Replacement of dense metals with relatively lightweight polymeric components in the bodies of automotive, aircraft, and other vehicles has made such vehicles lighter, increasing fuel efficiency and performance. Substitution of metallic components with polymeric or composite components within an internal combustion engine presents unique challenges due to the combination of high temperature and formidable forces to which such components are routinely subjected. Development of engine components constructed of polymeric or composite materials that can reliably endure such forces and temperatures without failure is thus an important yet challenging step to continue current trends toward lighter, more efficient vehicles.
A connecting rod is a component of a reciprocating internal combustion engine that connects a piston to a crankshaft, and functions to transfer the reciprocating translational motion of the piston into rotational motion of the crankshaft. As such, a connecting rod in an engine is subjected to considerable heat, intense force, and continuous, multidirectional acceleration of large magnitude. In particular, due to the very large, multidirectional acceleration to which a connecting rod is continuously subject, the connecting rod, like other rapidly moving components, consumes engine output to an extent which belies its relatively small size. For this reason, replacement of metal with plastics and other lightweight components in connecting rods and other rapidly moving parts can be expected to particularly improve engine and vehicle efficiency.
Methods for fabricating composite connecting rods are provided. Also provided are connecting rods composed substantially of lightweight, composite materials while yet possessing functional tensile strength and endurance
In one aspect, a method for fabricating a composite connecting rod is disclosed. The method includes encircling displacement disks of a connecting rod mold with a reinforcing tape and injecting a molding-composite material into the connecting rod mold. The composite material comprises a mixture of organic polymer and reinforcing fiber.
In another aspect, a connecting rod is disclosed. The connecting rod is composed substantially of a moldable composite material. The moldable composite material includes organic polymer and reinforcing fiber.
Various aspects and advantages of the disclosure will become apparent and more readily appreciated from the following description of the embodiments taken in conjunction with the accompanying drawings, of which:
A method for fabricating a connecting rod, a connecting rod so fabricated, and a connecting rod composed of a composite material are disclosed. As explained in the following description, the method involves injection molding of a composite material. The composite material can include an organic polymer and reinforcing fiber. As used herein, the term “reinforcing fiber” describes a material that can comprise any or a combination of carbon fiber, aramid fiber, or carbon nanotubes. Also disclosed is a mold for forming a composite connecting rod, the mold having a movable/removable displacement disk.
It is to be noted that the injecting step referenced above, describing an injection molding process, could be replaced with an alternative molding process, such as compression molding. As such, step 102 can be described as a “molding” step rather than an “injecting” step. It has been found, however, that an injection molding process tends to confer an enhanced tensile strength. Without being bound to any particular theory, this is believed to be due to a more effective alignment of reinforcing fibers resulting from the injection process.
In some instances, the molding-composite material will be more than 10% reinforcing fiber by weight and the remainder will include organic polymer. In some instances, the molding-composite material will be 20-50% reinforcing fiber by weight and the remainder will include organic polymer. In some instances, the molding-composite material will be 30-40% reinforcing fiber by weight and the remainder will include organic polymer. In some instances, the molding-composite material will be 30-40% reinforcing fiber by weight and the remainder will be organic polymer. In some instances, the lengths of reinforcing fibers included in the molding-composite material will range predominantly from about 0.1 mm to about 12 mm.
An example of a suitable connecting rod mold 200 is illustrated in
With reference also to
For clarity, the reinforcing tape 114 used in the encircling step 104 will be referred to hereinafter as an “inner reinforcing tape” and a reinforcing tape 116 used in the layering step 106 will be referred to hereinafter as an “outer reinforcing tape”. When either is or both are employed, the encircling and layering steps 104 and 106 will typically precede the injecting step 102. When both are employed, the encircling and layering steps 104 and 106 can be performed in any order relative to one another. For example, while
With continued reference to
In many instances, an inner reinforcing tape 214, an outer reinforcing tape 216, or both may be configured as a cyclic tape. As used here, the term “cyclic tape” refers to a tape having no longitudinal ends, but instead forming a closed loop such, as a circumference or other cyclic structure. A cyclic tape can be formed, for example, by fixedly adjoining the longitudinal ends of a linear or otherwise longitudinally-ended tape. For increased strength of the cyclic tape, the cyclic tape can be directly fabricated as a closed loop rather than being fabricated as a linear or otherwise longitudinally-ended tape with subsequent joining of the longitudinal ends. A cyclic tape that is formed as such directly, rather than being formed by adjoining longitudinal ends, can be referred to as an “incipiently cyclic tape”.
When used, the reinforcing tape (for example, inner reinforcing tape 114 and outer reinforcing tape 116) can be composed of any suitable material, such as metal or organic polymer. In many instances, the reinforcing tape will be composed substantially of a composite material, which will be referred to hereinafter as “tape composite material”. Tape composite material can include reinforcing fiber and an organic polymer. In some instances, the tape composite material will include a unidirectional carbon fiber structure embedded in an organic polymeric matrix. The organic polymer will typically be a thermoplastic or thermosetting polymer and can be of any suitable type, including but not limited to, polyetheretherketone (PEEK), polyether sulfone (PES), polyethylenimine (PEI), polyamide-imide (PAI), and polyphenylenesulfide (PPS).
In some variations, the organic polymer comprised by the tape composite material will be selected so that it has a lower melting point than the melting point of the organic polymer comprising the molding-composite material. Such a selection can cause the tape composite material to be at least partly melted or softened by the heat contained in the injected molding-composite material, thereby improving adhesion or fusion of the reinforcing tape with the molding-composite material. In some particular variations, the organic polymer comprised by the tape composite material will be PPS.
In some instances, the tape composite material will be more than 10% reinforcing fiber by weight and the remainder will include organic polymer. In some instances, the tape composite material will be 20-50% reinforcing fiber by weight and the remainder will include organic polymer. In some instances, the tape composite material will be 30-40% reinforcing fiber by weight and the remainder will include organic polymer. In some instances, the tape composite material will be 30-40% reinforcing fiber by weight and the remainder will be organic polymer.
The first displacement disk 210 and the second displacement disk 212, or both displacement disks 210 and 212 of the connecting rod mold 200, may be configured to be selectively movable relative to one another to facilitate mounting of the inner reinforcing tape 114 on the first and second displacement disks 210 and 212. For example, with reference to
With continued reference to
Movability of either or both displacement disks 210 and 212 can facilitate deployment of the inner reinforcing tape 214 that encircles the displacement disks 210 and 212 tightly. For example, the inner reinforcing tape 214 may be positioned in the mold 200 by first moving the second displacement disk 212 to the tape mounting position 212A (see, for example, step 101 of
With reference to
With reference to
With continued reference to
The organic polymer comprised by the moldable composite material will typically be a thermoplastic or thermosetting polymer and can be of any suitable type, including but not limited to, polyetheretherketone (PEEK), polyether sulfone (PES), polyethylenimine (PEI), polyamide-imide (PAI), and polyphenylenesulfide (PPS). In some particular variations, the organic polymer comprised by the moldable composite material will be PEEK. In some particular variations, the organic polymer comprised by the moldable composite material will be PES.
In some instances, the moldable composite material will be more than 10% reinforcing fiber by weight and the remainder will include organic polymer. In some instances, the moldable composite material will be 20-50% reinforcing fiber by weight and the remainder will include organic polymer. In some instances, the moldable composite material will be 30-40% reinforcing fiber by weight and the remainder will include organic polymer. In some instances, the moldable composite material will be 30-40% reinforcing fiber by weight and the remainder will be organic polymer.
The connecting rod 300 can optionally include an inner reinforcing tape 308. When used, the inner reinforcing tape 308 simultaneously encircles at least a portion of the inner circumference of the shaft engagement element 302 and at least a portion of the inner circumference of the piston engagement element 304 of the connecting rod 300. When used, the inner reinforcing tape 308 is incorporated into the connecting rod 300 and is at least partially surrounded by the moldable composite material. The inner reinforcing tape 308 at least partially defines the aperture 303 in the shaft engagement element 302 for receiving the crankshaft and the aperture 305 in the piston engagement element 304 for receiving the piston pin.
The connecting rod 300 can also optionally include an outer reinforcing tape 310. When used, the outer reinforcing tape 310 permanently contacts outer edges 312 of the moldable composite material of connecting rod 300 and encircles the periphery of connecting rod 300. Permanence of contact between outer edges 312 of the moldable composite material and the outer reinforcing tape 310 can be achieved by the moldable composite material having been cured in contact with or in partial surrounding of the outer reinforcing tape 310. Permanence of contact can also be achieved by the outer reinforcing tape 310 having a melting temperature sufficiently low that it is partially heat softened during curing of the moldable composite material.
For brevity, the phrase “a reinforcing tape” will be used hereinafter to refer generically to either the inner reinforcing tape 308 or the outer reinforcing tape 310, or to refer to the inner reinforcing tape 308 and the outer reinforcing tape 310 as a group. As such, a reinforcing tape can be composed of any suitable material, such as metal or organic polymer. In many instances, a reinforcing tape will be composed substantially of a composite material which will be referred to hereinafter as “reinforcement composite material”. Reinforcement composite material can include reinforcing fiber and an organic polymer. In some instances, the tape composite material will include a unidirectional reinforcing fiber structure in an organic polymeric matrix.
The organic polymer will typically be a thermoplastic or thermosetting polymer and can be of any suitable type, including but not limited to, polyetheretherketone (PEEK), polyether sulfone (PES), polyethylenimine (PEI), polyamide-imide (PAI), and polyphenylenesulfide (PPS). In some variations, the organic polymer comprised by the reinforcement composite material will be selected so that it has a lower melting point than that of the organic polymer comprising the moldable composite material. In some particular variations, the organic polymer comprised by the reinforcement composite material will be PPS.
In some instances, the reinforcement composite material will be more than 10% reinforcing fiber by weight and the remainder will include organic polymer. In some instances, the reinforcement composite material will be 20-50% reinforcing fiber by weight and the remainder will include organic polymer. In some instances, the reinforcement composite material will be 30-40% reinforcing fiber by weight and the remainder will include organic polymer. In some instances, the reinforcement composite material will be 30-40% reinforcing fiber by weight and the remainder will be organic polymer.
While the shaft engagement element 302 and the piston engagement element 304 are each shown as a ring, or circular structure in
It should be noted that the method 100 for fabricating a connecting rod is applicable to the two-piece connecting rod 400, for example, of the type illustrated in
While the methods and connecting rods disclosed herein have been described as being particularly applicable to automotive vehicles and aeronautical vehicles, it should be appreciated that they are applicable to any engine, motor, or device in which a connecting rod is employed to transfer the reciprocating motion of a piston to the rotary motion of a connecting rod.
Various aspects of the present disclosure are further illustrated with respect to the following Examples. It is to be understood that these Examples are provided to illustrate specific configurations of the present disclosure and should not be construed as limiting the scope of the present disclosure in or to any particular aspect.
A connecting rod mold of the type shown in
Separately, the two pins or displacement disks in a connecting rod mold of the type shown in
The mold is closed and hot injected with a composite material. The composite material consists of ˜30% carbon fiber ˜0.1-12 mm length, 70% PEEK. After curing, the composite connecting rod is removed from the mold. The resulting connecting rod is referred to below as a “2-tape” connecting rod.
The no-tape and the 2-tape connecting rods, whose fabrication is described above in Example 1, were each subjected to a tensile strength test. In the test, the piston engagement element and the shaft engagement element of the connecting rod being tested were engaged to a force application/displacement measurement instrument. The instrument exerted a continuously increasing tensile force, i.e. the piston engagement element and shaft engagement element were loaded in opposite directions, and displacement, i.e. stretch or other deformation, of the connecting rod was measured. The results of the test are shown in
The foregoing description relates to what are presently considered to be the most practical embodiments. It is to be understood, however, that the disclosure is not to be limited to these embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.
This application claims benefit of U.S. Provisional Application No. 61/979648, filed on Apr. 15, 2014, which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61979648 | Apr 2014 | US |