Composite ball bats with transverse interlaminar interfaces

Information

  • Patent Grant
  • 12246230
  • Patent Number
    12,246,230
  • Date Filed
    Friday, August 20, 2021
    3 years ago
  • Date Issued
    Tuesday, March 11, 2025
    a day ago
Abstract
A ball bat includes a continuous tape of fiber material wrapped around the longitudinal axis in a helix extending along the longitudinal axis. Interlaminar interfaces between adjacent turns of the tape are oriented obliquely relative to the longitudinal axis. In some embodiments, the ball bat includes a preform structure, the tape being wrapped around the preform structure. In some embodiments, the ball bat includes a flared element on the preform structure. An end of the continuous tape may be positioned on an angled surface of the flared element. An outer skin may be positioned over the tape. Methods of making ball bats may include attaching a first end of a fiber tape to a flared element on a preform structure or a mandrel and wrapping the fiber tape around the preform structure or mandrel in a helix extending along the longitudinal axis of the preform structure or mandrel.
Description
BACKGROUND

Composite ball bats for baseball or softball are often made with one or more layers or plies of composite laminate material. In an assembled composite bat, the composite layers are often concentrically arranged, such that an inner layer forms an inner portion of a bat wall while an outer layer forms an outer portion of a bat wall.


In a typical composite bat formed with multiple layers of composite laminate material, the volume of matrix material (sometimes in the form of resin) is higher between the layers (in the interlaminar interfaces) than in the laminate layers themselves. These areas, and other areas in which the matrix material makes up much or all of the assembly, are typically referred to as “resin-rich” areas. Resin-rich areas tend to be weaker than areas reinforced with fibers. In a typical composite ball bat (and other composite structures), there may be resin-rich veins running axially (along the bat's length) within the bat wall. Designers of composite bats consider these areas when determining the overall strength of the bat. For example, designers may analyze the interlaminar shear strength of an assembled bat.


During repeated use of composite bats, the matrix or resin of the composite material tends to crack, and the fibers tend to stretch or break. Sometimes the composite material develops interlaminar failures, which involve plies or layers of the composite materials separating or delaminating from each other along a failure plane between the layers in the interlaminar interface. For example, the plies may separate along the resin-rich areas. This “break-in” reduces stiffness and increases the elasticity or trampoline effect of a bat, which tends to temporarily increase bat performance. Typically, the separation of the plies along the resin-rich areas results in fracturing between the plies, but the fibers in the plies generally resist cracking through the thickness of the plies.


As a bat breaks in, and before it fully fails (for example, before the bat wall experiences a through-thickness failure), it may exceed performance limitations specified by a governing body, such as limitations related to batted ball speed. Some such limitations are specifically aimed at regulating the performance of a bat that has been broken in from normal use, such as BBCOR (“Bat-Ball Coefficient of Restitution”) limitations.


Some players choose to intentionally break in composite bats to increase performance. Intentional break-in processes may be referred to as accelerated break-in (ABI), and may include techniques such as “rolling” a bat or otherwise compressing it, or generating hard hits to the bat with an object other than a ball. Such processes tend to be more abusive than break-in during normal use, and they exploit the relatively weak interlaminar shear strength of resin-rich areas of composite ball bats in an attempt to increase batted ball speed. Accordingly, sports governing bodies often require composite ball bats to meet certain standards even after ABI occurs to limit the increase in performance from use and abuse of a composite bat.


SUMMARY

Representative embodiments of the present technology include a ball bat having a continuous tape of fiber material wrapped around the longitudinal axis in a helix extending along the longitudinal axis. Interlaminar interfaces between adjacent turns of the tape are oriented obliquely relative to the longitudinal axis. In some embodiments, the ball bat includes a preform structure and the tape is wrapped around the preform structure. In some embodiments, the ball bat includes a flared element on the preform structure, the flared element having an angled surface. An end of the continuous tape may be positioned on the angled surface. An outer skin may be positioned radially outwardly from the tape to generally cover the tape. In some embodiments, a method of making a ball bat includes attaching a first end of a fiber tape to a flared element on a preform structure or a mandrel and wrapping the fiber tape around the preform structure or mandrel in a helix extending along the longitudinal axis of the preform structure or mandrel.


Other features and advantages will appear hereinafter. The features described herein can be used separately or together, or in various combinations of one or more of them.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, wherein the same reference number indicates the same element throughout the views:



FIG. 1 illustrates a side view of a ball bat configured in accordance with embodiments of the present technology.



FIG. 2 illustrates a side view of a partially-assembled ball bat configured in accordance with embodiments of the present technology.



FIG. 3 illustrates a side cross-sectional view of a portion of the ball bat shown in FIG. 2.



FIG. 4 is a detailed view of the outlined section labeled “SEE FIG. 4” in FIG. 3.



FIG. 5 illustrates a side cross-sectional view of a portion of a ball bat configured in accordance with further embodiments of the present technology.



FIG. 6 is a schematic cross-sectional view of a wall of a preform structure, a flared element, and a single turn or layer of fiber tape, in accordance with embodiments of the present technology.



FIG. 6A illustrates a table of example tape widths and orientations of tapes (angles) that may be implemented in bats configured in accordance with some embodiments of the present technology.



FIG. 7 illustrates a method of making a ball bat in accordance with embodiments of the present technology.





DETAILED DESCRIPTION

The present technology is directed to composite ball bats with transverse interlaminar interfaces, and associated systems and methods. Various embodiments of the technology will now be described. The following description provides specific details for a thorough understanding and enabling description of these embodiments. One skilled in the art will understand, however, that the invention may be practiced without many of these details. Additionally, some well-known structures or functions, such as those common to ball bats and composite materials, may not be shown or described in detail to avoid unnecessarily obscuring the relevant description of the various embodiments. Accordingly, embodiments of the present technology may include additional elements or exclude some of the elements described below with reference to FIGS. 1-7, which illustrate examples of the technology.


The terminology used in this description is intended to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain specific embodiments of the invention. Certain terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this detailed description section.


Where the context permits, singular or plural terms may also include the plural or singular term, respectively. Moreover, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of items in the list. Further, unless otherwise specified, terms such as “attached” or “connected” are intended to include integral connections, as well as connections between physically separate components.


For purposes of the present disclosure, a first element that is positioned “toward” an end of a second element is positioned closer to that end of the second element than to a middle or mid-length location of the second element.


Specific details of several embodiments of the present technology are described herein with reference to ball bats. Embodiments of the present technology can be used in baseball, softball, cricket, or other similar sports in which an implement hits a ball.


As shown in FIG. 1, a baseball or softball bat 100, hereinafter collectively referred to as a “ball bat” or “bat,” includes a barrel portion 110, a handle portion 120, and a tapered section 130 joining the handle portion 120 to the barrel portion 110 along a longitudinal axis x. The tapered section 130 transitions the larger diameter of the barrel portion 110 to the narrower diameter of the handle portion 120. The tapered section 130 may include parts of the barrel portion 110 or the handle portion 120, such that the barrel portion 110 is attached to, or continuous with, the handle portion 120. The handle portion 120 optionally includes a knob 140 or similar structure positioned at a proximal end 145 of the bat 100. An optional end cap 150 or other suitable plug may close off the barrel portion 110 at a distal end 155 of the bat 100 (for purposes of this disclosure, the “distal end” is the end of an embodiment farthest from a user). The barrel portion 110 may include a non-tapered or straight section 160 extending between the end cap 150 and a location 170.


The interior of the bat 100 is optionally hollow, allowing the bat 100 to be relatively lightweight so that ball players may generate substantial bat speed when swinging the bat 100. A hitting surface or ball striking area 180 of the bat 100 typically extends throughout the length of the barrel portion 110, and may extend partially into the tapered section 130 of the bat 100. The bat 100 generally includes a “sweet spot” 190, which is the impact location where the transfer of energy from the bat 100 to a ball is generally maximal, while the transfer of energy to a player's hands is generally minimal. The sweet spot 190 is typically located near the bat's center of percussion (COP), which may be determined by the ASTM F2398-11 Standard. For ease of measurement and description in the present application, the sweet spot 190 described herein coincides with the bat's COP.


The proportions of the bat 100, such as the relative sizes of the barrel portion 110, the handle portion 120, and the tapered section 130, are not drawn to scale and may have any relative proportions suitable for use in a ball bat. Accordingly, the bat 100 may have any suitable dimensions. For example, the bat 100 may have an overall length of 20 to 40 inches, or 26 to 34 inches. The overall barrel portion 110 diameter may be 2.0 to 3.0 inches, or 2.25 to 2.75 inches. Typical ball bats have barrel diameters of 2.25, 2.625, or 2.75 inches. Bats having various combinations of these overall lengths and barrel diameters, or any other suitable dimensions, are contemplated herein. The specific preferred combination of bat dimensions is generally dictated by the user of the ball bat 100, and may vary greatly among users. For purposes of orientation and context for the description herein, FIG. 1 also illustrates a radial z-axis. The z-axis is orthogonal to the longitudinal x-axis and extends radially through the wall thickness of the bat 100.


Components of the ball bat 100 may be constructed from one or more composite or metallic materials. Some examples of suitable composite materials include laminate layers or plies reinforced with fibers of carbon, glass, graphite, boron, aramid (such as Kevlar®), ceramic, or silica (such as Astroquartz®). Suitable metallic materials include aluminum, titanium, or another suitable metallic material.


For convenience of description and to assist the reader with understanding embodiments of the present technology, some aspects of construction of a ball bat 100 are first described below, followed by descriptions of embodiments of ball bats that may be formed using aspects of construction techniques according to the present technology. Methods of making ball bats according to embodiments of the present technology are also disclosed.



FIG. 2 illustrates a side view of a partially assembled ball bat 100 configured in accordance with embodiments of the present technology. In some embodiments, the ball bat 100 includes a preform structure 200 and a fiber tape 210 wrapped around at least a portion of the preform structure 200. The preform structure 200 extends along the longitudinal axis x and may be generally shaped like a finished ball bat 100 (for example, it may have a barrel shape, a handle shape, and a tapered section shape). The preform structure 200 may be formed with composite laminate material or other suitable composite materials.


In some embodiments, a flared element 230 (illustrated as being beneath the fiber tape 210) is positioned on, or integral with, the preform structure 200 toward the distal end 155. The flared element 230 has a surface 240 (also illustrated as being beneath the fiber tape 210) that diverges or tapers away from the longitudinal axis x as it extends away from the proximal end 145 and toward the distal end 155. As explained in detail below, the flared element 230 may be formed as a discrete wedge element (such as a ring having a wedge-shaped cross-section) permanently or temporarily attached to the distal end 155 of the preform structure 200. In some embodiments in which the flared element 230 is integral with the preform structure 200, it may be a flared portion of the preform structure 200 having the characteristics of the flared element 230.


The surface 240 is angled transverse to the longitudinal axis x. The flared element 230 and the surface 240 provide a starting point for wrapping the fiber tape 210 around the preform structure 200 in a helix that extends along the longitudinal axis x. Because the surface 240 of the flared element 230 is angled relative to the remainder of the preform structure 200, consecutive turns (wraps) of the fiber tape 210 form overlapping layers 235 of the fiber tape 210 that are also angled (oriented transversely) relative to the preform structure 200. Likewise, interlaminar interfaces 250 between consecutive turns or layers 235 are oriented transversely relative to the longitudinal axis x and to the preform structure 200.


The angled layers 235 of fiber tape 210 form a portion of the thickness of a wall of the ball bat 100. Accordingly, a ball bat 100 configured in accordance with embodiments of the present technology includes a barrel wall with interlaminar interfaces 250 that are orthogonal or transverse to the x-axis of the bat 100, which yields components that extend at least partially in a radial or z-direction, and also positions fibers of the fiber tape 210 at least partially along a radial or z-direction. The angled nature of the layers 235, the interlaminar interfaces 250, and the fibers within the fiber tape 210 provides an improved balance of hoop strength and axial strength in the barrel wall relative to existing composite bat technologies that use concentric composite layers (in which the interlaminar interfaces extend along the x-axis). Manufacturing the angled components of embodiments of the present technology is advantageously relatively simple at least because it involves wrapping a single continuous fiber tape 210 around the preform 200.


The fiber tape 210 is a tape (strip) of fiber material (such as carbon fiber, fiberglass, aramid, flax, or other fibers suitable for use in composite materials), which may or may not include a resin or matrix material. For example, the fiber tape 210 may be a prepreg material (uncured material pre-impregnated with resin material or other suitable composite matrix materials) that is manipulated into position before curing, either co-curing with the preform structure 200 or curing at a different time than the preform structure 200.


In some embodiments, the fiber tape 210 may be a fiber material without resin or matrix material and it may have the resin or matrix applied and cured through known composite manufacturing techniques. In some embodiments, the fiber tape 210 may include unidirectional fiber tape. The fiber tape 210 may include fiber angles (the angle of the fiber within the tape relative to the length of the tape) of 45 degrees, or other suitable angles. Fiber angles of approximately 45 degrees provide resistance to fraying when wrapping around the preform 200. In some embodiments, the fiber tape 210 may include braided fiber tape. Generally, composite materials forming the fiber tape 210 and the preform structure 200 may be conventional composite materials.



FIG. 3 illustrates a side cross-sectional view of a portion of the ball bat 100, configured in accordance with embodiments of the present technology. FIG. 4 is a detailed view of the outlined section labeled “SEE FIG. 4” in FIG. 3. With reference to both FIGS. 3 and 4, the preform structure 200 may be formed with composite laminate material or other suitable composite materials. In some embodiments, the preform structure 200 comprises a plurality of concentric layers of composite laminate material forming a preform wall 300.


In some embodiments, the preform wall 300 has a uniform thickness t along its length. In other embodiments, the preform wall 300 has non-uniform or varying thickness along its length, such as a section 310 where the preform wall 300 has a greater thickness t2 than the remaining thickness t of the preform wall 300. The section 310 may include the inner surface 320 of the preform wall 310 extending radially inwardly toward the longitudinal axis x, and it may optionally include tapering between thicknesses t and t2. The section 310 may be located at or adjacent to the sweet spot 190. In some embodiments that include a preform wall 300 which has variable or non-uniform thickness along its length, an overall thickness t3 of the barrel wall may be maintained regardless of the preform wall thickness by adjusting the overlap of the fiber tape 210 (the thickness t3 includes: the radial thickness of the preform wall 300, such as the thickness t or t2; the radial thickness t4 of the fiber tape 210 when it is wrapped around the preform wall 300; and the radial thickness of the outer skin 330 described below, if any). For example, less overlap of wraps of tape 210 can compensate for a thicker preform wall, or more overlap can compensate for a thinner preform wall, to maintain desired or consistent wall thickness.


In some embodiments, the fiber tape 210 is wrapped around the preform structure 200 in a helix that extends through the full striking area 180 of the ball bat 100. In some embodiments, the helix may extend only through part of the striking area 180, such as only along a full length of the barrel portion 110. In some embodiments, as shown in FIGS. 3 and 4, the helix of fiber tape 210 may extend through only part of the striking area 180 or along only a portion of the longitudinal axis x of the ball bat. For example, the helix of fiber tape 210 may extend from near (such as within one to three inches of) the sweet spot 190 to the distal end 155. In some embodiments, the fiber tape 210 is positioned to extend from the distal end 155 toward the proximal end 145 by three to ten inches, depending in part on the size of the ball bat 100. In some embodiments, the fiber tape 210 extends along a full length of the ball bat 100. A single fiber tape 210 wrapped in a helix that is positioned to extend along the full striking area 180 tends to provide increased durability because there is not an area of discontinued fibers of the tape (where the tape ends) within the striking area 180. A single fiber tape 210 wrapped in a helix along the full striking area 180 also tends to be easier to manufacture than shorter tape (a shorter helix) or a plurality of tapes.


The flared element 230 may be a discrete ring-shaped wedge element, although, as explained above, the flared element 230 may be integral to the preform structure 200. In some embodiments, the flared element 230 is formed with the same material as the preform structure 200. In other embodiments, the flared element 230 is made of wood, plastic (such as thermoplastic polyurethane), metal, foam, composite material, or another material suitable for providing the angled aspect of the flared element 230 and suitable for receiving an end of the fiber tape 210.


In some embodiments, the wrapped fiber tape 210 forms the outermost surface of the ball bat 100 (setting aside paint or indicia). In other embodiments, the ball bat 100 includes an outer skin 330 positioned over the wrapped fiber tape 210 to form the outermost surface of the ball bat 100 (setting aside paint or indicia). The outer skin 330 forms an exterior cover that may provide a smooth outer surface or it may further modify the structural characteristics of the bat 100. For example, an outer skin 330 may add durability, axial stiffness, and improved feel relative to embodiments in which there is no outer skin 330.


Because the helix of fiber tape 210 may extend only a partial length of the ball bat along the longitudinal axis x (for example, from the distal end 155 to a tape end 340), there may be an external or surface shape discontinuity adjacent to the tape end 340. To avoid such a shape discontinuity, in some embodiments, the bat 100 includes one or more composite layers 350 (such as composite laminate layers) positioned on the preform 200 or integral with the preform 200 adjacent to the tape end 340 along the longitudinal axis x. The one or more composite layers 350 may extend along the longitudinal axis x between the tape end 340 and a location within the tapered section 130, or the one or more composite layers 350 may extend all the way to the proximal end 145 of the ball bat 100. In some embodiments, the outer skin 330 is also positioned over the one or more composite layers 350.


Although FIGS. 3 and 4 show the flared element 230 positioned at or toward the distal end 155, in some embodiments, the flared element 230 may be positioned elsewhere along the length of the ball bat 100.


For example, FIG. 5 illustrates a side cross-sectional view of a portion of a ball bat 500 configured in accordance with further embodiments of the present technology, in which the flared element 230 is positioned at a distance d from the distal end 510 of the bat 500. The ball bat 500 may be similar to the ball bat 100 described above, except that the fiber tape 210 does not extend to the distal end 510. Instead, for example, one or more concentric composite laminate layers 520 that extend generally parallel to the x-axis may be positioned between the fiber tape 210 (or the flared element 230) and the distal end 510. Accordingly, in various embodiments, the fiber tape 210 may form any suitable portion of a ball bat, such as some or all of the barrel portion 110, some or all of the handle portion 120, or some or all of the tapered section 130 (see FIG. 1). In the embodiment shown in FIG. 5, the fiber tape 210 may extend from a location between the sweet spot 190 and the distal end 510 (the location being spaced apart from the distal end 510) to a location between the sweet spot 190 and the proximal end 145 (see FIG. 1) of a ball bat.


Generally, in embodiments in which the fiber tape 210 does not span a full length of a ball bat, other composite material may be positioned adjacent to the fiber tape 210 (such as the one or more composite laminate layers 350 between the fiber tape 210 and the proximal end 145 of the bat 100, as shown in FIG. 3, or the one or more composite laminate layers 520 between the fiber tape 210 and the distal end 510 of the bat 500 as shown in FIG. 5, or other combinations or arrangements of fiber tape 210 and composite laminate layers).



FIG. 6 is a schematic cross-sectional view of the preform wall 300, the flared element 230, and two layers 235 of fiber tape 210 (formed by at least one wrap or turn of the helix of fiber tape 210). An angle A is illustrated in FIG. 6 to represent the angle between the surface 240 and the preform wall 300. Because the preform wall 300 is generally parallel to the x-axis at the location of the flared element 230, the angle A also represents the angle between the surface 240 and the x-axis. Likewise, the angle A represents the angle between the layers 235 of fiber tape 210 and the x-axis, as well as the angle between the interlaminar interface 250 and the x-axis. The angle A may be between 1 and 90 degrees.


A 90-degree angle A would orient the interfaces 250 between the layers 235 to be perpendicular to the x-axis. Such a 90-degree angle A, however, presents manufacturing challenges and may reduce durability and axial strength. For example, as the angle A approaches 90 degrees, the tape 210 may stretch or wrinkle on its sides more than it would at lesser angles, because opposite sides of the tape 210 would be forced to have different radial locations from each other. Although the tape 210 may be pleated at its outer radius to adjust for such stretching or wrinkling, pleating reduces the strength of the tape 210 and increases complexity in the manufacturing process. Generally, oblique angles (greater than one degree and less than 90 degrees) are preferred, but it is noted that as the angle A is reduced, fewer manufacturing challenges may arise (as the radial difference between edges of the tape 120 is reduced).


In some embodiments, the angle A may be 45 degrees, which provides a balance of hoop and axial strength. Such an angle A, however, may require more tape material to assemble a ball bat. Angles A less than 45 degrees present manageable manufacturing challenges while still providing the advantageous effect of interfaces 250 between layers 235 formed by wraps or turns of the tape 210 oriented transverse to the x-axis. In one embodiment, an angle A of 11 degrees, with a tape width W of one inch, presents a good compromise between strength and manufacturability.


Although a bat preform 200 is described as receiving the fiber tape 210, in some embodiments, the preform 200 may be omitted and the fiber tape 210 may form some or all of the full thickness of a bat wall. In such embodiments, a mandrel (with a flared element 230) may replace the preform 200, and the fiber tape 210 may be wrapped around the mandrel. The mandrel may be removed before or after curing the fiber tape 210. Accordingly, the preform 200 or mandrel may form a base structure about which the fiber tape 210 is wrapped.



FIG. 6A illustrates a table 600 of example angles A (column 605) and tape widths W (column 610) that may be implemented in a bat configured in accordance with some embodiments of the present technology. In the table 600, the angles A (column 605) and tape widths W (column 610) correspond to a tape wrap radial thickness t4 (see FIG. 4) of approximately 0.25 inches (column 615). The dimensions and values in the table 600 are for example only and do not limit the embodiments or implementations of the present technology. Rather, the table 600 illustrates some configurations of bats configured in accordance with various embodiments of the technology.


In some embodiments, the angle A may be a function of the tape width W and the overall bat wall thickness (for example, t3 in FIG. 4). For example, for a selected preform wall 300 thickness and a selected outer skin 330 thickness, if the tape width W is narrowed while keeping the overall bat wall thickness the same, the angle A may be greater and may require more wraps (turns) of the fiber tape 210 to cover the desired length of the bat. The additional wraps (turns) can increase the time, material, and complexity of the manufacturing process. For example, as explained in additional detail above, the greater angle A can distort the tape as it wraps in a circular pattern by stretching one side and compressing the other side. Accordingly, a greater angle A may also include a need for specially tailoring the tape 210 to allow for such distortion (such as stretching or compression). A person of ordinary skill in the art will be able to select a desired angle A, tape width W, overall bat wall thickness t3, or dimensions of other elements for a desired application of embodiments of the present technology.



FIG. 7 illustrates a method 700 of making a ball bat in accordance with embodiments of the present technology. Beginning at block 702, an operator may create a bat preform (such as the preform 200) or provide a mandrel. If the flared element is not integral with the preform or mandrel, the flared element may be installed at block 704. At block 706, an operator may begin wrapping the fiber tape by attaching it to, or otherwise placing it on, the flared element.


At block 708, an operator may wrap the fiber tape as a helix around the preform or mandrel until it extends along the desired length of the bat. At block 710, an operator may optionally cover the fiber tape with a skin layer. At block 712, the assembly is cured. In some embodiments, some or all elements of the assembly (such as the preform, the flared element, the tape, or the skin) may be co-cured, while in other embodiments, various elements may be cured at different times.


In some embodiments, at block 714, an operator may cut off the end of the assembly having the flared element to remove the flared element or wedge (leaving only the angled layers of wrapped fiber tape). In other embodiments, the flared element may remain in the assembly and be a permanent part of the final bat. At block 716, an operator may finish the bat by adding an end knob, end cap, indicia, or other elements. Steps of the method 700 may be performed in other suitable sequences and may include additional steps or may omit steps.


Bats configured in accordance with embodiments of the present technology provide several advantages. For example, the interlaminar interfaces between consecutive turns of the fiber tape 210 are oriented transversely relative to the x-axis, which helps to reduce or limit the trampoline effect of a bat as it breaks in, relative to interlaminar interfaces that are oriented along the x-axis. Accordingly, ball bats according to the present technology provide more consistent performance before and after being “broken in.”


From the foregoing, it will be appreciated that specific embodiments of the disclosed technology have been described for purposes of illustration, but that various modifications may be made without deviating from the technology, and elements of certain embodiments may be interchanged with those of other embodiments, and that some embodiments may omit some elements. For example, although in some embodiments, the fiber tape 210 may be discontinuous, the fiber tape 210 is preferably one single continuous tape such that only one fiber tape 210 is used to form the transverse interlaminar interfaces described above. A single continuous tape of fiber material helps reduce complexity and waste in the manufacturing process. A single continuous tape of fiber material also helps reduce discontinuities along the bat surface. Because such discontinuities can reduce durability and increase the risk of undesirable performance growth, a single continuous tape can improve durability and control performance relative to a discontinuous tape. Accordingly, embodiments of the present technology include a single continuous tape of fiber material or a minimal quantity of continuous tapes of fiber material to minimize the quantity of discontinuities between tapes. In some embodiments, the straight section 160 includes a single continuous tape, the barrel portion 110 includes a single continuous tape, the ball striking area 180 includes a single continuous tape, or other sections or portions of a ball bat can include a single continuous tape.


Further, while advantages associated with certain embodiments of the disclosed technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology may encompass other embodiments not expressly shown or described herein, and the invention is not limited except as by the appended claims.

Claims
  • 1. A ball bat comprising a handle portion and a barrel portion attached to or continuous with the handle portion along a longitudinal axis of the ball bat, wherein the handle portion comprises a proximal end of the ball bat and the barrel portion comprises a distal end of the ball bat, the ball bat further comprising: a flared surface positioned toward the distal end, the flared surface diverging away from the longitudinal axis as the flared surface extends toward the distal end; anda tape of fiber material wrapped around the longitudinal axis in a helix extending along the longitudinal axis, wherein an end of the tape is positioned on, or attached to, the flared surface;wherein interlaminar interfaces between adjacent turns of the tape are oriented obliquely relative to the longitudinal axis.
  • 2. The ball bat of claim 1, further comprising a preform structure extending along the longitudinal axis, wherein the tape is wrapped around the preform structure.
  • 3. The ball bat of claim 1, further comprising an outer skin positioned radially outwardly from the tape.
  • 4. The ball bat of claim 1, wherein the interlaminar interfaces are oriented at angles between 1 and 45 degrees relative to the longitudinal axis.
  • 5. A ball bat comprising a handle portion and a barrel portion attached to or continuous with the handle portion along a longitudinal axis of the ball bat, wherein the handle portion comprises a proximal end of the ball bat and the barrel portion comprises a distal end of the ball bat, wherein the barrel portion comprises: at least part of a preform structure comprising one or more layers of composite material;a flared element positioned on the preform structure toward the distal end, the flared element having a surface that diverges away from the longitudinal axis as the surface extends toward the distal end, the surface being oriented transversely to the longitudinal axis;a continuous tape of fiber material wrapped around the at least part of the preform structure in a helix extending along the longitudinal axis, wherein interlaminar interfaces between consecutive turns of the helix are oriented at oblique angles relative to the longitudinal axis, and wherein an end of the tape is positioned on, or attached to, the surface; andan outer skin positioned around the tape.
  • 6. The ball bat of claim 5, wherein the flared element comprises a discrete ring-shaped wedge element attached to the distal end.
  • 7. The ball bat of claim 5, wherein the flared element is integral to the preform structure.
  • 8. The ball bat of claim 5, wherein the flared element comprises wood, plastic, metal, foam, or composite material.
  • 9. The ball bat of claim 5, wherein the at least part of the preform structure comprises a section having non-uniform thickness, wherein the section having non-uniform thickness is positioned at the sweet spot of the ball bat, and wherein the tape is wrapped around the section having non-uniform thickness.
  • 10. The ball bat of claim 5, wherein the helix of tape extends along less than a full length of the barrel portion, and wherein the barrel portion comprises one or more additional layers of composite laminate material positioned around the preform structure and longitudinally adjacent to an end of the tape.
  • 11. The ball bat of claim 5, wherein the tape extends only between the distal end of the bat and a location that is positioned a distance of three to ten inches from the distal end of the bat.
  • 12. The ball bat of claim 5, wherein the tape comprises prepreg material.
  • 13. The ball bat of claim 5, wherein the oblique angles are greater than 1 degree relative to the longitudinal axis and less than 45 degrees relative to the longitudinal axis.
  • 14. The ball bat of claim 5, wherein the oblique angles are 11 degrees relative to the longitudinal axis, and wherein a width of the tape is one inch.
US Referenced Citations (333)
Number Name Date Kind
3942794 Gowins Mar 1976 A
4014542 Yukio Mar 1977 A
4025377 Yukio May 1977 A
4093217 Silvio Jun 1978 A
4123053 Silvio Oct 1978 A
4132130 Schneider Jan 1979 A
4150291 Gulley, Jr. Apr 1979 A
4324400 Tse Apr 1982 A
4505479 Souders Mar 1985 A
4600190 Berokoff Jul 1986 A
4604319 Evans Aug 1986 A
4672541 Bromley Jun 1987 A
4681318 Lay Jul 1987 A
4720104 Disieno Jan 1988 A
4780346 Denoel Oct 1988 A
4804315 Ferris Feb 1989 A
4818584 Eisenmann Apr 1989 A
4830371 Lay May 1989 A
4848745 Bohannan Jul 1989 A
4867399 Therond Sep 1989 A
4870868 Gastgeb Oct 1989 A
4938478 Lay Jul 1990 A
4963408 Huegli Oct 1990 A
5048441 Quigley Sep 1991 A
5057353 Maranci Oct 1991 A
5083780 Walton Jan 1992 A
5114144 Baum May 1992 A
5123655 Rones Jun 1992 A
5131651 You Jul 1992 A
5150897 Wortman Sep 1992 A
5180163 Lanctot Jan 1993 A
5188059 Rice Feb 1993 A
5197732 Lanctot Mar 1993 A
5284332 Ditullio Feb 1994 A
5301940 Seki Apr 1994 A
5364095 Easton Nov 1994 A
5380002 Spector Jan 1995 A
5380003 Lanctot Jan 1995 A
5395108 Souders Mar 1995 A
5415398 Eggiman May 1995 A
RE35081 Quigley Nov 1995 E
5511777 McNeely Apr 1996 A
5540440 Liu Jul 1996 A
5556695 Mazelsky Sep 1996 A
5593158 Filice Jan 1997 A
5620179 MacKay, Jr. Apr 1997 A
5624114 Kelsey Apr 1997 A
5624115 Baum Apr 1997 A
5641366 Hohman Jun 1997 A
5676551 Knight Oct 1997 A
5676609 Mollebaek Oct 1997 A
5676610 Bhatt Oct 1997 A
5722908 Feeney Mar 1998 A
5759113 Lai Jun 1998 A
5800293 MacKay Sep 1998 A
5804707 Scarton Sep 1998 A
5833561 Kennedy Nov 1998 A
5868578 Baum Feb 1999 A
5922765 Fleming Jul 1999 A
5954602 Eggiman Sep 1999 A
5982352 Pryor Nov 1999 A
5988861 Baum Nov 1999 A
6007439 MacKay, Jr. Dec 1999 A
6008800 Pryor Dec 1999 A
6022282 Kennedy Feb 2000 A
6033758 Kocher Mar 2000 A
6042492 Baum Mar 2000 A
6042493 Chauvin Mar 2000 A
6050910 Holman Apr 2000 A
6053827 MacKay, Jr. Apr 2000 A
6053828 Pitsenberger Apr 2000 A
6056655 Feeney May 2000 A
6077178 Brandt Jun 2000 A
6146291 Nydigger Nov 2000 A
6152840 Baum Nov 2000 A
6159116 Pitsenberger Dec 2000 A
6176795 Schullstrom Jan 2001 B1
6234922 White May 2001 B1
6238309 Sample May 2001 B1
6248032 Filice Jun 2001 B1
6251034 Eggiman Jun 2001 B1
6265333 Dzenis Jul 2001 B1
6280654 Digman Aug 2001 B1
6287222 Pitsenberger Sep 2001 B1
6322463 Forsythe Nov 2001 B1
6334824 Filice Jan 2002 B1
6334825 Buiatti Jan 2002 B1
6344007 Feeney Feb 2002 B1
6383100 Pitsenberger May 2002 B2
6383101 Eggiman May 2002 B2
6386999 White May 2002 B2
6398675 Eggiman Jun 2002 B1
6425836 Misono Jul 2002 B1
6432007 Filice Aug 2002 B1
6461260 Higginbotham Oct 2002 B1
6482114 Eggiman Nov 2002 B1
6497631 Fritzke Dec 2002 B1
6508731 Feeney Jan 2003 B1
6511392 Chohan Jan 2003 B1
6530852 Rios Mar 2003 B2
6533985 Smith Mar 2003 B1
6634969 Forsythe Oct 2003 B2
6640200 Baum Oct 2003 B1
6663517 Buiatti Dec 2003 B2
6702698 Eggiman Mar 2004 B2
6723012 Sutherland Apr 2004 B1
6723127 Ralph Apr 2004 B2
6730047 Socci May 2004 B2
6733404 Fritzke May 2004 B2
6743127 Eggiman Jun 2004 B2
6755757 Sutherland Jun 2004 B2
6761653 Higginbotham Jul 2004 B1
6764419 Giannetti Jul 2004 B1
6767297 Hebreo Jul 2004 B2
6770002 Aigotti Aug 2004 B2
6776735 Bélanger Aug 2004 B1
6778915 Kelly Aug 2004 B2
6808464 Nguyen Oct 2004 B1
6821218 Byrne Nov 2004 B2
6839453 McWilliam Jan 2005 B1
6866598 Giannetti Mar 2005 B2
6869372 Higginbotham Mar 2005 B1
6872156 Ogawa Mar 2005 B2
6872157 Falone Mar 2005 B2
6875137 Forsythe Apr 2005 B2
6878080 Chang Apr 2005 B2
6892396 Uno May 2005 B2
6899648 Chang May 2005 B2
6905429 Forsythe Jun 2005 B2
6929573 Chang Aug 2005 B1
6945886 Eggiman Sep 2005 B2
6949038 Fritzke Sep 2005 B2
6969330 Meeker Nov 2005 B1
6991551 Tolentino Jan 2006 B2
6994641 Hebreo Feb 2006 B2
6997826 Sutherland Feb 2006 B2
7000252 Tobin Feb 2006 B1
7006947 Tryon, III Feb 2006 B2
7008339 Sutherland Mar 2006 B2
7011588 Fritzke Mar 2006 B2
7014580 Forsythe Mar 2006 B2
7017427 Vacek Mar 2006 B1
7027623 McWilliam Apr 2006 B2
7033291 Meeker Apr 2006 B1
7044871 Terrance May 2006 B2
7052419 Chang May 2006 B2
7087296 Porter Aug 2006 B2
7097578 Guenther Aug 2006 B2
7098891 Pryor Aug 2006 B1
7110951 Lemelson Sep 2006 B1
7115054 Giannetti Oct 2006 B2
7128670 Souders Oct 2006 B2
7140987 Davis Nov 2006 B2
7163475 Giannetti Jan 2007 B2
7175552 Fritzke Feb 2007 B2
7207907 Guenther Apr 2007 B2
7210172 Adams, Jr. May 2007 B2
7232388 Sutherland Jun 2007 B2
D547814 Sims Jul 2007 S
7300365 Taylor Nov 2007 B2
7320653 Fitzgerald Jan 2008 B2
7331885 Thomas Feb 2008 B2
7334488 Vacek Feb 2008 B1
7361107 Giannetti Apr 2008 B2
7364520 Chauvin Apr 2008 B2
7377866 Nguyen May 2008 B2
7384354 Giannetti Jun 2008 B2
7392717 Vacek Jul 2008 B1
7397851 Roman Jul 2008 B2
7410433 Guenther Aug 2008 B2
7419446 Van Nguyen Sep 2008 B2
7431655 McCarty Oct 2008 B2
7438656 Davis Oct 2008 B2
7442134 Giannetti Oct 2008 B2
7442135 Giannetti Oct 2008 B2
7448971 Smalley Nov 2008 B1
7527570 Giannetti May 2009 B2
7572197 Chauvin Aug 2009 B2
7578758 Thomas Aug 2009 B2
7585235 Misono Sep 2009 B2
7651420 Gaff Jan 2010 B1
7670238 Esquerra Mar 2010 B2
7699725 McNamee Apr 2010 B2
7714849 Pryor May 2010 B2
7744497 Phelan, Jr. Jun 2010 B2
7749114 Thouin Jul 2010 B2
7749115 Cruz Jul 2010 B1
7767876 Davis Aug 2010 B2
7781640 Davis Aug 2010 B2
7837579 Bhatt Nov 2010 B2
7850554 Burger Dec 2010 B2
7857719 Giannetti Dec 2010 B2
7867114 Sutherland Jan 2011 B2
7877820 Landi Feb 2011 B2
7896763 Giannetti Mar 2011 B2
7906191 Pratt Mar 2011 B2
7914404 Giannetti Mar 2011 B2
7955200 Cruz Jun 2011 B1
7973773 Pryor Jul 2011 B2
7980970 Watari Jul 2011 B2
7985149 Watari Jul 2011 B2
7993223 Watari Aug 2011 B2
7993249 Fassl Aug 2011 B1
8013843 Pryor Sep 2011 B2
8029391 McNamee Oct 2011 B2
8044941 Pryor Oct 2011 B2
8062154 Burger Nov 2011 B2
8068100 Pryor Nov 2011 B2
8072440 Pryor Dec 2011 B2
8092322 Smallcomb Jan 2012 B1
8170095 Roman May 2012 B2
8182377 Chuang May 2012 B2
8197365 Tokieda Jun 2012 B2
8197366 Chauvin Jun 2012 B2
8206250 Cruz Jun 2012 B1
8226505 Burger Jul 2012 B2
8228305 Pryor Jul 2012 B2
8277343 Chang Oct 2012 B2
8282516 Chauvin Oct 2012 B2
8298102 Chauvin Oct 2012 B2
8317640 Cruz Nov 2012 B1
8371154 Brandt Feb 2013 B2
8376881 Chuang Feb 2013 B2
8416847 Roman Apr 2013 B2
8427449 Pryor Apr 2013 B2
8435143 Vander Pol May 2013 B2
8449412 Edwin May 2013 B2
8467133 Miller Jun 2013 B2
8472120 Border Jun 2013 B2
8475304 Ou Jul 2013 B2
8477425 Border Jul 2013 B2
8480519 Chauvin Jul 2013 B2
8482859 Border Jul 2013 B2
8488246 Border Jul 2013 B2
8495518 Boden Jul 2013 B2
8506429 Chauvin Aug 2013 B2
8512174 Epling Aug 2013 B2
8512175 Epling Aug 2013 B2
8512176 Mathew Aug 2013 B1
8602924 Shindome Dec 2013 B2
8613679 Zhesterova Dec 2013 B2
8632428 Burger Jan 2014 B2
8702542 Parenti Apr 2014 B2
8708845 Chuang Apr 2014 B2
8715118 Epling May 2014 B2
8727917 Vander Pol May 2014 B2
8734274 Hochberg May 2014 B1
8752419 Brandt Jun 2014 B2
8771114 Markovich Jul 2014 B2
8795108 Chauvin Aug 2014 B2
8804101 Spagnolia Aug 2014 B2
8814691 Haddick Aug 2014 B2
8821322 Jorgens Sep 2014 B1
8845462 Chung Sep 2014 B2
8852037 Epling Oct 2014 B2
8858373 Epling Oct 2014 B2
8894518 Chung Nov 2014 B2
8944939 Clark Feb 2015 B2
8964298 Haddick Feb 2015 B2
8979682 Chuang Mar 2015 B2
8992352 Lindsay Mar 2015 B1
9005056 Pegnatori Apr 2015 B2
9039548 Sams, III May 2015 B2
9067109 Epling Jun 2015 B2
9097890 Miller Aug 2015 B2
9097891 Border Aug 2015 B2
9101810 Carlson Aug 2015 B2
9128281 Osterhout Sep 2015 B2
9129295 Border Sep 2015 B2
9134534 Border Sep 2015 B2
9138625 Chung Sep 2015 B2
9149697 Epling Oct 2015 B2
9182596 Border Nov 2015 B2
9186562 Mathur Nov 2015 B1
9186563 Burger Nov 2015 B2
9186564 Parenti Nov 2015 B2
9211460 Slater Dec 2015 B2
9220962 Van Nguyen Dec 2015 B2
9223134 Miller Dec 2015 B2
9229227 Border Jan 2016 B2
9233294 Coyle Jan 2016 B1
9238163 Slater Jan 2016 B2
9242155 Lindsay Jan 2016 B1
9242156 Goodwin Jan 2016 B2
9248355 Long Feb 2016 B2
9257054 Coza Feb 2016 B2
9285589 Osterhout Mar 2016 B2
9289665 Muller Mar 2016 B2
9308424 Thurman Apr 2016 B2
9329689 Osterhout May 2016 B2
9341843 Border May 2016 B2
9366862 Haddick Jun 2016 B2
9387383 Hou Jul 2016 B2
9427640 Davis Aug 2016 B2
9457247 Fitzgerald Oct 2016 B2
9457248 Long Oct 2016 B2
9463364 Chuang Oct 2016 B2
9468823 Mitton Oct 2016 B2
9486680 Burger Nov 2016 B2
9498690 Carlson Nov 2016 B2
9504414 Coza Nov 2016 B2
9504891 Chen Nov 2016 B1
9511267 Thurman Dec 2016 B2
9744416 Chuang Aug 2017 B2
10456639 Leinert Oct 2019 B2
10507368 Kikuchi Dec 2019 B2
10646761 Early May 2020 B2
10940377 Chauvin Mar 2021 B2
11013967 Chauvin May 2021 B2
11389703 Yamashita Jul 2022 B2
20020098924 Houser Jul 2002 A1
20040132563 Giannetti Jul 2004 A1
20040176197 Sutherland Sep 2004 A1
20040209716 Vacek Oct 2004 A1
20040224801 Forsythe Nov 2004 A1
20050143203 Souders Jun 2005 A1
20050176531 Fitzgerald Aug 2005 A1
20060247079 Sutherland Nov 2006 A1
20070202974 Giannetti Aug 2007 A1
20070205201 Cundiff Sep 2007 A1
20090065299 Vito Mar 2009 A1
20090181813 Giannetti Jul 2009 A1
20090312126 Totino Dec 2009 A1
20130045823 Sublett, Sr. Feb 2013 A1
20140190623 Bradford Jul 2014 A1
20140213395 Chuang Jul 2014 A1
20170252617 Kardos Sep 2017 A1
20180154229 Osborne Jun 2018 A1
20190022483 Chauvin Jan 2019 A1
20190054357 Epling Feb 2019 A1
20190321705 Hunt Oct 2019 A1
20190329109 Hsu Oct 2019 A1
20240050823 Mahoney Feb 2024 A1
Foreign Referenced Citations (1)
Number Date Country
2000035540 Jun 2000 WO
Non-Patent Literature Citations (3)
Entry
“ASTM F2219-14 Standard Test Methods for Measuring High-Speed Bat Performance,” 2014.
Fibre Reinforced Plastic, “Sandwich Composite and Core Material”, available at http://www.fibre-reinforced-plastic.com/2010/12/sandwich-composite-and-core-material.html, dated Dec. 12, 2010, website visited Jun. 18, 2018.
United States Patent and Trademark Office, Search Report and Written Opinion for PCT/US10/62083, mailed Apr. 6, 2011.
Related Publications (1)
Number Date Country
20230057457 A1 Feb 2023 US