This application claims priority to French Patent Application No. 1850259, filed Jan. 12, 2018, the entire content of which is incorporated herein by reference in its entirety.
The present invention relates to the field of propeller blades for aircraft of the kind present on turboprops.
Propeller blades for turboprops are generally made of metal material. Although propeller blades made of metal material present good mechanical strength, they nevertheless present the drawback of being relatively heavy.
In order to obtain propeller blades that are lighter, it is known to make propeller blades out of composite material, i.e. by making structural parts out of fiber reinforcement with a resin matrix.
Documents US 2013/0017093 and WO 2012/001279 describe making a propeller blade from a fiber structure having an aerodynamic profile and into which there is inserted a portion of a spar, one end of the spar being extended by an enlarged portion that is to form the root of the propeller blade. The fiber structure, which is made as a single piece by three-dimensional weaving, includes a zone of non-interlinking that enables a housing to be formed inside the fiber structure and into which a portion of the spar is inserted.
The propeller blade as obtained in this way presents both overall weight that is lighter and also considerable mechanical strength as a result of the presence of a skin made of a composite material structure (fiber reinforcement densified by a matrix).
Nevertheless, in certain circumstances, it can be difficult to keep the inserted spar properly in place in the fiber structure, such as for example when the blade is subjected to high mechanical loading, to impacts, or to shocks.
It is therefore desirable to be able to have a solution for making aircraft propeller blades of the above-described type, but that present increased mechanical strength, in particular in terms of keeping the spar in position inside the fiber structure of aerodynamic profile.
To this end, an aspect of the invention provides a fiber reinforcing structure for a propeller blade made of composite material, the fiber structure being woven as a single piece and having an airfoil, a spar portion, and an enlarged portion, the airfoil extending in a longitudinal direction between a bottom end and a top end, and extending in a transverse direction between a front edge and a rear end, the fiber structure including a zone of non-interlinking between the front and rear edges of the airfoil in the transverse direction, and extending between an intermediate zone and the bottom edge of said airfoil in the longitudinal direction, the spar portion extending inside the airfoil in the zone of non-interlinking, being set back from the front and rear edges of said airfoil in the transverse direction, the spar portion leading to the outside of the airfoil in the bottom edge of said airfoil, the enlarged portion extending from the spar portion outside the airfoil, the enlarged portion extending in the transverse direction over a length that is shorter than the length of the bottom edge of the airfoil, the airfoil having first and second skins in the zone of non-interlinking that are not interlinked with each other, the first and second skins extending between the front and rear edges of the airfoil in the transverse direction, and extending between the intermediate zone and the bottom edge of said airfoil in the longitudinal direction, the skins surrounding the spar portion, the first and second skins defining first and second housings inside the airfoil, which housings are present on respective sides of the spar portion in the transverse direction, the first and second housings opening out through the bottom edge of the airfoil.
By making a spar portion that is thus integrally formed with the airfoil of the fiber structure that is to form the fiber reinforcement of a propeller blade made of composite material, it is ensured that the attachment portions (tang and root) of the propeller blade are held properly in position relative to the airfoil. Specifically, even in the event of mechanical stresses (impacts, shocks) on the airfoil of the propeller blade, there is no risk of the spar portion moving inside the reinforcement since it is connected to the airfoil by continuously woven portions of the reinforcement.
In an aspect of the fiber structure of the invention, the front edge and the rear edge present respective slots extending in the longitudinal direction between the intermediate portion and the bottom end of the fiber structure. This serves in particular to give access to the spar portion blank in order to cut off the floated yarns after weaving the fiber structure blank, and also to make it easier subsequently to put the shaper parts into place.
An aspect of the invention also provides a propeller blade comprising fiber reinforcement constituted by a fiber structure of the invention and densified by a matrix, the propeller blade comprising an airfoil, a spar portion extending inside the airfoil, a tang extending outside the airfoil, a root extending outside the airfoil from the tang, a first shaper part present in the first housing provided inside the airfoil, and a second shaper part present in the second housing provided inside the airfoil.
As mentioned above, the propeller blade of an embodiment of the invention presents very good mechanical strength, in particular at the connection between the root and the airfoil, as a result of the fiber reinforcement having the root, the tang, and the spar portion being made integrally with the airfoil.
In a first aspect of the propeller blade of the invention, the tang connecting the root to the spar portion presents side edges that are straight and parallel to the longitudinal direction. This forms a short broached root without introducing connection radii between the root and the airfoil, thereby greatly improving the mechanical strength of this portion of the blade. Specifically, the connection zone between the root and the airfoil is a zone of the propeller blade that is highly stressed mechanically since it concentrates the mechanical stresses generated by the shape of the moving propeller blade, and it corresponds to a zone that can be the seat of critical vibration that might lead to decohesion between the fibers and the matrix. In the absence of a connection radius, the mechanical strength of the propeller blade is thus improved, while conserving a root that is very compact.
In a second aspect of the propeller blade of the invention, the height of the zone of non-interlinking present in the fiber structure constituting the fiber reinforcement of the propeller blade lies in the range 10% to 50%, in an embodiment in the range 20% to 40%, of the total height of the airfoil in the longitudinal direction.
An aspect of the invention also provides an aeroengine including a plurality of propeller blades of the invention.
An aspect of the invention also provides an aircraft including at least one aeroengine of the invention.
Another aspect of the present invention also provides a method of fabricating a reinforcing fiber structure for a propeller blade out of composite material, the method comprising:
Finally, an aspect of the invention provides a method of fabricating a propeller blade out of composite material, the method comprising at least:
In a first aspect of the method of the invention for fabricating a propeller blade, the tang connecting the root to the spar portion presents side edges that are straight and parallel to the longitudinal direction.
In a second aspect of the method of the invention for fabricating a propeller blade, the height of the zone of non-interlinking present in the fiber structure constituting the fiber reinforcement of the propeller blade lies in the range 10% to 50%, and in an embodiment in the range 20% to 40%, of the total height of the airfoil in the longitudinal direction.
Other characteristics and benefits of the invention appear from the following description of particular embodiments of the invention given as non-limiting examples and with reference to the accompanying drawings, in which:
The invention applies in general manner to various types of propeller blade used in aeroengines. The invention has a beneficial but non-exclusive application to propeller blades of large dimensions that, because of their size, present considerable weight that has a significant impact on the overall weight of the aeroengine. The blade of an aspect of the invention may in particular constitute a blade for ducted rotor wheels such as fan blades, or a blade for unducted rotor wheels such as in so-called “open rotor” aeroengines.
As shown in
In order to shape the fiber reinforcement 20, but without significantly increasing the overall weight of the structure of aerodynamic profile of the propeller blade, the parts 40 and 41 are, in an embodiment, made of rigid material that is cellular, i.e. material presenting low density, e.g. such as a rigid foam. The shaper parts may be made by molding or by being machined from a block of material.
The method of fabricating a blade of an embodiment of the invention includes making a fiber structure in accordance with the present invention.
As shown diagrammatically in
In the example shown, the 3D weaving is performed with an “interlock” weave. The term “interlock” weave is used herein to mean a weave in which each layer of weft yarns interlinks a plurality of layers of warp yarns with all of the yarns in the same weft column having the same movement in the weave plane.
It is possible to use other known types of three-dimensional weaving, in particular such as those described in Document WO 2006/136755, the content of which is incorporated herein by way of reference. That document describes in particular making fiber reinforcement structures by weaving a single piece for use in parts such as blades having a first type of weave in a core and a second type of weave in a skin so as to give a part of that type both the expected mechanical properties and also the expected aerodynamic properties.
The fiber blank of an embodiment of the invention may be woven in particular out of yarns comprising fibers made of carbon or of ceramics, such as silicon carbide.
The fiber blank is of varying thickness and width, and as weaving of the blank progresses, varying numbers of warp yarns are not included in the weaving, thereby making it possible to define the desired continuously varying outline and thickness for the blank 100. An example of varying 3D weaving serving in particular to vary the thickness of the blank between a first edge that is to form the leading edge and a second edge of smaller thickness that is to form the trailing edge is described in Document EP 1 526 285, the content of which is incorporated herein by way of reference.
Furthermore, while weaving the fiber blank, non-interlinking 110 is performed inside the fiber blank between successive layers of warp yarns and over a zone Zd of non-interlinking, thereby distinguishing said zone Zd of non-interlinking from a zone Z1 of interlinking within the fiber blank. More precisely, and as shown in
Once the fiber structure blank 100 has been woven, floated yarns present at the outside of the woven mass are cut off, e.g. by means of a water jet, so as to define the outline of the fiber structure as shown in
In an embodiment, the skin blanks are of constant thickness. The decreasing thickness of the airfoil blank in the height direction is then generated at the spar portion blank. The yarn exits are therefore located under the skin blank, so it is desirable to be able to lift skin blanks in order to have access to the yarn exits.
As shown in
The first and second skins 228 and 229 define first and second housings 230 and 231 inside the airfoil, which housings are present on respective sides of the spar portion 222 in the transverse direction, the first and second housings 230 and 231 opening out in the bottom end of the airfoil 211.
In
Once the shaper parts 40 and 41 have been inserted into the housings 230 and 231, the blade fiber preform is densified. The slots 107 and 108 present in the front and rear edges 211a and 211b are, in an embodiment, reclosed by stitching prior to performing densification.
The fiber preform is densified by filling in the pores of the preform throughout all or part of its volume with the material that constitutes the matrix.
The matrix of the composite material may be obtained in conventional manner using a liquid technique.
The liquid technique consists in impregnating the preform with a liquid composition containing an organic precursor for the matrix material. The organic precursor is generally in the form of a polymer, such as a resin, and might possibly be diluted in a solvent. The preform is placed in a mold that can be closed in leaktight manner and that has a cavity with the shape of the final molded part, which in particular may present a shape that is twisted, corresponding to the final shape of the blade. Thereafter, the mold is closed and the matrix liquid precursor (e.g. a resin) is injected into the entire cavity in order to impregnate all of the fiber portion of the preform.
The precursor is transformed into the organic matrix, i.e. it is polymerized, by performing heat treatment, generally by heating the mold, after eliminating the solvent, if any, and curing the polymer, the preform continuing to be maintained in the mold of shape that corresponds to the shape of the blade. The organic matrix may be obtained in particular using epoxy resins, such as the high performance epoxy resin sold under the reference PR 520 (a curing epoxy resin system) by the supplier CYTEC ENGINEERED MATERIALS INC, or liquid precursors for carbon or ceramic matrices.
When forming a carbon or ceramic matrix, the heat treatment consists in pyrolyzing the organic precursor in order to transform the organic matrix into a carbon or ceramic matrix depending on the precursor that has been used and pyrolysis conditions. By way of example, liquid precursors for carbon may be resins having a relatively high coke content, such as phenolic resins, while liquid precursors for ceramic, in particular for SiC, may be resins of polycarbosilane (PCS) or polytitanocarbosilane (PTCS) or polysilazane (PSZ) type. It is possible to perform a plurality of consecutive cycles from impregnation to heat treatment in order to achieve the desired degree of densification.
In an aspect of the invention, the fiber preform may be densified by the well-known resin transfer molding (RTM) method. In the RTM method, the fiber preform is placed in a mold presenting the outside shape of the blade. A thermosetting resin is injected into the inside space of the mold that contains the fiber preform. A pressure gradient is generally set up in this inside space between the location where the resin is injected and discharge orifices for the resin so as to control and optimize impregnation of the preform by the resin.
By way of example, the resin used may be an epoxy resin. Resins suitable for RTM methods are well known. They desirably present low viscosity in order to facilitate injecting them between the fibers. The choice of temperature class and/or chemical nature for the resin depends on the thermomechanical stresses to which the part is to be subjected. Once the resin has been injected throughout the reinforcement, it is polymerized by heat treatment in compliance with the RTM method.
After being injected and polymerized, the part is unmolded. As shown in
To finish, the part is trimmed in order to remove excess resin, and chamfers are machined. No other machining is necessary since the part is molded, so it complies with the required dimensions. A composite material blade 10 is thus obtained as shown in
The cellular rigid material used for making the shaper parts 40 and 41 is, in an embodiment, a material having closed cells so as to avoid resin penetrating into the insides of the cells, thereby conserving the low density of the cellular material after the fiber preform has been densified.
Number | Date | Country | Kind |
---|---|---|---|
1850259 | Jan 2018 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
7547193 | Moffitt | Jun 2009 | B2 |
8685868 | Bouillon | Apr 2014 | B2 |
20110248416 | Mahieu | Oct 2011 | A1 |
20130017093 | Coupe | Jan 2013 | A1 |
20140369848 | Marchal | Dec 2014 | A1 |
20160159460 | Laurenceau | Jun 2016 | A1 |
20160244897 | Gimat | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
WO 2006136755 | Dec 2006 | WO |
WO 2012001279 | Jan 2012 | WO |
WO 2015004362 | Jan 2015 | WO |
Entry |
---|
Search Report as issued in French Patent Application No. 1850259, dated Sep. 6, 2018. |
Number | Date | Country | |
---|---|---|---|
20190217943 A1 | Jul 2019 | US |