrugations.
  • 19. The elongate flexible expiratory breathing conduit of claim 18, wherein the plurality of annular corrugations provide lateral reinforcement against crushing.
  • 20. The elongate flexible expiratory breathing conduit of claim 18, wherein the plurality of annular corrugations are distributed over the length of the flexible corrugated tube means.
  • 21. The elongate flexible expiratory breathing conduit of claim 13, further comprising a heater wire internal to the single flexible corrugated tube means.
  • 22. The elongate flexible expiratory breathing conduit of claim 13, wherein the inlet connector means is configured to connect to a wye connector.
  • 23. The elongate flexible expiratory breathing conduit of claim 22, wherein the inlet connector means connects directly to the wye connector.
  • 24. A dual limb breathing system comprising: a wye connector;an inspiratory tube providing a passageway for a flow of respiratory gases for inspiration by a patient through the wye connector; andan expiratory tube providing a passageway for a flow of expiratory gases from the patient through the wye connector, the expiratory tube comprising: an inlet connector configured to connect to and receive the flow of expiratory gases from the wye connector;an outlet connector configured to connect to and deliver the flow of expiratory gases to other equipment, anda single flexible corrugated tube connecting the inlet connector to the outlet connector, the single flexible corrugated tube formed of a breathable hydrophilic thermoplastic material that allows passage of water vapor from the flow of expiratory gases directly to ambient without allowing passage of liquid water, the single flexible corrugated tube comprising a diameter sufficient to allow an entirety of the flow of expiratory gases from the patient to pass through the expiratory tube.
  • 25. The dual limb breathing system of claim 24, wherein the other equipment comprises a filter or a ventilator.
Priority Claims (2)
Number Date Country Kind
504439 May 2000 NZ national
509041 Dec 2000 NZ national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent Ser. No. 15/816,965, filed Nov. 17, 2017, which is a continuation of U.S. patent application Ser. No. 15/633,557, filed Jun. 26, 2017, which is a division of U.S. patent application Ser. No. 12/328,200, filed Dec. 4, 2008, now U.S. Pat. No. 9,802,020, issued Oct. 31, 2017, which is a division of U.S. patent application Ser. No. 11/371,389, filed Mar. 9, 2006, now abandoned, which is a division of U.S. patent application Ser. No. 10/622,755, filed Jul. 18, 2003, now U.S. Pat. No. 7,140,366, issued Nov. 28, 2006, which is a division of U.S. patent application Ser. No. 09/850,797, filed May 8, 2001, now U.S. Pat. No. 6,769,431, issued Aug. 3, 2004, which claims the benefit of New Zealand Patent Application No. 504439, filed May 10, 2000 and New Zealand Patent Application No. 509041, filed Dec. 20, 2000, all of which are incorporated by reference in their entirety. In addition, any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are incorporated by reference in their entirety.

US Referenced Citations (179)
Number Name Date Kind
2868199 Hudson Jan 1959 A
3144313 Pfefferle Aug 1964 A
3228877 Mahon Jan 1966 A
3245206 Bonnet Apr 1966 A
3292346 Adams Dec 1966 A
3303105 Konikoff et al. Feb 1967 A
3307330 Niedzielski et al. Mar 1967 A
3367850 Johnson Feb 1968 A
3434471 Liston Mar 1969 A
3513844 Smith May 1970 A
3639970 Larkin Feb 1972 A
3682171 Dali et al. Aug 1972 A
3735558 Skarstrom et al. May 1973 A
3735559 Salemme May 1973 A
3754552 King Aug 1973 A
3803810 Rosenberg Apr 1974 A
3856051 Bain Dec 1974 A
3871373 Jackson Mar 1975 A
3889717 Obadal et al. Jun 1975 A
3891556 Richardson et al. Jun 1975 A
3895630 Bachman Jul 1975 A
3910808 Steward Oct 1975 A
3912795 Jackson Oct 1975 A
3963856 Carlson et al. Jun 1976 A
3966525 Steward Jun 1976 A
4007737 Paluch Feb 1977 A
4048993 Dobritz Sep 1977 A
4204562 Kelly May 1980 A
4207457 Haglund et al. Jun 1980 A
4216769 Grimes Aug 1980 A
4262704 Grawey Apr 1981 A
4265235 Fukunaga May 1981 A
4265239 Fischer, Jr. et al. May 1981 A
4327718 Cronenberg May 1982 A
4327775 Tally May 1982 A
4336798 Beran Jun 1982 A
4337800 Carlson et al. Jul 1982 A
4343672 Kanao Aug 1982 A
4406283 Bir Sep 1983 A
4409283 Boyle, Jr. Oct 1983 A
4420016 Nichols Dec 1983 A
4456034 Bixby Jun 1984 A
4462397 Suzuki Jul 1984 A
4463755 Suzuki Aug 1984 A
4469495 Hiraizumi et al. Sep 1984 A
4490575 Kutnyak Dec 1984 A
4509359 Gedeon et al. Apr 1985 A
4653542 Tascher Mar 1987 A
4682010 Drapeau et al. Jul 1987 A
4686354 Makin Aug 1987 A
4698890 Neaves Oct 1987 A
4705543 Kertzman Nov 1987 A
4708831 Elsworth et al. Nov 1987 A
4722334 Blackmer et al. Feb 1988 A
4753233 Grimes Jun 1988 A
4771770 Artemenko et al. Sep 1988 A
4773410 Blackmer et al. Sep 1988 A
4791963 Gronert et al. Dec 1988 A
4808201 Kertzman Feb 1989 A
4825863 Dittmar et al. May 1989 A
4844719 Toyomoto et al. Jul 1989 A
4875908 Kikukawa et al. Oct 1989 A
4915104 Marcy Apr 1990 A
4915105 Lee Apr 1990 A
4967744 Chua Nov 1990 A
4995384 Keeling Feb 1991 A
5042500 Norlien et al. Aug 1991 A
5044361 Werner et al. Sep 1991 A
5046531 Kanao Sep 1991 A
5160511 Lovelock Nov 1992 A
5165395 Ricci Nov 1992 A
5230119 Woods et al. Jul 1993 A
5233996 Coleman et al. Aug 1993 A
5273032 Borody Dec 1993 A
5284160 Dryden Feb 1994 A
5335656 Bowe et al. Aug 1994 A
5357948 Eilentropp Oct 1994 A
5392770 Clawson et al. Feb 1995 A
5411474 Ott et al. May 1995 A
5427291 Smith Jun 1995 A
5454061 Carlson Sep 1995 A
5461122 Yilgor et al. Oct 1995 A
5462048 Lambert et al. Oct 1995 A
5501212 Psaros Mar 1996 A
5513634 Jackson May 1996 A
5586551 Hillard Dec 1996 A
5595174 Gwaltney Jan 1997 A
5603991 Kupiecki et al. Feb 1997 A
5611332 Bono Mar 1997 A
5614588 Steenblock et al. Mar 1997 A
5620500 Fukui et al. Apr 1997 A
5630409 Bono et al. May 1997 A
5637168 Carlson Jun 1997 A
5640951 Huddart et al. Jun 1997 A
5653228 Byrd Aug 1997 A
5704344 Cole Jan 1998 A
5709762 Rowan Jan 1998 A
5769071 Tumbull Jun 1998 A
5798013 Brandenburger Aug 1998 A
5848223 Carlson Dec 1998 A
5894839 Rosenkoetter et al. Apr 1999 A
5964219 Pekka Oct 1999 A
5975144 Akedo et al. Nov 1999 A
5983896 Fukunaga et al. Nov 1999 A
6078730 Huddart et al. Jun 2000 A
6098615 Lloyd et al. Aug 2000 A
6105576 Clawson et al. Aug 2000 A
6116235 Walters et al. Sep 2000 A
6119694 Correa Sep 2000 A
6148818 Pagan Nov 2000 A
6167883 Beran et al. Jan 2001 B1
6192941 Mallen-Herrero et al. Feb 2001 B1
6201223 Nitta Mar 2001 B1
6272933 Gradon et al. Aug 2001 B1
6349722 Gradon et al. Feb 2002 B1
6363930 Clawson et al. Mar 2002 B1
6367472 Koch Apr 2002 B1
6367510 Carlson Apr 2002 B1
6394145 Bailly May 2002 B1
6412481 Bienvenu et al. Jul 2002 B1
6432169 Kluwe et al. Aug 2002 B1
6474335 Lammers Nov 2002 B1
6516798 Davies Feb 2003 B1
6523538 Wikefeldt Feb 2003 B1
6536136 Saga Mar 2003 B2
6536428 Smith et al. Mar 2003 B1
6536436 McGlothen Mar 2003 B1
6539937 Havari Apr 2003 B1
6561219 Apostolides May 2003 B1
6584972 McPhee Jul 2003 B2
6595215 Wood Jul 2003 B2
6637434 Noble Oct 2003 B2
6662802 Smith et al. Dec 2003 B2
6769431 Smith et al. Aug 2004 B2
6769432 Keifer Aug 2004 B1
6779522 Smith et al. Aug 2004 B2
6807967 Wood Oct 2004 B2
7140366 Smith et al. Nov 2006 B2
7493902 White et al. Feb 2009 B2
RE40806 Gradon et al. Jun 2009 E
7900628 Matula et al. Mar 2011 B2
7905232 Olsen et al. Mar 2011 B2
8037882 Smith et al. Oct 2011 B2
8220463 White et al. Jul 2012 B2
8267092 White et al. Sep 2012 B2
8851076 White et al. Oct 2014 B2
8905082 Gray Dec 2014 B2
8980036 Smith et al. Mar 2015 B2
9067035 Ophir et al. Jun 2015 B2
9802020 Smith et al. Oct 2017 B2
9827393 Smith et al. Nov 2017 B2
9849262 White et al. Dec 2017 B2
9878120 White et al. Jan 2018 B2
10159814 Smith Dec 2018 B2
20010054422 Smith et al. Dec 2001 A1
20020002976 Smith et al. Jan 2002 A1
20020046755 De Voss Apr 2002 A1
20020055685 Levitsky et al. May 2002 A1
20020059935 Wood May 2002 A1
20020195104 Fini et al. Dec 2002 A1
20030028139 Inoue Feb 2003 A1
20030047185 Olsen et al. Mar 2003 A1
20030070680 Smith et al. Apr 2003 A1
20040099268 Smith et al. May 2004 A1
20070235100 Tomerlin et al. Oct 2007 A1
20080072986 Burrowes et al. Mar 2008 A1
20090025724 Herron, Jr. Jan 2009 A1
20090088656 Levitsky et al. Apr 2009 A1
20090126817 Gray May 2009 A1
20130098360 Hurmez et al. Apr 2013 A1
20140180157 Levitsky et al. Jun 2014 A1
20150083125 White et al. Mar 2015 A1
20150208953 Levitsky et al. Jul 2015 A1
20150306333 Armadio et al. Oct 2015 A1
20160045702 Milne et al. Feb 2016 A1
20170119989 White et al. Mar 2017 A1
20170296769 Smith et al. Oct 2017 A1
20180071477 Smith et al. Mar 2018 A1
20180071478 Smith et al. Mar 2018 A1
Foreign Referenced Citations (31)
Number Date Country
2833707 Nov 2001 CA
2346628 Jul 2010 CA
2697142 Feb 2014 CA
28036 Feb 1984 DE
0535379 Apr 1993 EP
0557040 Aug 1993 EP
0621050 Oct 1994 EP
1166814 Jan 2002 EP
1477200 Oct 2006 EP
1153627 Nov 2007 EP
1885460 Feb 2008 EP
1681071 Feb 2009 EP
2226341 Sep 2010 EP
2305336 Apr 2011 EP
2025359 Sep 2013 EP
2666795 Nov 2013 EP
2638361 May 1990 FR
0587163 Apr 1947 GB
2139110 Nov 1984 GB
2252515 Dec 1992 GB
S62-236724 Oct 1987 JP
03-168155 Jul 1991 JP
H05-052378 Mar 1993 JP
10248935 Sep 1998 JP
11323899 Nov 1999 JP
2000-24111 Jan 2000 JP
2000-24113 Jan 2000 JP
WO 9718001 May 1997 WO
WO 0141854 Jun 2001 WO
WO 2006120683 Nov 2006 WO
WO 2012077052 Jun 2012 WO
Non-Patent Literature Citations (9)
Entry
One page off the Perma Pure Inc. website of the product brochure #104 of the New PD™—Series Gas Dryers.
Three pages off the SympaTex website of some of the most common questions that are asked and some technical data on the SympaTex membrane.
Australian Patent Application No. 200143823 Published on Nov. 15, 2001 entitled Components for Breathing Circuits; Inventors Smith, Baldwin, Powell and Millar.
European Search Report; dated Mar. 7, 2011; 3 pages.
Canadian Examination Report; dated Jun. 27, 2012; 2 pages.
Office Action dated Mar. 11, 2015 for Canadian Application No. 2833707.
International Search Report, PCT/NZ2017/050074; dated Oct. 24, 2017.
Extended European Search Report for Application No. 10182233.6, dated Oct. 20, 2015.
European Search Report, Application No. 17202695.7; dated Aug. 3, 2018.
Related Publications (1)
Number Date Country
20190111228 A1 Apr 2019 US
Divisions (4)
Number Date Country
Parent 12328200 Dec 2008 US
Child 15633557 US
Parent 11371389 Mar 2006 US
Child 12328200 US
Parent 10622755 Jul 2003 US
Child 11371389 US
Parent 09850797 May 2001 US
Child 10622755 US
Continuations (2)
Number Date Country
Parent 15816965 Nov 2017 US
Child 16211909 US
Parent 15633557 Jun 2017 US
Child 15816965 US