Composite articles comprising resorcinol arylate polyester and method for making thereof

Abstract
A shaped composite article is prepared by a process wherein an aesthetic laminate having a clear outer arylate layer and a colored compatible resin layer is thermoformed into a desired shape, and then compression molded together with a reinforced resin material containing compatible resin to form a color composite of the desired shape having an outer layer of clear arylate polyester polymer with the compatible resin layer forming an adherent bond with the compatible resin in the resin reinforced material.
Description


FIELD OF THE INVENTION

[0002] This invention relates to reinforced resinous articles having a coating layer comprising a resorcinol arylate polyester, and a method for preparation the composite articles.



BACKGROUND OF THE INVENTION

[0003] Compositions and weatherable multilayer articles comprising resorcinol arylate chain members are known. See Published patent application Nos. EP 1124878 and WO 00/69945, pages 27-30, describes multilayered articles in the following manner: “The multiplayer articles typically have outstanding initial gloss, improved initial color, weatherability, impact strength, and resistance to organic solvents encountered in their final applications.” Page 27, paragraph 2, states: “The material of the substrate layer in the articles of this invention may be at least one thermoplastic polymer, whether addition or condensation prepared. Condensation polymers include, but are not limited to, polycarbonates, particularly aromatic polycarbonates, polyphenylene ethers, polyetherimides, polyesters ****.” The second paragraph on page 29, states: “Multilayer articles encompassed by the invention also include those comprising at least one glass layer. Typically any glass layer is a substrate layer, although multilayer articles comprising a thermally stable polymer coating layer interposed between a glass layer and a substrate layer are also contemplated. Depending upon the nature of the coating and glass layers, at least one adhesive interlayer may be beneficially employed between any glass layer and any thermally stable polymer coating layer. The adhesive interlayer may be transparent, opaque or translucent. For many applications it is preferred that the interlayer be optically transparent in nature and generally have a transmission of greater than about 60% and a haze value less than about 3% with no objectionable color.”


[0004] U.S. Pat. No. 4,983,247 to Bang et al describes a compression molding process for forming a fiber free layer adjacent a composite bulk layer where a resin layer and the bulk layer are compressed in a an insulated mold so that the heat of the bulk layer heats the fiber free layer until it is molten while the layers are being compressed.


[0005] The prior art refers manufacture multilayer articles and attaching or coating substrate layer, typically by adhesion using a tie layer.



SUMMARY OF THE INVENTION

[0006] In a process for forming a shaped composite article, a laminate is thermoformed into a desired shape. The laminate comprises a layer of an arylate polyester polymer adhered to a layer of a compatible resin. In an embodiment, the arylate layer is clear and the compatible resin layer includes a colorant. The shaped laminate is compression molded together with a material comprising compatible resin and a reinforcing material to form a composite of the desired shape having an outer layer of arylate polyester polymer. An adherent bond is formed between the compatible resin contained in the reinforcing material and the arylate laminate. In an embodiment, the compatible resin in the laminate is a polycarbonate. In an embodiment, the compatible resin in the reinforcing material is a polycarbonate resin. In an embodiment, the compression-molded article comprises a weatherable resorcinol arylate having a high gloss and hardness to provide a class “A” finish for use in automotive parts. In another embodiment, compatible resin in both the laminate and the reinforced resin, respectively, form and adherent interface for the final article. The resulting compression molded shaped article comprises a laminate adhered to a reinforced resin material. The final article desirable has a vertical peel strength in lb/in of greater than 5, preferable greater than 10, and more preferable greater than 15.







BRIEF DESCRIPTION OF THE DRAWINGS

[0007]
FIGS. 1A and B are schematic section view illustrating an example of an aesthetic laminate.


[0008]
FIG. 2 is a schematic view illustrating of a method of manufacturing a thermoformed laminate.


[0009]
FIG. 3 shows a thermoformed aesthetic laminate.


[0010]
FIG. 4 is a schematic view illustrating compression molding of the laminate with the fibrous resin material.


[0011]
FIG. 5 is a schematic view of resin containing reinforcing material being deposited in a compression mold.


[0012]
FIG. 6 is a schematic view of resin containing reinforcing material being compression molded.


[0013]
FIG. 7 is a schematic view of a compression molded.


[0014]
FIG. 8 is a Wavescan for Automotive Horizont Panels.


[0015]
FIG. 9 is a comparison of the Wavescan Output for LEXAN®SLX resin with various reinforced substrates.







DESCRIPTION OF THE INVENTION

[0016] Thermoformable Laminate


[0017] As illustrated in FIG. 1(A), a thermoformable laminate 3 comprises a layer of an arylate polyester resin polymer 5 adhered to a layer of a compatible resin 7. In an embodiment, the arylate polyester resin is clear and comprises a resorcinol arylate polyester chain members. The polyester arylate imparts desirable properties of weatherability, and UV resistance. The arylate polyester chain members desirable comprise at least one diphenol residue in combination with at least one dicarboxylic acid residue. An adjacent layer 7 of a compatible resin comprises a resin that is selected to adhere to the arylate polyester polymer layer 5. Typical compatible resin materials comprise polycarbonate, polyester, polyetherimide, polyamide, polyacrylonitrile containing resin such as an ABS resin, acrylic-styrene-acylonitrile (ASA), acrylonitrile ethylene-polypropylene diamine modified styrene (AES), phenylene sulfide, polymethyl methacrylate (PMMA), copolyester carbonates, poly(alkylene dicarboxylates). Preferable the compatible resin layer 3 comprises a polyester or polycarbonate, preferably an aromatic polycarbonate, in an amount to enhance the adherence of the compatible layer to the arylate polyester outer layer 5. The thermoformable laminate 3 may be constructed by various processing techniques such as extrusion, co-extrusion, casting, coating, vacuum deposition, lamination, molding, and combinations thereof. The thermoformable laminate preferably has a thickness from about 15 to about 60 mils, more preferable from about 30 to about 50 mils.


[0018] Thermoforming


[0019] The aesthetic laminate 3 is thermoformed into a shape substantially corresponding to the shape of the desired final article. Typically, thermoforming comprises the simultaneously heating and forming a laminate 3 in the form of a film, into the desired shape. Once the desired shape has been obtained, the formed article is cooled below its thermoplastic temperature and removed from the mold. Thermoforming methods and tools are described in detail in DuBois and Pribble's “Plastics Mold Engineering Handbook”, Fifth Edition, 1995, pages 468 to 498. Thermoforming methods may also be utilized as set forth in U.S. Pat. No. 5,601,679 to Mulcahy et al.


[0020]
FIG. 2 illustrates a thermoforming apparatus. The thermoforming apparatus 9 included radiant heaters 11 and the mold body or mold form 13 which include a vacuum assist (not shown). Typically, the laminate 3, in the form of a film, is formed with the assistance of a vacuum with the vacuum former and surrounding metal framework preheated to minimize chill of the film. The film 3 is placed on a vacuum box or mold form 13 which may have openings connected to a source of a vacuum.


[0021] Preferable, the aesthetic laminate 3 is mounted with the compatible layer adjacent the surface of the mold 13 to obtain a smooth surface on the polyarylate layer. Clamp frames may be activated for mechanically holding the sheet in place. A suitable heat shield, such a aluminum foil, may be utilized for avoiding heating the surface at selected locations such as other than a sink portion. The sheet is then exposed to the thermo-forming ovens. Top and bottom heaters may be used. The film is heated and moved to the mold. The film is drawn into the mold during the forming operation. To obtain a good surface finish, the openings for drawing the vacuum are preferable spaced away from an area of the part requiring an optimized surface finish. The vacuum openings may be conveniently located around the periphery of the mold form so that the esthetic areas of the laminate are in contact with a smooth mold surface. Areas of the part adjacent vacuum openings, which may have some surface flaws or imperfections, may be trimmed by a laser trimmer to obtain a final part free of surface imperfections. It is contemplated that porous metal molds such as molds may also be used. According to an embodiment, the laminate 3, in the form of a film is preferably placed over a concave mold and heated, such as by an infra-red heater 11. Vacuum is applied to draw the laminate 3 into place against the mold form 13. The process may be modified combining a positive air pressure on the top of the laminate with vacuum from the underside to increase the molding force.


[0022] Resin Material Containing Reinforcing


[0023] Referring to FIG. 4, resin material 14. which includes reinforcing and compatible resin, is compression molded to the thermoformed laminate 3 to form the final article in the desired shape. The reinforced resin material 14 includes a resin compatible with the adjacent thermoplastic layer 7 and selected to form an adherent bond therewith. A final composite comprising the thermoformed laminate resin and the reinforced resin material has the desired final shape with an outer layer of the arylate polyester polymer for weather resistance and a color corresponding to colorant in the compatible thermoplastic layer 7. In the final article, an adherent bond is formed between the thermoplastic layer and the arylate layer on one side, and the reinforcing resin material on the other side. In addition to compatibility, the reinforcing resin material 14 is selected impart a desirable stiffness to the final article. The compatible resin included in the reinforcing resin material 14 is as hereinbefore described with respect to the compatible thermoplastic layer 7. According to an embodiment, the reinforcing material comprises fibers. Typical fibers include glass, carbon, ceramic, and resin materials. Preferable the fibers utilized are from 0.25 to 1.5 inch, preferable in the range of about 0.5 to about 0.75 inch and are randomly oriented in a matrix of compatible resin. It is contemplated that longer fibers may be utilized provided such longer fibers do not compromise the desirable aesthetic surface finish. It is also contemplated that discontinuous or continuous fibers may be utilized. Discontinuous or discrete fibers may be randomly or orderly oriented. Continuous fibers would typically be arranged in an oriented orderly manner. The reinforced material may comprise a 15-55% glass fiber mat and 45-85% polymer resin. The use of glass fiber is preferable. Preferably glass or other fibers have a sizing which is compatible with the matrix or compatible resin. According to an embodiment, a substantially completely densified mat comprises 30 percent by weight glass fiber having a nominal diameter of about 16 microns and chopped to a length of about 0.5 inch with the remaining portion by weight being polycarbonate resin.


[0024] The process employed in the practice of this invention is capable of using other natural or synthetic fibers such as polyethylene terephthate fibers, polyamide fibers, carbon fibers, etc. Also, various amorphous or crystalline thermoplastic resins may be employed such a polyesters (PET, PBT, PPT), acrylics, polyethylene (PET), polycarbonate (PC) or blends of PC/PBT or PC/PET and the like thermoplastics polymers as previously discussed with respect to the compatible resin without modification of the web forming process. In this process the ratio of fibers to polymers, as well as the basic weight of the web may be varied in order to meet individual requirements of cost/performance and stiffness.


[0025] Known techniques may be used for the production of resin containing reinforcing material. One process used to produce a densified mat of fibers deposites discrete fibers which onto and between layers of thermoplastic films or sheet. The resulting layered material is passed through the a pair of opposing hot rollers to melt the thermoplastic resin, compress, and densify the material into a fiber laminated mat. Such mats of material are available from Azdel Inc. as GMAT. For GMT mat, which is continuous, a festooner is used to raster the mat in a box, alternately, the mat can also be wound on rolls. Random continuous mats and random continuous and unidirectional mats may be produced with this technique. According to another technique, a web of fibers may be produced according to a technique known in the art as Wiggins Teape process. Sheets of this type, comprising a reinforced resin sheet are available from Azdel, Inc. Other process may use an air laid process for laying the web and then needle punches it to form a mat. The air process may be utilized to produce a mat of random discrete fibers and thermoplastic powder. To produce a mat according to the Wiggins Teape process, the materials including other additive are metered and dispersed into the mixing tank fitted with an impeller. Glass fibers and thermoplastic resin binder are dispersed. The mixture of glass and thermoplastics binder is pumped to a head-box via a distribution manifold. The head box is located above a wire section of a machine of the type utilized for papermaking. The dispersed mixture passes through a moving wire screen using a vacuum, continuously producing a uniform, fibrous wet web. The wet web is passed through a dryer to reduce moisture content. The web is heated to melt the thermoplastic resin binder and the mat is passed through the gap in an opposing pair of rollers to form the mat. FIG. 4 shows a glass mat 14 which is positioned in a compression mold 19. For enhanced structural strength mats are preferable densified. The mats utilized preferable have a high strength-to-weight ratio, high impact properties, good chemical resistance, and may be economically produced.


[0026] According to an embodiment illustrated in FIG. 5, fibers, preferably coated, chopped glass strands, are mixed with the compatible resin, preferably aromatic polycarbonate resin or polyester resin, or mixtures thereof, and then fed to an extruder and the extrudate utilized to form a compression molded layer of compression molded reinforcing material. Dispersed glass fibers are reduced in length as a result of the shearing action on the chopped glass strands in the extruder barrel. The amount of glass present in the composition can range anywhere from 5 to about 60 weight percent based on the total weight of the thermoplastic blend composition, preferably from 10 to 30 percent by weight thereof.


[0027]
FIG. 3 shows an extruder at 15. The extruder 15 has a housing 17 with a central barrel shape opening 19 with a helical screw 21 mounted for rotation about an axis. At one end of the opening, a hopper (not shown) is utilized for feeding material to be extruded into the rear portion of the screw 21. Helical threads mounted on the screw 21 are positioned for moving material from the rear portion of the screw to a forward portion through the opening 19. As the material or feedstock is conveyed along the screw 21, frictional forces caused by rotation of the screw 21 heats it. It is also contemplated that an external heating source such as an electrical resistant heater may be provided to heat the extruder 15, which in turn heats the feedstock. The housing 17 or the screw 21 is parts of the extruder, which may heat. At the forward end of the housing 17 and spaced from the forward end of the screw 21, a gate or breaker plate 23 is mounted transverse to the flow of feedstock. The gate 23, which includes a plurality of openings 43 for the passage of feedstock, acts to create a backpressure, which contributes to the mixing and heating of the feedstock and also serves to filter impurities from the feedstock.


[0028] A die body 25 is mounted on the forward end of the housing 17. The mounting is conventionally made by bolting or clamping a flange on the die body 25 to a flange on the housing 17. As illustrated in FIG. 5, the die body 25 includes a tapered central and axially aligned opening which throttles the feedstock. At the die outlet, a die plate 27, has an opening with the desired cross sectional shape of the profile to be extruded. As illustrated in FIG. 1, the extrudate 29 in tubular form is deposited on the lower section 35 of the compression mold 12. According one embodiment, a pair of extruders is utilized with pellets of the compatible resin being softened in the first extruder with the extrudate from the first extruded being fed to a second extruder for the addition of fibers.


[0029] Compression Molding


[0030] The compression molding of the thermoformed laminate 3 to the reinforced resin material is carried out to form a structural bond between the laminate and the reinforced resin material. Preferably, the bond between the laminate is not an adhering attached as would be formed with adhesive but is a bond is formed with the molecules of the thermoplastic layer co-mingled with the molecules of the reinforced resin such as by diffusion to form an interface and an integral thermoplastic structure. The thermoformed laminate is trimmed into at least the rough shape of the final article. The trimmed shape is then registered with or placed into the upper cavity of the compression tool with the aesthetic side or araylate resin side of the film against or in proximity to the upper the tool surface.


[0031] The reinforced resin material is heated to a softening temperature, typically, from about 500 to about 700° F. The resin in heated form is placed adjacent the bottom surface of the compression mold. If a balanced structure is desired, i.e. both top and bottom surfaces of the final part having a thermoplastic layer, an additional thermoplastic layer 8 may be placed adjacent the bottom mold surface. The purpose of the balanced structure is to obtain a layer opposite the aesthetic side that matches the coefficients of thermal expansion of the top layer. The balancing layer may be of a compatible resin. Placing the aryalate laminate 3 in the upper tool cavity permits enhanced temperature control of the laminate 3 since it is remote from the hot reinforced resin material at 29 in FIG. 4 or FIG. 6. Heat from fiber reinforced material may be utilized to heat and soften the layer of compatible resin. The mold is closed to the point where resin flows from the compressed mat or the deposited reinforcing resin, as the case may be, to form a molecular bond with the compatible resin in the laminate. Desirable the reinforced resin material heated to the softening point and the molding process is halted before the arylate resin layer becomes too viscous. Temperatures of the top section 45 of the mold typically are desirable from about 100 to about 270 degrees F. Such temperatures may be maintained by cooling. It is desirable that the Class A surface be retained to minimizes glass read through and other surface imperfections. Preferably the interface includes compatible resin from both the laminate and the reinforced resin material. The mold is opened and the structural part is removed. Molds are typically made from a metal having high thermal conductivity such as aluminum. After the laminate is formed, and placed in or registered with the upper mold cavity as shown in FIG. 3, the fibrous resin containing compatible resin is placed between the mold halves. The fibrous resin is or has been previously heated to its softening temperature. The laminate 3 containing arylate resin, as shown in FIG. 6, is registered in the top half of the compression mold at or below its softening temperature. The mold cores 35 and 45 are then closed to compression the laminate 3 containing arylate against the reinforcing resin material 29. The heat from reinforced resin 29 flows towards arylate laminate 3 and causes exterior portion of the laminate 3 containing compatible resin to form a molecular bond with the molten sheet of fiber containing material 29. The interface formed with laminate 3 forms a resulting integral structural bond at the junction between the laminate 3 and the reinforcing resin 29. A strong bond bonds the arylate laminate 3 to the reinforcing material 29.


[0032] Some of preferred features of a compression mold having a top half 45 and bottom half 35 are illustrated in FIG. 7. Registry between the top and bottom mold sections, 45 and 47, are shown at 51 where mating surfaces provide guidance and alignment during opening and closure of the compression mold 35. The laminate 3 is registered in the part cavity 55, which includes a shear edge 53 that aids in the retention of material in the part cavity during compression. Temperature openings 57 are utilized to cool or maintain the top section at a proper temperature so that the arylate layer 5 retains a Class A finish. Oil typically is used as a coolant. It is desirable to independently control the temperature of the top and bottom mold sections. An ejector is also shown for ejecting the completed part form the mold.


[0033] Detail On Arylate Layer


[0034] Suitable dicarboxylic acid residues include aromatic dicarboxylic acid residues derived from monocyclic moieties, preferably isophthalic acid, terephthalic acid, or mixtures of isophthalic and terephthalic acids, or from polycyclic moieties, including diphenyl dicarboxylic acid, diphenylether dicarboxylic acid, naphthalenedicarboxylic acid such as naphthalene-2,6-dicarboxylic acid. In one embodiment, the dicarboxylic acid is 1,4-cyclohexanedicarboxylic acid.


[0035] In one embodiment, the diphenol residue is derived from a 1,3-dihydroxybenzene moiety, as illustrated in Formula 1, commonly referred to as resorcinol or resorcinol moiety.
1


[0036] In Formula I, R is at least one of C1-12 alkyl or halogen, and n is 0-3. Examples of Resorcinol or resorcinol moiety includes both unsubstituted 1,3-dihydroxybenzene and substituted 1,3-dihydroxybenzenes.


[0037] In one embodiment, the aromatic dicarboxylic acid residues are derived from mixtures of isophthalic and/or terephthalic acids (ITR) as typically illustrated in Formula II.
2


[0038] In one embodiment of the laminated structure, the outer layer or the coating layer comprises resorcinol arylate polyester chain members as illustrated in Formula III wherein R and n are as previously defined:
3


[0039] In one embodiment, the arylate polyester layer is an outer layer and a blend of polymers comprising resorcinol arylate polyester chain members and at least one other polymer selected from at least one of miscible, immiscible, and compatibilized blends including but not limited to: polycarbonates, polyesters, polyetherimides, polyphenylene ethers, PC/ABS, PC/ASA, PC/PBT, PC/PET, PC/polyetherimide, polyamide, polyester/polyetherimide, polyphenylene ether/polystyrene, polyphenylene ether/polyamide, polyphenylene ether/polyester, blends, regrinds and foams of any of the above. In another embodiment, the outer layer is comprised of a block copolyestercarbonate comprising resorcinol arylate-containing block segments in combination with organic carbonate block segments as disclosed in Patent Application EP 1124878.


[0040] In one embodiment of applications wherein high levels of scratch and/or chemical resistance are required, the amount of resorcinol arylate-containing block segments is in the range of about 50 to 100 mole %.


[0041] The compatible resin comprises a resin that is selected to adhere to the arylate polyester polymer layer and when present in the reinforcing resin material forms an adherent bond with the thermoplastic resin layer of the laminate. Preferably, the compatible resin is as previously described with respect to the compatible resin of the laminate. Preferably, a polycarbonate, a polyester, or polyether imide as previously described.


[0042] Detail On Embodiment with a Polycarbonate Layer


[0043] Preferable the compatible resin comprises polycarbonate in an amount to enhance the adherence of the thermoplastic compatible layer to both the arylate polyester outer layer and to the fibrous resin layer. In another embodiment, the substrate layer is a polycarbonate. By the term polycarbonate is meant carbonate polymers possessing recurring structural units of the formula:
4


[0044] wherein A is a divalent aromatic radical of the dihydric phenol employed in the polymer reaction. Suitable aromatic polycarbonate resins include linear aromatic polycarbonate resins and branched aromatic polycarbonate resins. Suitable linear aromatic polycarbonates resins include, for example, bisphenol A polycarbonate resin. Suitable branched polycarbonates are known and are made in various embodiments by reacting a polyfunctional aromatic compound with a dihydric phenol and a carbonate precursor to form a branched polymer.


[0045] The dihydric phenol which may be employed to provide such aromatic carbonate polymers are mononuclear or polynuclear aromatic compounds, containing as functional groups two hydroxy radicals, each of which maybe attached directly to a carbon atom of an aromatic nucleus. Typical dihydric phenols are: 2,2-bis(4-hydroxyphenyl) propane; hydroquinone; resorcinol; 2,2-bis(4-hydroxyphenyl) pentane; 2,4′-(dihydroxydiphenyl) methane; bis(2-hydroxyphenyl) methane; bis(4-hydroxyphenyl) methane; 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane; fluorenone bisphenol, 1,1-bis(4-hydroxyphenyl) ethane; 3,3-bis(4-hydroxyphenyl) pentane; 2,2′-dihydroxydiphenyl; 2,6-dihydroxynaphthalene; bis(4-hydroxydiphenyl)sulfone; bis(3,5-diethyl-4-hydroxyphenyl)sulfone; 2,2-bis(3,5-dibromo-4-hydroxyphenyl)propane; 2,2-bis(3,5-dimethy-4-hydroxyphenyl)propane; 2,4′-dihydroxydiphenyl sulfone; 5′-chloro-2,4′-dihydroxydiphenyl sulfone; 4,4′-dihydroxydiphenyl ether; 4,4′-dihydroxy-3,3′-dichlorodiphenyl ether, spiro biindane bis phenol, and the like.


[0046] It is contemplated that the substrate layer may include polyester resins such as a thermoplastic polyester. Examples of thermoplastic polyester include but not limited to poly(alkylene dicarboxylates), poly(ethylene terephthalate) (hereinafter sometimes designated “PET”), poly(1,4-butylene terephthalate) (hereinafter sometimes designated “PBT”), poly(trimethylene terephthalate) (hereinafter sometimes designated “PTT”), poly(ethylene naphthalate) (hereinafter sometimes designated “PEN”), poly(butylene naphthalate) (hereinafter sometimes designated “PBN”), poly(cyclohexanedimethanol terephthalate), poly(cyclohexanedimethanol-co-ethylene terephthalate) (hereinafter sometimes designated “PETA”), and poly(1,4-cyclohexanedimethyl-1,4-cyclohexanedicarboxylate) (hereinafter sometimes designated “PCCD”), poly(alkylene arenedioates), and polyesters available from renewable agricultural or other resources, such as vegetable or animal material, biomass, i.e., formed of polylactic acid.


[0047] Colorants for Compatible Resin Layer


[0048] In one embodiment, the substrate layer comprises polycarbonate resin (as a color and adhesive layer) having compatibility to both the arylate layer and to the fibrous resin layer for enhancing adherence between the layers. The thickness of the multilayer article comprising a polycarbonate substrate layer and the arylate layer is chosen to be sufficient to cover minor surface blemishes fibrous material resulting in a durable, high grade, even class “A” finish required for automotive applications.


[0049] The compatible layer, sometimes referred to as a substrate, desirable includes a colorant which enhances a visual effect. Such additives typically known for inclusion in films and sheets, including pigments, decorative material such as metal flakes, dyes, and luminescent compounds. Conventional pigments include metallic oxides such as titanium dioxide, and iron oxide; metal hydroxides; metal flakes such as aluminum flake; chromates such as lead chromate; sulfides; sulfates; carbonates; carbon black; silica; talc; china clay; phthalocyanine blues and greens, organo reds; organo maroons and other organic pigments and dyes.


[0050] In a preferred embodiment, pigments that are stable at high temperatures are used, i.e., colorants that do not substantially degrade or altered at temperatures at or about 350° C. Examples include Solvent Yellow 93, Solvent Yellow 163, Solvent Yellow 114/Disperse Yellow 54, Solvent Violet 36, Solvent Violet 13, Solvent Red 195, Solvent Red 179, Solvent Red 135, Solvent Orange 60, Solvent Green 3, Solvent Blue 97, Solvent Blue 104, Solvent Blue 104, Solvent Blue 101, Macrolex Yellow E2R, Disperse Yellow 201, Disperse Red 60, Diaresin Red K, Colorplast Red LB, Pigment Yellow 183, Pigment Yellow 138, Pigment Yellow 110, Pigment Violet 29, Pigment Red 209, Pigment Red 209, Pigment Red 202, Pigment Red 178, Pigment Red 149, Pigment Red 122, Pigment Orange 68, Pigment Green 7, Pigment Green 36, Pigment Blue 60, Pigment Blue 15:4, Pigment Blue 15:3, Pigment Yellow 53, Pigment Yellow 184, Pigment Yellow 119, Pigment White 6, Pigment Red 101, Pigment Green 50, Pigment Green 17, Pigment Brown 24, Pigment Blue 29, Pigment Blue 28, Pigment Black 7, Lead Molybdates, Lead Chromates, Cerium Sulfides, Cadmium Sulfoselenide, and Cadmium Sulfide.


[0051] In one embodiment of the invention, the amount of colorants used in the substrate layer may be up to 5 wt. % for opacity. In another embodiment of the invention, a combination of colorants are used with some of the colorant being added at low levels for use as a toner. In a third embodiment, Solvent Yellow 163 is used in an amount of about 0.35% to provide a yellow colored substrate.


[0052] In another embodiment, in addition to the conventional pigments and colorants in the art, the substrate layer further comprises at least a light fastness compound, a light fastness antioxidant, and a light fastness ozonant. Examples of light fastness compounds include didodecyl-3,3′-thio dipropionate, tris(4-tertbutyl-3-hydroxy-2,6-dimethyl benzyl) isocyanurate, 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benzene, N,N′-.beta.,.beta.′-naphthalene-4-phenylene diamine, or 4,4′-methylene-bis(dibutyl dithio-carbamate), (6) 2,2,4-trimethyl-1,2 -hydroquinoline. Examples of light fastness antioxidant include but not limited to: didodecyl-3,3′-thio dipropionate, tris(4-tert-butyl-3-hydroxy-2,6-dimethyl benzyl) isocyanurate, 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benzene, N,N′-.beta.,.beta.′-naphthalene-4-phenylene diamine, 4,4′-methylene-bis(dibutyl dithio-carbamate), 2,2,4-trimethyl-1,2-hydroquinoline. Examples of lightfast antiozonant compounds are N,N′-bis(1,4-dimethyl pentyl)-4-phenylene diamine, 2,4,6-tris-(N-1,4-dimethylpentyl-4-phenylene diamino)-1,3,5-triazine, 6-ethoxy-1,2-dihydro-2,2,4-trimethyl quinoline, bis-(1,2,3,6-tetrahydrobenzaldehyde) pentaerythritol acetal, and the like.


[0053] Other Additives to PC


[0054] Other conventional additives which may be included in the compatible layer include impact modifiers, UV screeners, flame retardants, fillers, stabilizers, flow aids, ester interchange inhibitors, adhesion promoting agents such as a bisphenol derivative, an aminosilane or derivatives, and mold release agents. Examples of ultraviolet light absorbers (UVA) include benzotriazole, benzophenone, triazine, cyanoacrylate, dibenzoylresorcinol, benzoxazinone and oxanilide based UVA. In addition to UV absorbers, hindered amine light stabilizers (HALS) can also be used. Illustrative ultraviolet radiation absorbing compounds include 2-(benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol, 2-(benzotriazol-2-yl)-4-methylphenol, 2-hydroxy-4-octyloxy benzophenone, 2-hydroxy-4-methoxybenzophenone, ethyl-2,2-diphenyl-1-cyanoacrylate, 2′-ethylhexyl-2,2-diphenyl-1-cyanoacrylate, 2-(2′-hydroxy-4′-octyloxy) bis-4,6-(2′,4′-dimethylphenyl) triazine, 2-ethyl-2′-ethoxy oxalamide, bis [2-hydroxy-5-methyl-3-(benzotriazol-2-yl) phenyl]-methane, bis[2-hydroxy-5-t-octyl-3-(benzotriazol-2-yl) phenyl]methane, 2,2′-(1,4-phenylene) bis [4H-3,1-benzoxazin-4-one], and 2-(2′-hydroxy-4-hexyloxy)-4,6-diphenyltriazine.


[0055] The arylate polyester polymer layer may be produced as a separate layer, followed by application to a second layer of the laminate. It can also be produced by simultaneous productions of the layers in a production process. The weatherable coating layer may be produced and employed in such methods but not limited to molding, extrusion, co-injection molding, co-extrusion, overmolding, coating, and the placement of the layer onto the surface of a second layer.


[0056] In one embodiment, the arylate polyester layer is has a thickness of about 5 to about 20 mils, and the compatible layer about 10 to about 55. In another embodiment, the combined layers of the laminate have a thickness of about 15 to about 60 mils. The compression molded layer of reinforced resin material has a thickness from about 50 to about 1000, preferably from about 75 to about 250 mils (1 mil is {fraction (1/1000)} inch).


[0057] In applications wherein the asethetic laminate is in the form of a film for subsequent as a pre-formed substrate, the compatible layer or substrate layer helps serve as a reinforcement to facilitate the handling of the weatherable coating layer which may have relatively little inherent tensile strength. In other applications, the substrate layer may incorporate color pigments, metal flakes, etc. to provide special color effects to the coating layer containing resorcinol arylate polyester chain members, which may be clear/colorless.


[0058] The layer of compatible adherent resin ensures both a good adhesion of the coating layer comprising resorcinol arylate polyester chain members and fibrous resin containing material to which the laminate or the multilayer article previously described is adhered. In one embodiment, the compatible adherent resin layer contains a blend of the materials constituting the arylate polyester layer and the compatible resin contained in the resin substrate.


[0059] In one example, the compatible layer is a blend containing about 10 to 50% PBT and 50 to 90% a resin comprising of resorcinol arylate units. In another example, a compatible blend of a PET and a resin comprising of resorcinol arylate units, containing about 10 to 50% PET and 50 to 90% of a resin comprising resorcinol arylate units. In yet another example, the blend is PETG and a resin comprising resorcinol arylate units, with about 10 to 50% PETG and 50 to 90% a resin comprising resorcinol arylate units. In another embodiment, the tie layer is a compatible blend of a PCT and a resin comprising resorcinol arylate units, with about 10 to 50% PCT and 50 to 90% a resin comprising of resorcinol arylate units. In an embodiment of a compatible blend of a PCTA and a resin comprising resorcinol arylate units as a tie-layer, the blend contains about 10 to 50% PCTA and 50 to 90% a resin comprising of resorcinol arylate units. In one embodiment of a compatible blend of a PCTG and a resin comprising resorcinol arylate units, the blend contains about 10 to 50% PCTG and 50 to 90% a resin comprising of resorcinol arylate units.


[0060] In one embodiment of a compatible-layer containing a blend of materials constituting the substrate layer and the coating layer, the tie-layer is a transparent blend of a poly(1,4-cyclohexanedimethyl-1,4-cyclohexanedicarboxylate) (“PCCD”) and polycarbonate. Applicants have found that use of a blend of PCCD and polycarbonate afford a layer with ductility, and increased adhesion between the weatherable coating layer and a support layer of polycarbonate. The blends of PCCD/PC have excellent clarity, physical and mechanical properties. In one embodiment, the blend comprises about 20 to 100 wt. % PCCD and about 80 to 0 wt. % of the polycarbonate.


[0061] Suitable ITR resins comprising resorcinol arylate blocks are known; see for example the descriptions and methods for preparation given in Published Patent Application Nos. EP 1124878 [RD 26354] and WO0069945 [RD 26310]. In one embodiment of a resin comprising resorcinol arylate units, the % of resorcinol arylate is from 10 to 90% and the % of BPA and resorcinol carbonates is from 10 to 90%.


[0062] Suitable copolyester carbonates are comprised of aromatic BPA polycarbonate units and aromatic polyester units.


[0063]
FIG. 1(B) illustrates a three-layer structure, with the first layer being the weatherable coating layer 5 comprising resorcinol arylate polyester chain members, being laminated on the surface of a polycarbonate layer 7.


[0064] The two-layer laminate is prepared as described in applicant's co pending application 08CS05828. Within co-extrusion, various techniques are employed. In one embodiment, two or more layers of the multilayer article are extruded from separate extruders through separate sheet dies into contact with one another when hot, and then passed through a single sheet of rollers. In another embodiment, the polymer melts of the materials constituting the coating layer, the optional tie-layer or layers, and the substrate layer or layers, are brought together and into contact with one another through a co-extrusion adapter/feed block and then through a single or multi-manifold die. The adapter/feed block is constructed such that the melts forming the separate layers are deposited as adherent layers on the melt of the center layer. After co-extrusion, the multilayer length of the melt produced can be formed into desired shapes, solid sheets or multi-wall panels, in an extrusion die connected downstream. The melt is then cooled under controlled conditions in known manner by means of calendaring (solid sheet) or vacuum sizing (multi-wall panel) and subsequently cut into lengths. An annealing oven may be optionally provided after sizing or calendaring for the reduction of stresses.


[0065] In one embodiment, an extruded coating layer film comprising resorcinol arylate polyester chain members is thermally laminated onto a roll of tie-layer or layers of films using a laminator having heated bottom and top rolls. In another example, the coating layer is adhesively laminated onto a substrate layer using a tie layer film.



EXAMPLES

[0066] The following description will illustrate embodiments of the multilayer articles of the present invention and methods of manufacturing the multilayer articles of the present invention, some examples with reference to the attached drawings. The weatherable coating layer comprises a resorcinol aiylate-containing block copolyester-carbonate (“ITR”) prepared in a manner similar to Example 65 of Patent Application WO0069945.



Example 1

[0067]
FIG. 1(A) illustrates a cross section of an aesthetic laminate 3 having a clear polyarylate layer 5 bonded to a polycarbonate colored layer 7. Laminate 3 is in turn bonded to glass fiber polycarbonate mat material by compression molding. As illustrated in FIG. 1(B), the aesthetic laminate 3 may be present on one or both surfaces of the glass reinforced polycarbonate material 14. In FIG. 1(B) a second layer of material is shown at reference number 8. The thickness of the top aesthetic layer laminate layer 3 is from about 0.025 to about 2.5 mm with the reinforced fibrous material having a thickness of about 1 to about 8 mm. LEXAN®SLX resin, from General Electric Company, GE Plastics, One Plastics Avenue, Pittsfield Mass., prepared by laminating a LEXAN® polycarbonate layer having a colorant to an arylate polyester to form the polyarylate/polycarbonate laminate. The polyarylate/polycarbonate laminate is trimmed and thermoformed to the exterior shape of a “skin” of the final part. The polyarylate/polycarbonate laminate in the form of a shaped skin is then trimmed such that is roughly in the shape of the final part. The skin placed into the upper cavity of the compression tool with the aesthetic side or polyarylate resin side of the film against the smooth tool surface. A glass fiber containing polycarbonate mat from Azdel, Inc. is heated in an external oven to between 500 and 700° F. and transferred to the compression tool. The mat comprises about 30 percent by weight glass fibers having a length of about one half inch in a matrix of polycarbonate. The mat is substantially fully densified and has a mass per unit area of about 0.8 to 1.5 lbs/ft2. The heated glass fiber/polycarbonate mat is placed against the bottom tool surface. If a balanced structure is desired, i.e. both top and bottom surfaces of the final part having aestheic surface, an additional arylate/polycarbonate laminate may be placed adjacent the bottom mold surface. In this case the glass fiber/polycarbonate mat may be placed above another polyarylate/polycarbonate laminate in lower mold cavity. In either case, at least one aesthetic Class A surface is created for the final part. This surface has a clear outer layer of polyarylate resin bonded to an aesthetically colored polycarbonate resin layer, which is in turn bonded to the glass fiber/polycarbonate mat. Placing the polyarylate/polycarbonate laminate in the upper tool cavity permits separately controlling the temperature of the laminate the hot glass fiber/polycarbonate mat during closure of the tool and compression molding. The laminate is maintained at about the softening point to minimize glass fiber read through and other surface imperfections. The tool is closed at which time the arylate/polycarbonate laminate comes in contact with the preheated the glass fiber/polycarbonate mat. A pressure of about 500 and 5000 psi is applied. The glass fiber/polycarbonate mat material flows to fill the cavity and is subsequently cooled. The mold is opened and the structural part is removed. Any masking present is removed for the final part. The measurement device for surface characterization is the BYK Gardner Wavescan machine (detailed in Brister, E. et al. “Zero VOC SOLLX Film for Weatherable, high-gloss, Chemical and Scratch Resistant Performance,” proceedings of the 29th International Waterborne, high-solids, & powder Coatings February 2002, 261-275.) Wavescan measures reflection of light images in the <1 mm to 30 mm length range with lower values corresponding to better surfaces. FIG. 8 shows Wavescan benchmarks for Automotive Horizontal panels. Lower Values correspond to better surfaces. The three-circled regimes correspond to three areas of surface appearance of Gloss, Orange Peel, and long-term waviness. The dark orange curve (with the label UPR SMC) is painted SMC and provides a surface quality benchmark for the weatherable films with identified as LEXAN®SLX type resin on the graph. Wavescan results of in-mold LEXAN®LX resin over fiberglass polycarbonate mat is included in FIG. 5 along with LEXAN®SLX resin film over other reinforced surfaces. Painted UPR SMC is included as a benchmark. ‘LTLP SMC” corresponds to Low pressure, Low Temperature SMC. VALOX® 508 resin is a glass reinforced PC/PBT alloy sold by GE Plastics and ZZLOY is a Glass Mat Thermoplastic GMT) made by AZDEL Inc. The surface quality of LEXAN®SLX/LEXAN® laminate is better than corresponding painted parts.


[0068] As an even more specific example, a polycarbonate/glass fiber mat material, 30 percent by weight chopped glass fiber, and 70 percent by weight polycarbonate having a density in g/cm3 of 1.44 is compression molded at a temperature of 620° F. and a pressure of 4000 psi with a LEXAN®SLX/LEXAN® laminate having a polyarylate layer adjacent a polycarbonate layer. The aesthetic laminate has a thickness of about 0.05 inch and the fiber AZDEL GMAT mat has a thickness of about 0.16 inch. Prior to compression molding, a Teflon strip is inserted between the aesthetic laminate and the glass mat along one edge. Alter compression molding, the resulting composite is cut into strips 1 inch by 6 to 8 inches with a the laminate and the glass mat being separated by the Teflon strip at one of the ends. The adhesion of the aesthetic laminate to the mat substrate is measured by a 90-degree peel test with a 200 lb and a load cell at a peel rate of 1 inch per minute. To start the peel, the laminate is separated from the mat substrate in the area of the Teflon strip. The grips from the testing machine are attached to the respective laminate and mat.
1TABLE 1ConversionAv. PeelStandardSubstrateProcessStrength (lb/in)DeviationSMG “class-A”Compression3.81.46MoldingVALOX 508 (glassInjection8.92.0filled EngineeringMoldingThermoplastic)AZLOYCompression29.49.7Molding


[0069] Table 1 sets forth the peel strength of LEXAN®SLX/LEXAN® laminate attached to various substrates. The peel strength of the aesthetic laminate and glass AZLOY mat material had a peel strength higher than the SMC or glass filed Valox material.


[0070] According to one example, the compression molding was done by heating the nominal 30% glass content chopped fiber AZLOY GMT (˜4000 GSM) and heating it to 600 F in an infrared oven and compression molding it with Lexan®SLX. The Lexan®SLX sheets used were typically the 30 mil or 50 mil sheets. The ITR surface was positioned next to the chromed Class-A tool surface. The forming was done in a square tool measuring 150 sq. inches with shear edges. The press used was a four post Lawton press with a tonnage of 500 tons. The press was closed at speeds between 45 and 75 inches per minute. The closure height was about 6 inches.


Claims
  • 1. A process for forming a shaped composite article, comprising thermoforming a laminate into a desired shape, said laminate comprising a layer of an arylate polyester polymer and an adhering thermoplastic layer of a compatible resin, compression molding said shaped laminate together with a resin containing reinforcing material, said compatible resin to forming a composite of the desired shape having an outer layer of said arylate polyester polymer wherein an adherent bond is formed between the thermoplastic layer of the laminate and the reinforcing resin, said arylate polyester polymer layer comprising a weatherable resorcinol arylate having a class “A” finish.
  • 2. A process for forming a shaped composite article according to claim 1 wherein the arylate layer is clear and the compatible resin layer comprises a colorant.
  • 3. The method of claim 2, wherein said compatible resin is selected from the group consisting of an amorphous or crystalline resin.
  • 4. The method of claim 2, wherein said compatible resin is selected from the group consisting of an aromatic polycarbonate resin, a polyester resin, and mixtures thereof.
  • 5. A process for forming a shaped composite article according to claim 2 wherein composite of the desired shape has an outer layer of a clear arylate polyester polymer.
  • 6. A process for forming a shaped composite article according to claim 3 wherein compatible resin is adherent to both the arylate polyester polymer and the resin containing fibrous material.
  • 7. A process for forming a shaped composite article according to claim 3 comprising a balancing layer being positioned adjacent the reinforcing resin on the side opposite the laminate.
  • 8. A process for forming a shaped composite article according to claim 3 wherein heat from the fiber reinforced material is utilized for heating and softening said laminate for obtaining an article with a Class-A surface.
  • 9. A process for forming a shaped composite article according to claim 8 wherein said heat from said fiber reinforced material melts a portion of the compatible resin in said laminate for intimately bonding said laminate to said resin containing reinforcing material.
  • 10. A method of making an article having a weatherable outer surface with a high quality finish appearance, said method comprising the steps of: providing a outer layer comprising resorcinol arylate polyester chain members; shaping said outer layer comprising resorcinol arylate polyester chain members into a three-dimensional shape in a vacuum-forming apparatus; placing said three-dimensional shape in a cavity of an compression molding apparatus; introducing a reinforced resin material comprising a compatible resin into the cavity of said compression molding apparatus behind said layer comprising resorcinol arylate polyester chain, joining said reinforced resin material to said layer by compression molding.
  • 11. A shaped composite article comprising a thermoformed aesthetic laminate having a desired shape, said laminate comprising a layer of an arylate polyester polymer and an adjacent adhering thermoplastic layer of a compatible resin, a compression molded resin layer containing reinforcing material, said compatible resin being adjacent to said thermoplastic layer to form a composite of the desired shape having an outer layer of said arylate polyester polymer wherein an adherent bond is formed between the thermoplastic layer of the laminate and the reinforcing resin, said arylate polyester polymer layer comprising a weatherable resorcinol arylate having a class “A” finish.
  • 12. A shaped composite article comprising a thermoformed aesthetic laminate having a desired shape according to claim 11 wherein the peel strength between said aesthetic laminate is measured at a 90 degree peel, at a 200 lb. load cell, at a peel rate of 1″/min. and said peel strength is greater than 5 lb/inch.
  • 13. A shaped composite article comprising a thermoformed aesthetic laminate having a desired shape according to claim 12 has a peel strength greater than 5 lb/inch.
  • 14. A shaped composite article comprising a thermoformed aesthetic laminate having a desired shape according to claim 13 has a peel strength is greater than 5 lb/inch.
CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Application Ser. No. 60/477,973 filed on Jun. 12, 2003, which is incorporated herein by reference in its entirety.

Provisional Applications (1)
Number Date Country
60477973 Jun 2003 US