Composite coating for seed

Information

  • Patent Grant
  • 11324160
  • Patent Number
    11,324,160
  • Date Filed
    Wednesday, March 21, 2018
    6 years ago
  • Date Issued
    Tuesday, May 10, 2022
    2 years ago
Abstract
In an agricultural product, a seed is contained within a composite coating. The composite coating has successive layers, and one or more of the layers can include fertilizer, a binder, and/or lime.
Description
BACKGROUND

This disclosure relates to coatings for seeds and, more particularly, to coatings for grass seed.


The general concept of coating seed with chemical additives is known. For example, coating grass seed with a polymer film coating is known, wherein the polymer film coating may function as an adhesion promoting agent or binder (e.g., “polymeric sticker”).


To facilitate ease of understanding of the embodiments disclosed below, it is noted that those of ordinary skill in the art understand that “N-P-K” is elemental shorthand for the three major nutrients in fertilizers, wherein “N” stands for weight percentage of nitrogen, “P” stands for weight percentage of phosphate (e.g., P2O2) or the like, and “K” stands for weight percentage of potash (e.g., K2O) or the like.


SUMMARY

Aspects of this disclosure include the provision of composite seed coatings, coated seed products, and associated methods and systems.


Another aspect of this disclosure is the provision of an agricultural product comprising a composite coating at least partially enclosing a seed, for example a grass seed. The composite coating can include a plurality of layers, and the plurality of layers can include an inner layer at least partially enclosing the grass seed, an intermediate layer at least partially enclosing the inner layer, and an outer layer at least partially enclosing the intermediate layer. One or more of the layers can include fertilizer, a binder, and/or non-nutritive material (e.g., lime and/or talc). In one example, each of the inner, intermediate, and outer layers comprises fertilizer. In another example, the inner layer comprises fertilizer, and the outer layer comprises the non-nutritive material. In another example, the plurality of layers includes at least five layers and up to thirteen layers, or more. Each of the layers can comprise fertilizer, a binder, and/or the non-nutritive material.


As another example, in a composite coating having at least four or five successive layers respectively extending at least partially around one another, one or more of the layers can include fertilizer, a binder, and/or the non-nutritive material. For example, at least two of the layers can be spaced apart from one another and comprise fertilizer, and at least two other of the layers can be spaced apart from one another and comprise the non-nutritive material. For example, the outermost or exterior layer of the plurality of layers can comprise the non-nutritive material. One or more additional successive layers can be included.


In one example, layers of the composite coating successively alternate at least between layers comprising fertilizer and layers comprising the non-nutritive material, wherein there can be numerous of the layers, and one or more of the layers can comprise additional or other materials. For example, there can be layers of binder material and/or the binder material can be included in the fertilizer layers.


The foregoing summary provides a few brief examples and is not exhaustive, and the present invention is not limited to the foregoing examples. The foregoing examples, as well as other examples, are further explained in the following detailed description with reference to accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The drawings discussed below are schematic and not drawn to scale. The drawings are provided as examples. The present invention may be embodied in many different forms and should not be construed as limited to the examples depicted in the drawings and/or described below.



FIG. 1 is a schematic, enlarged, cross-sectional view of a coated seed, in accordance with an embodiment of this disclosure.



FIG. 2 schematically depicts an enlarged portion of the coated seed of FIG. 1.



FIG. 3 schematically depicts a system for manufacturing coated seed products, in accordance with at least some of the embodiments of this disclosure.





DETAILED DESCRIPTION

An aspect of this disclosure is the provision of seeds (e.g., grass seeds) with improved composite coatings. As examples, improved composite coatings can include a predetermined amount of chemical additive (e.g., fertilizer in the form of ammonium, nitrate, and/or urea); the improved composite coatings can be applied as a liquid and/or a powder; the improved composite coatings can include or not include non-nutritive material such as, but not limited to, talc and/or calcium carbonate (e.g., lime); and/or the improved composite coatings can include or not include a binding agent.


As an example, the binding agent can be a constituent of commercially available polymeric seed coating materials (e.g., polymeric stickers). A suitable polymeric sticker may be UNICOAT™ seed coating polymers available from Universal Coating Systems of Independence Oreg., or the binder or sticker can be any other suitable material. For example, when the composite coating includes lime, the lime may function as a binding agent, and in some situations the polymeric sticker or binder may be omitted. As discussed in greater detail below, the lime may function as a binder when associated with a wet coating, and the binding by the lime may be enhanced by dissolving urea fertilizer in water of the wet coating.


For example, grass seed coated with the improved composite coatings can be spread to provide spread rates ranging from (e.g., from about) 0.0625 lbs. of nitrogen per acre (e.g., 43,560 square feet) to (e.g., to about) 0.5 lbs. of nitrogen per acre, and the composite coatings can be configured to provide increased growth from (e.g., from about) 10% to (e.g., to about) 110% improved green cover in three weeks, including all values and subranges therebetween for each of the above ranges. In accordance with first through tenth embodiments of this disclosure, each composite coating can include at least five layers, or a range of from five to fifteen layers, including all values and subranges therebetween. For example, the composite coating can have a plurality of layers comprising at least five layers, at least six layers, at least seven layers, at least eight layers, or more or less layers. The above examples may be referred to as a first embodiment of this disclosure. Alternatively, there may be less than five layers or more than fifteen layers.


As an example of a coated seed 10 in accordance with the first embodiment, FIGS. 1 and 2 schematically depict a seed 12, which may be a grass seed, encapsulated within a composite coating 14. FIG. 2 schematically depicts an enlarged portion of the coated seed 10 of FIG. 1. FIGS. 1 and 2 are not drawn to scale.


In FIGS. 1 and 2, the composite coating 14 is depicted as having ten coating layers 21, 22, 23, 24, 25, 26, 27, 28, 29, 30; although it is within the scope of this disclosure for there to be a greater or lesser number of the coating layers. FIGS. 1 and 2 at least partially depict that the coating layers 21-30 may be distinct from one another as a result of being separated by clearly demarked boundaries. Notwithstanding, it is believed that the boundaries between immediately adjacent layers of the coating layers 21-30 may be less distinct than schematically depicted in FIGS. 1 and 2.


Referring to FIG. 2, the first coating layer 21 can be an inner coating layer, a base coating layer, or an innermost coating layer. Each of the second through ninth coating layers 22-29 can be an intermediate coating layer, an inner coating layer, or an outer coating layer. The tenth coating layer 30 can be an outer coating layer or an outermost (e.g., exterior) coating layer. One or more of the coating layers 21-30 may be omitted, and there can be one or more additional coating layers.


As shown in FIG. 2, the exterior surface of the seed 12 is in opposing face-to-face contact with the innermost coating layer 21, and each successive coating layer 21-30 is in opposing face-to-face contact with the respective adjacent coating layer(s). A physical bond can be present between at least some of, a majority of, or each of the surfaces or faces of the face-to-face contacts identified in the immediately prior sentence. On the other hand, there may be some structural irregularities with respect to one or more of the layers 21-30, as may be typically dependent upon the content of the layers and/or the processes by which the composite coatings 14 are formed. For example, suitable tolerances may be established that allow for reasonable variations in the physical characteristics and chemical properties between coated seeds 10 within and/or between batches. Accordingly, whereas a seed 12 may be fully encapsulated by each of the layers 21-30 of its composite coating 14, it may also be the case that one or more of the layers may not form a fully enclosing or fully encapsulating structure. Therefore, the layers 21-30 and composite coating 14 may be more generally referred to as at least partially encapsulating, at least partially enclosing, substantially encapsulating, and/or substantially enclosing the respective seed 12.


As further examples, other embodiments of composite coatings 14, coated seeds 10, and associated methods are disclosed in the following. The various embodiments of this disclosure can be alike, except for variations noted and variations that will be apparent to those of ordinary skill in the art. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. For example, features disclosed as part of one embodiment can be used in the context of another embodiment to yield a further embodiment. In the following, some of the embodiments may be named sequentially, but the sequence does not relate to relative preference. In the following examples, small-batch recipes are provided for producing relatively small batches of coated seeds 10. When producing the coated seeds 10 on a commercial scale, the commercial recipes can be calculated by multiplying accordingly (e.g., by orders of magnitude), as will be understood by those of ordinary skill in the art.


In accordance with a second embodiment, a method of coating grass seed 12 comprises, consists of, or consists essentially of:

    • Step 1 of Example 1 (e.g., at least partially forming coating layer 21): coat 453.6 grams of grass seed 12 (e.g., tall fescue seed) with 41.12 grams of 46-00-00 fertilizer composition. For facilitating this initial coating step, the fertilizer composition can be dissolved in a solvent to form a wet coating composition, wherein the wet coating composition is coated onto the grass seed 12. For example, the fertilizer composition can be dissolved into water, or the fertilizer can be dissolved into a polymeric binder or sticker solution (e.g., a mixture of 60 milliliters of water and 80 milliliters of concentrated UNICOAT™ polymer sticker solution).
    • Step 2 of Example 1 (e.g., at least partially forming coating layer 22): coat the precursory coated seed from Step 1 of Example 1 with 30 milliliters of the binder or sticker.
    • Step 3 of Example 1 (e.g., at least partially forming coating layer 23): coat the precursory coated seed from Step 2 of Example 1 with 106.47 grams of lime powder.
    • Step 4 of Example 1 (e.g., at least partially forming coating layer 24): coat the precursory coated seed from Step 3 of Example 1 with 30 milliliters of the binder or sticker.
    • Step 5 of Example 1 (e.g., at least partially forming coating layer 25): coat the precursory coated seed from Step 4 of Example 1 with 106.47 grams of lime powder.
    • Step 6 of Example 1 (e.g., at least partially forming coating layer 26): coat the precursory coated seed from Step 5 of Example 1 with 30 milliliters of the binder or sticker.
    • Step 7 of Example 1 (e.g., at least partially forming coating layer 27): coat the precursory coated seed from Step 6 of Example 1 with 106.47 grams of lime powder.
    • Step 8 of Example 1 (e.g., at least partially forming coating layer 28): coat the precursory coated seed from Step 7 of Example 1 with 30 milliliters of the binder or sticker.
    • Step 9 of Example 1 (e.g., at least partially forming coating layer 29): coat the precursory coated seed from Step 8 of Example 1 with 106.47 grams of lime powder.
    • Step 10 of Example 1 (e.g., at least partially forming coating layer 30): coat the precursory coated seed from Step 9 of Example 1 with 30 milliliters of the binder or sticker.


For example, the coated grass seeds 10 of the second embodiment can be spread to provide a spread rate of (e.g., of about) 0.25 lbs. of nitrogen per 1000 square feet, and a raw seed spread rate of (e.g., of about) 6 pounds of seed per 1000 square feet.


At least partially reiterating from above, aspects of the second embodiment are expressed in tabular form in Table 1 below, which includes reference numerals from FIG. 2.









TABLE 1







2nd Embodiment










Components
Amounts















Grass seeds 12 (e.g., tall fescue)
453.6
grams



innermost layer 21: 46-00-00 fertilizer
41.12
grams










composition (e.g., urea or UFLEXX ®)












layer 22: lime powder
106.47
grams



layer 23: binder or sticker solution
30
milliliters



layer 24: lime powder
106.47
grams



layer 25: binder or sticker solution
30
milliliters



layer 26: lime powder
106.47
grams



layer 27: binder or sticker solution
30
milliliters



layer 28: lime powder
106.47
grams



layer 29: binder or sticker solution
30
milliliters



outermost or exterior layer 30: lime
106.47
grams










powder











At least partially reiterating from above, features (e.g., component totals) of the second embodiment can comprise, consist essentially of, or consist of:

    • a raw seed spread rate of 6 pounds of seed 12 per 1000 square feet;
    • 46-00-00 fertilizer composition (e.g., urea or UFLEXX®);
    • a fertilizer spread rate of 0.25 pounds of nitrogen per 1000 square feet.
    • 453.6 grams of grass seed 12 (e.g., tall fescue);
    • 41.12 grams of the fertilizer composition;
    • 412.88 grams of lime; and
    • a total composite coating weight of 454 grams.


The above bullet points regarding the second embodiment are restated in the second to the last row of Table 2 below, and variations of the second embodiment are presented in the other rows of Table 2 below. For each of the examples in Table 2, there can be 453.6 grams of grass seed 12 (e.g., tall fescue), the uncoated seeding rate can be 6 lbs./1000 ft2, and the total composite coating weight can be 454 grams.












TABLE 2






Desired N Rate
Fertilizer amount
Lime amount


Fertilizer
lbs./1000 ft2
(grams)
(grams)


















Ammonium
0.25
89.23
364.77


Sulfate





(e.g. 21-0-0)
0.5
178.46
275.54


12-0-3
0.25
157.64
296.36


(e.g. urea or
0.5
315.28
138.72


UFLEXX ®)





46-0-0
0.25
41.12
412.88


(e.g. urea or
0.5
82.25
371.75


UFLEXX ®)









At least partially reiterating from above, the binder or sticker of the second embodiment can be, or more generally can comprise, a polymeric binder or sticker solution, for example UNICOAT™ colored seed coating polymers, or the sticker can be any other suitable binder or sticker. It is believed that the UNICOAT™ polymer sticker solution can be obtained in a concentrated form consisting of 36-38% water and 62-64% natural and proprietary polymers and colorants, and that prior to being used to coat the seed the UNICOAT™ polymer sticker solution may be diluted with water. For example, it is believed that one part of concentrated UNICOAT™ polymer sticker solution can be mixed with three parts water to create the binder or sticker solution that is coated on the seed 12. The composite coatings 14 can be applied to the seed 12 in any suitable manner, for example using conventional coaters (e.g., rotary coaters), conventional dryers and/or other suitable equipment, as discussed in greater detail below.


It is believed that, as part of the coating process, typically at least a majority of or substantially all of the water of the binder or sticker solution and/or any other wet coating composition evaporates, and the remaining contents of the binder or sticker solution and/or any other wet coating composition forms the resulting coating layer. In the second embodiment, the remaining contents of the binder or sticker solution that form each sticker coating layer form a relatively small weight percentage of the composite coating. Accordingly, in the examples of relative weight percentage provided in this disclosure, the weight of the above-referenced 62-64% natural and proprietary polymers of the binder or sticker solution are disregarded and, thus, the weight percentage values are typically approximated values. The weight percentage values are also described herein as being approximate because, for example, those of ordinary skill in the art will understand that some variations are typical in agricultural coating processes. More generally, all numerical values and percentages provided throughout this disclosure can be approximate.


In the second embodiment, the approximate weight percentage of each of the layers (e.g., disregarding the binder or sticker coating layers) can be calculated, and it is believed that each weight percentage can vary by plus or minus about 25%, plus or minus about 20%, plus or minus about 15%, plus or minus about 10%, or plus or minus about 5%, including all values and subranges therebetween for each of the above ranges. Similarly for the second embodiment, the overall approximate weight percentages of the components of the coated seeds 10 can be calculated, and it is believed that each weight percentage can vary by plus or minus about 25%, plus or minus about 20%, plus or minus about 15%, plus or minus about 10%, or plus or minus about 5%, including all values and subranges therebetween for each of the above ranges.


In the second embodiment, the coated seeds 10 can comprise, consist essentially of, or consist of about 50 weight percent seed 12, about 4.5 weight percent of the fertilizer composition, and about 45.5 weight percent of lime; a range of from about 37.5 weight percent seed to about 62.5 weight percent seed, a range of from about 3.3 weight percent of the fertilizer composition to about 5.6 weight percent of the fertilizer composition, and a range of from about 34 weight percent of lime to about 57 weight percent of lime, including all values and subranges therebetween for each of the above. Alternatively, the lime may be supplemented with, or replaced by, other suitable non-nutritive material(s).


In third and fourth embodiments of this disclosure, the fertilizer composition is a 12-0-3+1% sulphur fertilizer composition. In the third and fourth embodiments, the fertilizer composition comprises, consists essentially of, or consists of a blend of: 46-0-0 fertilizer (e.g., commercially available as urea or UFLEXX® stabilized nitrogen fertilizer); 0-0-50s fertilizer (e.g., sulfate of potassium); pulp-based filler (e.g., commercially available as Biodac® filler, which is a cellulose complex consisting of paper fiber (47-53%), kaolin clay (28-34%), calcium carbonate (14-20%), and titanium dioxide (no more than 1%)); and limestone.


Aspects of the third and fourth embodiments are expressed in tabular form in Tables 3 and 4 below, which include reference numerals from FIG. 2.













TABLE 3








3rd Embodiment
4th Embodiment



Components
Amounts
Amounts






















Grass seeds 12 (e.g.,
25
grams
25
grams



perennial ryegrass)







innermost layer 21:
1
milliliter
2
milliliter



binder or sticker







solution







layer 22: fertilizer
5.21
grams
10
grams



composition







layer 23: binder or
1
milliliter
1
milliliter



sticker solution







layer 24: fertilizer
5.21
grams
10.83
grams



composition
















layer 25: binder or
1
milliliter
none













sticker solution







layer 26: lime powder
14.58
grams
4.17
grams



outermost or exterior
3
milliliters
3
milliliters



layer 27: binder or







sticker solution



















TABLE 4






3rd Embodiment
4th Embodiment


Components
Total Amounts
Total Amounts



















Grass seeds 12 (e.g.,
25
grams
25
grams


perennial ryegrass)






binder or sticker
6
milliliter
6
milliliter


solution






fertilizer composition
10.42
grams
20.83
grams


lime powder
14.58
grams
4.17
grams









In the third embodiment, the fertilizer spread rate can be 0.25 pounds of nitrogen per 1000 square feet. In the fourth embodiment, the fertilizer spread rate can be 0.5 pounds of nitrogen per 1000 square feet.


A variety of variations are within the scope of this disclosure. For example, the pulp-based filler can be omitted from the composite coatings 14 of the third and fourth embodiments. As another example, the lime may be supplemented with, or replaced by, other suitable non-nutritive material(s)


In accordance with a fifth embodiment, the fertilizer composition comprises, consists of, or consists essentially of 46-0-0 fertilizer (e.g., commercially available as urea or UFLEXX® stabilized nitrogen fertilizer). Aspects of the fifth embodiment are expressed in tabular form in Tables 5 and 6 below, which includes reference numerals from FIG. 2.









TABLE 5







5th Embodiment










Components
Amounts















Grass seeds 12 (e.g., bermudagrass)
225
grams



innermost layer 21: binder or sticker
5
milliliter



solution





layer 22: fertilizer composition
40.76
grams



layer 23: binder or sticker solution
10
milliliter



layer 24: fertilizer composition
40.76
grams



layer 25: binder or sticker solution
10
milliliter



layer 26: fertilizer composition
40.76
grams



layer 27: binder or sticker solution
10
milliliter



layer 28: lime powder
51.36
grams



layer 29: binder or sticker solution
5
milliliters



outermost or exterior layer 30: lime
51.36
grams



powder

















TABLE 6







5th Embodiment










Components
Total Amounts















Grass seeds 12 (e.g., bermudagrass)
225
grams



binder or sticker solution
40
milliliter



fertilizer composition
122.28
grams



lime powder
102.72
grams



resulting dry coated seed
456.5
grams










In the fifth embodiment, the fertilizer spread rate can be 0.25 pounds of nitrogen per 1000 square. As another example, the lime may be supplemented with, or replaced by, other suitable non-nutritive material(s)


In accordance with a sixth embodiment, the fertilizer composition comprises, consists of, or consists essentially of a blend of 46-0-0 fertilizer (e.g., commercially available as urea or UFLEXX® stabilized nitrogen fertilizer) and ammonium sulfate. Aspects of the sixth embodiment are expressed in tabular form in Tables 7 and 8 below, which include reference numerals from FIG. 2.









TABLE 7







6th Embodiment










Components
Amounts















Grass seeds 12 (e.g., bermudagrass)
225
grams



innermost layer 21: binder or sticker
5
milliliter



solution





layer 22: fertilizer composition
38.76
grams



layer 23: binder or sticker solution
10
milliliter



layer 24: fertilizer composition
38.76
grams



layer 25: binder or sticker solution
10
milliliter



layer 26: fertilizer composition
38.76
grams



layer 27: binder or sticker solution
10
milliliter



layer 28: fertilizer composition
38.76
grams



layer 29: binder or sticker solution
10
milliliter



layer 30: fertilizer composition
38.76
grams



next outer layer: binder or sticker
10
milliliter



solution





outermost or exterior layer: lime
31.19
grams



powder

















TABLE 8







6th Embodiment










Components Totals
Total Amounts















Grass seeds 12 (e.g., bermudagrass)
225
grams



binder or sticker solution
55
milliliter



46-0-0 fertilizer
61.14
grams



ammonium sulfate
132.67
grams



lime powder
31.19
grams



resulting dry coated seed
444.81
grams










In the sixth embodiment, the 46-0-0 fertilizer spread rate can be 0.125 pounds of nitrogen per 1000 square feet, and the ammonium sulfate spread rate can be 0.125 pounds of nitrogen per 1000 square feet. As another example, the lime may be supplemented with, or replaced by, other suitable non-nutritive material(s)


In each of the third through sixth embodiments, the approximate weight percentage of each of the layers (e.g., disregarding the binder or sticker coating layers), can be calculated, and it is believed that each weight percentage can vary by plus or minus about 25%, plus or minus about 20%, plus or minus about 15%, plus or minus about 10%, or plus or minus about 5%, including all values and subranges therebetween for each of the above ranges. Similarly for each of the third through sixth embodiments, the overall approximate weight percentages of the components of the coated seeds 10 can be calculated, and it is believed that each weight percentage can vary by plus or minus about 25%, plus or minus about 20%, plus or minus about 15%, plus or minus about 10%, or plus or minus about 5%, including all values and subranges therebetween for each of the above ranges.


In accordance with a seventh embodiment, the fertilizer composition comprises, consists of, or consists essentially of 46-0-0 fertilizer (e.g., commercially available as urea or UFLEXX® stabilized nitrogen fertilizer), and the fertilizer composition is mixed into the binder or sticker solution prior to the coating process. Aspects of the seventh embodiment are expressed in tabular form in Tables 9 and 10 below, which include reference numerals from FIG. 2.









TABLE 9







7th Embodiment










Components
Amounts







Grass seeds 12 (e.g., tall fescue)
225 grams



innermost layer 21: binder or
5 milliliter and 2.57



sticker solution and fertilizer
grams, respectively



composition




layer 22: binder or sticker
5 milliliter and 2.57



solution and fertilizer composition
grams, respectively



layer 23: binder or sticker
5 milliliter and 2.57



solution and fertilizer composition
grams, respectively



layer 24: binder or sticker
5 milliliter and 2.57



solution and fertilizer composition
grams, respectively



layer 25: binder or sticker
5 milliliter and 2.57



solution and fertilizer composition
grams, respectively



layer 26: binder or sticker
5 milliliter and 2.57



solution and fertilizer composition
grams, respectively



layer 27: binder or sticker
5 milliliter and 2.57



solution and fertilizer composition
grams, respectively



outermost or exterior layer 28:
5 milliliter and 2.57



binder or sticker solution and
grams, respectively



fertilizer composition

















TABLE 10







7th Embodiment










Components
Total Amounts















Grass seeds 12 (e.g., tall fescue)
225
grams



binder or sticker solution (without/
40.5
milliliter



before adding fertilizer composition)





fertilizer composition
20.56
grams



resulting dry coated seed
241.0
grams










In the seventh embodiment, the 46-0-0 fertilizer spread rate can be 0.25 pounds of nitrogen per 1000 square feet, and the raw seed spread rate can be 6 pounds of seed 12 per 1000 square feet


In accordance with an eighth embodiment, the fertilizer composition comprises, consists of, or consists essentially of a blend of 46-0-0 fertilizer (e.g., commercially available as urea or UFLEXX® stabilized nitrogen fertilizer) and calcium nitrate (e.g., 15.5-0-0 fertilizer), and the fertilizer composition is mixed into the binder or sticker solution prior to the coating process. Aspects of the eighth embodiment are expressed in tabular form in Tables 11 and 12 below, which include reference numerals from FIG. 2.









TABLE 11







8th Embodiment










Components
Amounts







Grass seeds 12 (e.g., perineal
300 grams



ryegrass)




innermost layer 21: binder or
5 milliliter, 2.29 grams, and



sticker solution, 46-0-0
2.27 grams, respectively



fertilizer and calcium nitrate




layer 22: binder or sticker
5 milliliter, 2.29 grams, and



solution, 46-0-0 fertilizer
2.27 grams, respectively



and calcium nitrate




layer 23: binder or sticker
5 milliliter, 2.29 grams, and



solution, 46-0-0 fertilizer
2.27 grams, respectively



and calcium nitrate




layer 24: binder or sticker
5 milliliter, 2.29 grams, and



solution, 46-0-0 fertilizer
2.27 grams, respectively



and calcium nitrate




layer 25: binder or sticker
5 milliliter, 2.29 grams, and



solution, 46-0-0 fertilizer
2.27 grams, respectively



and calcium nitrate




layer 26: binder or sticker
5 milliliter, 2.29 grams, and



solution, 46-0-0 fertilizer
2.27 grams, respectively



and calcium nitrate




layer 27: binder or sticker
5 milliliter, 2.29 grams, and



solution, 46-0-0 fertilizer
2.27 grams, respectively



and calcium nitrate




layer 28: binder or sticker
5 milliliter, 2.29 grams, and



solution, 46-0-0 fertilizer
2.27 grams, respectively



and calcium nitrate




layer 29: binder or sticker
5 milliliter, 2.29 grams, and



solution, 46-0-0 fertilizer
2.27 grams, respectively



and calcium nitrate




layer 30: binder or sticker
5 milliliter, 2.29 grams, and



solution, 46-0-0 fertilizer
2.27 grams, respectively



and calcium nitrate




outermost or exterior layer:
3.33 milliliter, 1.53 grams,



binder or sticker solution,
and 1.51 grams, respectively



46-0-0 fertilizer and calcium




nitrate

















TABLE 12







8th Embodiment










Components Totals
Total Amounts















Grass seeds 12
300
grams



(e.g., perineal ryegrass)





binder or sticker solution
53.33
milliliter



(without/before adding





fertilizer composition)





46-0-0 fertilizer
24.46
grams



calcium nitrate
24.19
grams



resulting dry coated seed
339.3
grams










In the eighth embodiment, the 46-0-0 fertilizer spread rate can be 0.1875 pounds of nitrogen per 1000 square feet; the calcium nitrate spread rate can be 0.0625 pounds of nitrogen per 1000 square feet, and the raw seed spread rate can be 5 pounds of seed 12 per 1000 square feet.


In accordance with a ninth embodiment, the fertilizer composition comprises, consists of, or consists essentially of a blend of 46-0-0 fertilizer (e.g., commercially available as urea or UFLEXX® stabilized nitrogen fertilizer) and calcium nitrate (e.g., 15.5-0-0 fertilizer), and the fertilizer composition is mixed into water prior to the coating process. Aspects of the ninth embodiment are expressed in tabular form in Tables 13 and 14 below, which include reference numerals from FIG. 2.









TABLE 13







9th Embodiment










Components
Amounts







Grass seeds 12 (e.g., perineal
300 grams



ryegrass)




innermost layer 21: water,
5 milliliter, 2.29 grams, and



46-0-0 fertilizer and calcium
2.27 grams, respectively



nitrate




layer 22: water, 46-0-0
5 milliliter, 2.29 grams, and



fertilizer and calcium nitrate
2.27 grams, respectively



layer 23: water, 46-0-0
5 milliliter, 2.29 grams, and



fertilizer and calcium nitrate
2.27 grams, respectively



layer 24: water, 46-0-0
5 milliliter, 2.29 grams, and



fertilizer and calcium nitrate
2.27 grams, respectively



layer 25: water, 46-0-0
5 milliliter, 2.29 grams, and



fertilizer and calcium nitrate
2.27 grams, respectively



layer 26: water, 46-0-0
5 milliliter, 2.29 grams, and



fertilizer and calcium nitrate
2.27 grams, respectively



layer 27: water, 46-0-0
5 milliliter, 2.29 grams, and



fertilizer and calcium nitrate
2.27 grams, respectively



layer 28: water, 46-0-0
5 milliliter, 2.29 grams, and



fertilizer and calcium nitrate
2.27 grams, respectively



layer 29: water, 46-0-0
5 milliliter, 2.29 grams, and



fertilizer and calcium nitrate
2.27 grams, respectively



layer 30: water, 46-0-0
5 milliliter, 2.29 grams, and



fertilizer and calcium nitrate
2.27 grams, respectively



outermost or exterior layer:
3.33 milliliter, 1.53 grams,



water, 46-0-0 fertilizer and
and 1.51 grams, respectively



calcium nitrate

















TABLE 14







9th Embodiment










Components Totals
Total Amounts















Grass seeds 12
300
grams



(e.g., perineal ryegrass)





water (without/before adding
53.33
milliliter



fertilizer composition)





46-0-0 fertilizer
24.46
grams



calcium nitrate
24.19
grams



resulting dry coated seed
339.3
grams










In the ninth embodiment, the 46-0-0 fertilizer spread rate can be 0.1875 pounds of nitrogen per 1000 square feet, the calcium nitrate spread rate can be 0.0625 pounds of nitrogen per 1000 square feet, and the raw seed spread rate can be 5 pounds of seed 12 per 1000 square feet


In each of the seventh through ninth embodiments, the approximate weight percentage of each of the layers (e.g., disregarding the water), can be calculated, and it is believed that each weight percentage can vary by plus or minus about 25%, plus or minus about 20%, plus or minus about 15%, plus or minus about 10%, or plus or minus about 5%, including all values and subranges therebetween for each of the above ranges. Similarly each of the seventh through ninth embodiments, the overall approximate weight percentages of the components of the coated seeds 10 can be calculated, and it is believed that each weight percentage can vary by plus or minus about 25%, plus or minus about 20%, plus or minus about 15%, plus or minus about 10%, or plus or minus about 5%, including all values and subranges therebetween for each of the above ranges.


Other embodiments and other versions of the above-described embodiments can have one or more layers of lime and/or other non-nutritive material(s) interposed between at least some of (e.g., between each of) the other coating layers, and the percentage weights can vary. For example, in other versions of the seventh, eighth, and ninth embodiments, layers of lime are interposed between some of or all of the other coating layers, and/or the outermost (e.g., exterior) coating layer can comprise lime. Other variations are within the scope of this disclosure.


At least partially reiterating from above, the lime can be more generally referred to as a non-nutritive material, and it is within the scope of this disclosure for the composite coatings 14 to include non-nutritive materials in addition to and/or other than lime. The composite coatings 14 can include non-nutritive materials such as talc, lime, and/or any other suitable non-nutritive materials. Accordingly, for each of the embodiments of this disclosure that are described as including lime, it is believed that the lime may be supplemented with, or replaced with, any other suitable non-nutritive material(s).


As an example, it is believed that the seed 12 can be substantially uniformly coated with one or more of the aforementioned coating layers using conventional methods of mixing, spraying, or a combination thereof. Various coating machines are available which may utilize various coating technology through the use of rotary coaters, drum coaters, spray coaters, fluidized bed techniques, or a combination thereof.


The seed 12 of the first through ninth embodiments may be coated by way of a batch or continuous coating process. As an example, FIG. 3 schematically depicts a system 38 configured to provide coated seeds 12 in a batch coating process, in accordance with one or more embodiments of this disclosure, for example in accordance with the seventh through ninth embodiments of this disclosure. In FIG. 3, the system 38 includes sources 41 through 48 (e.g., containers, tanks, supply bins, hoppers, basins, and/or any other suitable sources) of constituents that are introduced into the manufacturing process for providing the coated seed products 10. The constituents can be conventional materials or articles that are commercially available.


The system 38 further includes supply pathways 51 through 58 configured to provide the constituents into the manufacturing process from the respective sources 41-48. For each of the supply pathways 51-58 and other pathways described herein, the pathway can include one or more suitable conventional components for facilitating the proper provision of the respective articles or materials. For example, the pathways described herein can include one or more conduits, metering devices, weighing devices, conveying devices (e.g., screw and/or auger conveyors), pumps, and/or other suitable devices, such as devices conventionally used in seed coating processes. As another example, where appropriate, moving constituents along one of more of the pathways described herein can comprise dumping the constituents so that they fall into a predetermined location.


The upstream source 41-43 can be sources of materials that are combined in the system 38 to form a dry fertilizer composition. Predetermined amounts of the material(s) from one or more of the upstream sources 41-43 can be supplied into the dry storage unit 60 respectively by way of the upstream supply pathways 51-52, and optionally also by way of an initial collection container or collection unit 62, and an upstream process pathway 64. The upstream source 41 can be a source of fertilizer (e.g., “fertilizer source 41”), and there can be one or more of the fertilizer sources. The upstream sources 42, 43 can be sources of one or more additives (e.g., “additive sources 42, 43”). There can be one or more of the additive sources 42, 43; or one or more of the additive sources and associated upstream supply pathways 52, 53 can be omitted.


The dry storage unit 60 that can be a holding container, holding bin, or other suitable apparatus. As schematically depicted in FIG. 3, the upstream process pathway 64 can comprise a screw and/or auger conveyor, although any other suitable transporting devices can be used. Predetermined amounts of the material(s) from one or more of the upstream sources 41-43 can be supplied into the dry storage unit 60 in any suitable manner.


The dry storage unit 60 can include one or more mixing devices 66 within its interior for mixing the fertilizer or fertilizer composition contained therein. As schematically depicted in FIG. 3, the mixing devices 66 can be screw agitators that are rotated by a motor (not shown), although the mixing devices can be any other suitable types of mixers and/or agitators. The dry storage unit 60 may also be referred to as a mixing unit.


A lower opening of the dry storage unit 60 can be opened and closed by a discharge valve assembly 68 and/or another suitable device. The discharge valve assembly 68 can be configured to supply the mixed fertilizer or fertilizer composition from the dry storage unit 60 to a weight scale 70, so that a predetermined amount can be supplied by way of the weight scale and an intermediate process pathway 72 to a wet storage unit 74. As schematically depicted in FIG. 3, the upstream and intermediate pathways 64, 72 can comprise screw and/or auger conveyors, although any other suitable transporting devices can be used. The predetermined amount of the fertilizer or fertilizer composition can be provided to the wet storage unit 74 in any suitable manner.


The wet storage unit 74 can be a holding container, holding bin, or other suitable apparatus. The intermediate sources 44, 45 can be sources of materials that are combined with the fertilizer or fertilizer composition in the wet storage unit 74 to form a wet coating composition. Predetermined amounts of the material(s) from one or more of the intermediate sources 44, 45 can be supplied into the wet storage unit 74 respectively by way of the intermediate supply pathways 51, 52. The source 44 can be a source of a binding agent, for example a source of the polymeric binder or sticker (e.g., “sticker source 44”). The source 45 can be a source of solvent, for example a source of water (e.g., “water source 45”). The wet storage unit 74 can include one or more mixing devices 76 within its interior for mixing the contents of the wet storage unit. As schematically depicted in FIG. 3, the mixing device 76 can be an impeller that is rotated by a motor (not shown), although the mixing device can include any other suitable types of mixers and/or agitators. Accordingly, the wet storage unit 74 may also be referred to as a mixing unit.


A predetermined amount of the wet coating composition can be supplied from the wet storage unit 74 into a batch coater 80 by way of downstream process pathway 82. The supplied wet coating composition may be in the form of, or at least partially in the form of, a solution. The downstream process pathway 82 can comprise one or more pumps, for example a metering pump 84, for forcing the coating composition along a conduit (e.g., piping) into the batch coater 80. The batch coater 80 can be a rotary batch coater, wherein an outer barrel and/or internal component(s) (not shown) are rotated by a motor (not shown).


The downstream sources 46-48 can be sources of articles and materials that are supplied to the batch coater 80. Predetermined amounts of the article(s)/material(s) from one or more of the downstream sources 46-48 can be supplied into the batch coater 80 respectively by way of the downstream supply pathways 56-58. The source 46 can be a source of the seed 12 (e.g., “seed source 46”), and the seed can be grass seed or any other suitable types of seeds. The downstream sources 47, 48 can be sources of one or more coating materials (e.g., “coating sources 47, 48”). There can be one or more of the coating sources 47, 48; or one or more of the coating sources and associated downstream supply pathways 57, 58 can be omitted. As a more specific example, one or more of the coating sources 47, 48 can be a source of non-nutritive material (e.g., lime and/or other suitable material(s)).


As an example for producing a batch of the coated seed product 10, a predetermined amount of grass seed 12 can be deposited into the batch coater 80. Then, while the batch coater 80 is operating (e.g., rotating and/or otherwise agitating its contents), predetermined amounts of the wet coating composition from the wet storage unit 74, and optionally predetermined amounts of one or more coating materials from the coating sources 47, 48, can be serially deposited into the batch coater to create the coated seed product 10. Typically there is a predetermined time delay between respective occurrences of the depositing of the articles and materials into the batch coater 80, for example so that the coating layers 21-30 are serially formed.


Then, after the coated seed product 10 is formed (e.g., at least partially formed) in the batch coater 80, the coated seed product can be dumped or otherwise provided from the batch coater to a traveling belt of a conveyor apparatus 86 configured to facilitate at least further drying of the coated seed product, or the like. For example, a lower opening of the batch coater 80 can be opened and closed by a discharge valve assembly 88 and/or another suitable device, and the coated seed product 10 may reach the conveyer 86 by way of the valve assembly 88. The conveyor 86 can transport the coated seed product 10 to a next step or stage in the process, for example to a conventional packaging unit where the coated seed product is placed in bags that are closed, so that the bags can be transported and the coated seed product can thereafter be used accordingly. The conveyer 86 and/or valve assembly 88 can be omitted or replaced with any other suitable devices. For example, the batch coater 80 can be a drum-type coater, wherein the drum is mounted for being pivoted to dump out the coated seed product 10, or the like.


In accordance with a tenth embodiment, a method of coating grass seed 12 using the system 38 comprises, consists of, or consists essentially of:

    • Step 1 of Example 2: provide the fertilizer (e.g., urea-based and/or calcium nitrate nutrients) into the collection unit 62.
    • Step 2 of Example 2: move the fertilizer to the dry storage unit 60 and operate the moving or mixing device(s) 66 to keep the fertilizer moving within the dry storage unit.
    • Step 3 of Example 2: provide a predetermined amount of the mixed fertilizer from the dry storage unit to the weight scale 70, comprising weighing out a predetermined amount.
    • Step 4 of Example 2: move the predetermined amount of fertilizer to, and also provide a predetermined amount of the binder or sticker solution and water to, the wet storage unit 74, and operate the mixing device(s) 76 to form the wet coating composition.
    • Step 5 of Example 2: provide a predetermined amount of the seed 12 to the batch coater 80, while the batch coater is in its coating configuration (e.g., the discharge assembly 88 of the batch coater 80 is closed and remains closed through Step 15 of Example 2, or the like).
    • Step 6 of Example 2: at least partially forming coating layer 21, comprising providing a predetermined amount of (e.g., one fifth of) the wet coating composition to the batch coater 80 and operating the batch coater accordingly.
    • Step 7 of Example 2: at least partially forming coating layer 22, comprising providing a predetermined amount of (e.g., one fifth of) the lime to the batch coater 80 and operating the batch coater accordingly.
    • Step 8 of Example 2: at least partially forming coating layer 23, comprising providing a predetermined amount of (e.g., one fifth of) the wet coating composition to the batch coater 80 and operating the batch coater accordingly.
    • Step 9 of Example 2: at least partially forming coating layer 24, comprising providing a predetermined amount of (e.g., one fifth of) the lime to the batch coater 80 and operating the batch coater accordingly.
    • Step 10 of Example 2: at least partially forming coating layer 25, comprising providing a predetermined amount of (e.g., one fifth of) the wet coating composition to the batch coater 80 and operating the batch coater accordingly.
    • Step 11 of Example 2: at least partially forming coating layer 26, comprising providing a predetermined amount of (e.g., one fifth of) the lime to the batch coater 80 and operating the batch coater accordingly.
    • Step 12 of Example 2: at least partially forming coating layer 27, comprising providing a predetermined amount of (e.g., one fifth of) the wet coating composition to the batch coater 80 and operating the batch coater accordingly.
    • Step 13 of Example 2: at least partially forming coating layer 28, comprising providing a predetermined amount of (e.g., one fifth of) the lime to the batch coater 80 and operating the batch coater accordingly.
    • Step 14 of Example 2: at least partially forming coating layer 29, comprising providing a predetermined amount of (e.g., one fifth of) the wet coating composition to the batch coater 80 and operating the batch coater accordingly.
    • Step 15 of Example 2: at least partially forming coating layer 30, comprising providing a predetermined amount of (e.g., one fifth of) the lime to the batch coater 80 and operating the batch coater accordingly.
    • Step 16 of Example 2: providing the resultant coated seed product from the batch coater 80 to the conveyor apparatus 86 to facilitate at least further drying of the coated seed product, or the like.


In some embodiments of this disclosure, a polymeric binder or sticker solution (e.g., from the “sticker source 44”) is not deposited into the wet storage unit 74. For example, the polymeric binder or sticker solution may be omitted from the composite coating 14. As another example, as an alternative to, or in addition to, providing the polymeric binder or sticker solution into the wet storage unit 74, the polymeric binder or sticker solution may be provided from one or more of the coating sources 47, 48 into the batch coater 80.


As an alternative to including the polymeric binder or sticker solution, or in addition to including the polymeric binder or sticker solution, lime or some other suitable material of the composite coating 14 may function as a binding agent. For example, after the wet coating composition is supplied from the wet storage unit 74 into the batch coater 80 so that the seeds 12 in the batch coater are coated with the wet coating composition, then dry lime powder can be introduced into the batch coater, so that the lime is wetted by, and becomes bonded to, the wet coating composition on the seeds. The wet coating composition can include water, and it is believed that binding by the lime may be enhanced by dissolving the urea fertilizer in the water of the wet coating composition. In some embodiments, the binding effect provided by the lime may be sufficient such that the polymeric binder or sticker solution can be reduced or completely omitted from the composite coating 14. The lime may be supplemented with, or replaced by, other suitable non-nutritive material(s).


For example and reiterating from above, all numerical values and percentages provided throughout this disclosure can be approximate, and for each range specified in this disclosure, all values within the range and all subranges within the range are also disclosed.


It is believed that further examples of fertilizers that can be used in various combinations and subcombinations in the composite coatings 14 of this disclosure include ferrous ammonium sulfate, HYDREXX® urea fertilizer stabilizer, UMAXX® fertilizer and any other suitable fertilizers. Further examples of grass seed that can be incorporated into the agricultural products of this disclosure include Kentucky bluegrass, strong creeping fescue, chewing fescue, hard fescue, and any other suitable seeds that can be coated with the composite coatings 14 of this disclosure.


In the foregoing, examples of embodiments have been disclosed. The present invention is not limited to such exemplary embodiments. In the foregoing, descriptions of sequences of steps or other actions are described for purposes of providing examples, and not for the purpose of limiting the scope of this disclosure (e.g., where appropriate: steps or actions may be performed in different sequences than described above, and steps and actions may be omitted and/or added). Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items.

Claims
  • 1. An agricultural product, comprising: a grass seed; anda composite coating at least partially enclosing the grass seed, the composite coating comprising a plurality of coating layers, and the plurality of coating layers comprising: a first coating layer extending at least partially around the grass seed,a second coating layer extending at least partially around the first coating layer,a third coating layer extending at least partially around the second coating layer,a fourth coating layer extending at least partially around the third coating layer, anda fifth coating layer extending at least partially around the fourth coating layer,wherein at least two coating layers of the plurality of coating layers: each extend completely around the grass seed,are not contiguous with one another,are spaced apart from one another, andeach comprise fertilizer,wherein at least two other coating layers of the plurality of coating layers are coating layers of lime that: each extend completely around the grass seed,are not contiguous with one another, andare spaced apart from one another,wherein at least one of the two coating layers of lime: extends completely around the grass seed, andis positioned between the two coating layers comprising fertilizer, andwherein each of the two coating layers comprising fertilizer extends completely around the grass seed, andis more nutritive than each of the two coating layers of lime.
  • 2. The agricultural product of claim 1, further comprising: a sixth coating layer extending at least partially around the fifth coating layer,a seventh coating layer extending at least partially around the sixth coating layer, andan eighth coating layer extending at least partially around the seventh coating layer and comprising lime.
  • 3. The agricultural product of claim 1, wherein at least two coating layers of the plurality of coating layers comprise a binder.
  • 4. The agricultural product of claim 3, wherein the binder comprises at least one material selected from a group consisting of lime and polymeric material.
  • 5. The agricultural product of claim 1, wherein: the first coating layer is a coating layer of fertilizer composition;the second coating layer is a coating layer of lime;the third coating layer is a coating layer of fertilizer composition;the fourth coating layer is a coating layer of lime; andthe fifth coating layer is a coating layer of fertilizer composition.
  • 6. The agricultural product of claim 5, wherein: the first coating layer comprises polymeric material;the third coating layer comprises polymeric material; andthe fifth coating layer comprises polymeric material.
  • 7. The agricultural product of claim 5, further comprising: a sixth coating layer extending at least partially around the fifth coating layer, wherein the sixth coating layer is a coating layer of lime;a seventh coating layer extending at least partially around the sixth coating layer, and comprising fertilizer and polymeric material;an eighth coating layer extending at least partially around the seventh coating layer, wherein the eighth coating layer is a coating layer of lime;a ninth coating layer extending at least partially around the eighth coating layer, and comprising fertilizer and polymeric material; anda tenth coating layer extending at least partially around the ninth coating layer, wherein the coating tenth layer is a coating layer of lime.
  • 8. The agricultural product of claim 1, wherein: each of the two coating layers of lime fully encapsulates the grass seed; andeach of the two coating layers comprising fertilizer fully encapsulates the grass seed.
  • 9. An agricultural product, comprising: a grass seed; anda composite coating at least partially enclosing the grass seed, the composite coating comprising a plurality of coating layers, and the plurality of coating layers comprising: an inner coating layer comprising a binder and at least partially enclosing the grass seed, wherein the inner coating layer extends completely around the grass seed,an intermediate coating layer at least partially enclosing the inner coating layer, wherein the intermediate coating layer comprises a fertilizer composition, the fertilizer composition comprises urea and calcium nitrate, the intermediate coating layer extends completely around the grass seed, and the inner and intermediate coating layers are not contiguous with one another so that the inner and intermediate coating layers are spaced apart from one another, andan outer coating layer completely enclosing the intermediate coating layer, wherein the outer coating layer extends completely around the grass seed, the outer coating layer comprises non-nutritive material, and the intermediate coating layer is more nutritive than the outer coating layer.
  • 10. The agricultural product of claim 9, wherein the intermediate coating layer comprises a polymeric binder.
  • 11. The agricultural product of claim 9, wherein: the plurality of coating layers further comprises first, second, and third coating layers positioned between the inner coating layer and the outer coating layer;the first coating layer comprises a polymeric binder;the second coating layer comprises fertilizer; andthe third coating layer comprises lime.
  • 12. The agricultural product of claim 9, wherein the composite coating further comprises a coating layer of lime that at least partially encloses the outer coating layer.
  • 13. The agricultural product of claim 9, wherein the plurality of coating layers further comprises: a first coating layer positioned between the inner coating layer and the intermediate coating layer, wherein the first coating layer at least partially encloses the inner coating layer, and wherein the first coating layer comprises a binder, urea, and calcium nitrate; anda second coating layer positioned between the intermediate coating layer and the outer coating layer, wherein the second coating layer at least partially encloses the intermediate coating layer, and wherein the second coating layer comprises a binder, urea, and calcium nitrate.
  • 14. The agricultural product of claim 13, wherein the plurality of coating layers further comprises: a third coating layer positioned between the first coating layer and the intermediate coating layer, wherein the third coating layer at least partially encloses the first coating layer, and wherein the third coating layer comprises lime; anda fourth coating layer positioned between the intermediate coating layer and the second coating layer, wherein the fourth coating layer at least partially encloses the intermediate coating layer, and wherein the fourth coating layer comprises lime.
  • 15. The agricultural product of claim 14, wherein the plurality of coating layers further comprises: a fifth coating layer positioned between the first coating layer and the inner coating layer, wherein the fifth coating layer at least partially encloses the inner coating layer, and wherein the fifth coating layer comprises lime; anda sixth coating layer positioned between the second coating layer and the outer coating layer, wherein the sixth coating layer at least partially encloses the second coating layer, and wherein the sixth coating layer comprises lime.
CROSS-REFERENCE TO PRIORITY APPLICATION

This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/519,517, for Coating for Seeds (filed Jun. 14, 2017) via 35 U.S.C. § 119. U.S. Provisional Patent Application Ser. No. 62/519,517 is hereby incorporated by reference in its entirety.

US Referenced Citations (45)
Number Name Date Kind
4297810 Hansford Nov 1981 A
4369597 Leep et al. Jan 1983 A
4779376 Redenbaugh Oct 1988 A
5456733 Hamilton, Jr. Oct 1995 A
5653053 Handley Aug 1997 A
5746022 Brown et al. May 1998 A
5799439 MacGregor Sep 1998 A
6156699 Johnson Dec 2000 A
6158167 Spittle Dec 2000 A
6230438 Zaychuk et al. May 2001 B1
6209259 Madigan et al. Aug 2001 B1
6329324 Brueggemann et al. Dec 2001 B1
6360478 Spittle Mar 2002 B1
6557298 Obert et al. May 2003 B2
6688038 Paternoster et al. Feb 2004 B1
6936573 Wertz et al. Aug 2005 B2
6936681 Wertz et al. Aug 2005 B1
7213367 Wertz et al. May 2007 B2
7367158 Hakala et al. May 2008 B2
8256158 Spittle et al. Sep 2012 B2
8904704 Madigan et al. Dec 2014 B1
9353019 Faust May 2016 B2
20020121117 Hartmann Sep 2002 A1
20030182854 Reinikainen Oct 2003 A1
20030228981 Wertz Dec 2003 A1
20040016275 Hartmann Jan 2004 A1
20040020114 Boehmer Feb 2004 A1
20060150489 Legro Jul 2006 A1
20060240983 Yamaguchi Oct 2006 A1
20100267554 Madsen Oct 2010 A1
20110250018 Cannock Oct 2011 A1
20120220454 Chen Aug 2012 A1
20130196849 Combs Aug 2013 A1
20130305796 Hudson Nov 2013 A1
20130309499 Neff Nov 2013 A1
20140318005 Krysiak et al. Oct 2014 A1
20150239790 Iwig et al. Aug 2015 A1
20150267063 Drewer Sep 2015 A1
20170042082 McMillan Feb 2017 A1
20170086488 McMillan Mar 2017 A1
20170121233 Meakin May 2017 A1
20170204018 Hignight et al. Jul 2017 A1
20170245494 Bardosh Aug 2017 A1
20180251654 Chen Sep 2018 A1
20190320661 Arias Oct 2019 A1
Provisional Applications (1)
Number Date Country
62519517 Jun 2017 US