Hot-dip galvanizing is one of the most commonly used methods for protecting steel surfaces against corrosion. Another common corrosion protection method is to apply anti-corrosive paint to steel surfaces. Although hot-dip galvanized steel resists corrosion well in numerous environments, there has recently been concern of health damage to the human body caused by zinc exposure. Regarding anti-corrosive paint, the hexavalent chromium used in the production of such paint presents an environmental and health hazard. There is a need for an anti-corrosion technology that does not involve the use of hazardous chemicals or processes.
The present disclosure may be better understood with reference to the following Figures. Matching reference numerals designate corresponding parts throughout the Figures, which are not necessarily drawn to scale.
As described above, there is a need for an anti-corrosion technology that does not involve the use of hazardous chemicals or processes. Disclosed herein are composite ceramic coatings that can provide anti-corrosion protection to metal without such hazards. In some embodiments, the composite ceramic coating comprises a hydrous zinc silicate layer that is applied to a metal object, such as a steel object, using an electrolytic process. The composite ceramic coating is extremely resistant to corrosion and has a crystalline structure that is extremely stable.
In the following disclosure, various specific embodiments are described. It is to be understood that those embodiments are example implementations of the disclosed inventions and that alternative embodiments are possible. All such embodiments are intended to fall within the scope of this disclosure.
As expressed above, disclosed herein are composite ceramic coatings that can be formed on metal using an electrolytic process. In some embodiments, the composite ceramic coating includes a composite ceramic layer that comprises both metal, such as zinc (Zn), and silicon (Si).
Turning next to block 12, the object is electrolytically plated with Zn or a Zn alloy, such as Zn—Ni, Zn—Fe, and Zn—Sn. This results in a layer of Zn or a Zn alloy being deposited on the surface of the object in similar manner to conventional galvanization. In some embodiments, the Zn or Zn alloy layer is approximately 4 to 25 μm thick. In other embodiments, the Zn or Zn alloy layer is approximately 200 to 300 μm thick.
Once the Zn or Zn alloy layer has been deposited, the object can be coated with a composite ceramic material. A composite plating solution can be prepared by separately preparing a Zn solution (block 14) and an Si solution (block 16). In some embodiments, the Zn solution can be prepared by placing Zn flakes in a container with water (H2O) and adding pellets of sodium hydroxide (NaOH) over a period of time (e.g., 1 hour) at an elevated temperature (e.g., 80° C.) to cause a reaction. The reaction is continued for an extended period of time (e.g., 48 hours) and produces a solution of sodium zincate:
Zn+2NaOH+2H2O→Na2Zn(OH)4+H2
In some embodiments, the resulting sodium zincate solution has molar ratio of approximately Zn:NaOH:H2O=1:1:6. Although a Zn solution have been specifically identified, it is noted that, in other embodiments, a plating solution can comprise another metal material, such as aluminum (Al), nickel (Ni), tin (Sn), titanium (Ti), beryllium (Be), or copper (Cu).
In some embodiments, the Si solution can be prepared by placing chunks of a high purity Si mineral, which is commercially available as “Si metal,” in a container with H2O and adding pellets of NaOH over a period of time (e.g., 1 hour) to cause a reaction. The reaction is continued for an extended period of time (e.g., 6 hours) and produces a clear and colorless solution of sodium silicate:
Si+2NaOH+H2O→Na2SiO3+2H2
In some embodiments, the sodium silicate solution has a molar ratio of approximately Si:NaOH:H2O=6:1:10 and a specific gravity (SG) of approximately 1.8 to 2.0. The sodium silicate solution can be diluted with water to a SG of approximately 1.3.
With reference back to
The composite plating solution can then be placed in a plating container in which the metal object is to be plated with the solution (block 20). A metal (e.g., Zn) anode and the metal object (cathode) can be added to the composite solution (block 22). Next the composite plating solution can be heated and a current can be applied to the solution for several minutes to form a composite ceramic layer (block 24). In some embodiments, a current of approximately 1 to 4 amps (e.g., 1 amps) is applied to the composite plating solution for approximately 1 to 30 minutes (e.g., 5 minutes) at a temperature of approximately 25 to 90° C. (e.g., 60° C.). In other embodiments, a current of approximately 0.5 to 1 amp is applied to the composite plating solution for approximately 15 to 30 minutes at a temperature of approximately 30 to 40° C. During this time, a composite ceramic layer comprising hydrous zinc silicate is electrolytically deposited on the surface of the object over the Zn/Zn alloy layer. In some embodiments, the hydrous zinc silicate layer has a thickness of approximately 40 to 300 μm. In other embodiments, the hydrous zinc silicate layer has a thickness of approximately 260 to 300 μm.
Scanning electron microscopy (SEM) analysis was performed using a Hitachi SU1510 variable pressure electron microscope at an accelerating voltage of 30 kV. The results of the study are presented in the
The X-ray diffraction (XRD) pattern of the composite ceramic coating was collected using a Rigaku Ultima IV diffractometer with Cu Kα radiation (λ=1.5406 Å) between 28 of 2 to 75° at a power settings of 40 kV and 44 mA.
The salt spray (fog) test is a standardized test method used to evaluate corrosion resistance of coated samples. Five hundred hours of salt spray testing was conducted in accordance with the ASTM B117-11 standard in a Q-FOG cyclic corrosion tester. During an ASTM B117 test, specimens are exposed to a continuous fog of a 5 wt. % solution of sodium chloride (greater concentration than sea water, which is only 1.8% to maximum 3%) at an elevated temperature of 35° C. The justification for these extreme conditions is that a coating system that will resist these test conditions should also perform well in aggressive service environments. Five hundred hours of salt fog testing is roughly equivalent to 2.5 years in a coastal environment. Nine test specimens were used and no previous treatment was performed prior to the testing. The specimens included six steel plates coated with the composite ceramic coating of this disclosure (specimens 1-6), two Zn-coated samples (specimens 7-8), and one uncoated carbon steel plate (specimen 9).
The results of the salt spray testing for specimens 1-9 are illustrated in
Micro-hardness measurements were performed on the outer layer of the composite ceramic coating and it was determined that its average hardness was approximately 58 HV, which is within range of hardness reported for electrodeposited Zn. Pull-off strength testing was also performed and showed very good adhesion of the hydrous zinc silicate to the Zn layer on the steel surface with an average value of stress at break of approximately 3.40 MPa. These hardness and adhesion results indicate that the material is resistant to mechanical scratches.
Cyclic voltammetry tests were also performed and indicated that the composite ceramic coating effectively protects the coated steel from the electrochemical attack by aggressive ions from solution, thereby providing an effective anticorrosion performance.
Tribological testing was additionally performed and indicated that the composite ceramic coating is effective in promoting the lubrication performance of engine oil by reducing the coefficient of friction by up to 10%.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US16/21066 | 3/4/2016 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62128126 | Mar 2015 | US |