The invention disclosed relates to composite oxide coatings, and hi particular to an oxidized metal-matrix composite coated substrate and a method of coating therefore, wherein the coated substrate may be used as an electrical interconnect device for use at high temperature for oxidation protection, and specifically in solid oxide fuel cells (SOFC).
Several different types of fuel cells are under development, including the solid oxide fuel cell (SOFC). Solid oxide fuel cells typically operate at temperatures in the range of 600-1000° C. The individual cells are electrically connected in series to one another by a device known as an electrical interconnect, to form a multi-cell stack unit producing acceptable voltage. The interconnect material must be physically and chemically stable and electronically conductive under high-temperature oxidizing operating conditions of the fuel cell.
Recently, chromia forming alloys have been considered as the most appropriate materials for use in interconnects, due to the acceptable high-temperature conductivity of their protective chromia scale. However, chromia is not stable at the SOFC operating temperatures and evaporates as Cr(VI) species. Instability of chromia deteriorates its protective properties and evaporation of Cr poisons the cathode material. Therefore, use of chromia forming alloys results in cell degradation. Therefore, an effective coating is required to overcome these issues.
The chromia forming alloys that can be used as interconnect materials include stainless steels, superalloys (Fe, Ni or Co-based) or Cr-based alloys, an effective conductive/protective coating, however, is necessary to avoid evaporation of chromia and reduce the oxidation growth rate and cell degradation.
For stainless steels, Cr-based alloys and superalloys, numerous coatings have been considered as potential remedies in order to overcome the issues originating from the poor high-temperature oxidation and oxide scale properties. Various materials have been used in an effort to decrease oxide growth kinetics, increase oxide scale conductivity, improve oxide scale-to-metal adhesion and inhibit Cr migration from the chromia-rich subscales to the oxide surface. The materials used as coatings include reactive element oxides (REOs), conductive perovskites, MACrYO (where M represents a metal, e.g., Co, Mn and/or Ti) oxidation resistant alloys, conductive spinels [1] and conductive, composite spinels [2,3]. The techniques used for coating of the mentioned materials on stainless steels include sol-gel techniques, chemical vapour deposition (CVD), pulsed laser deposition, plasma spraying, screen printing and slurry coating, radio frequency (rt) magnetron sputtering, large area filtered are deposition and electrodeposition [2-6]. Among various materials, conductive spinels are the most appropriate and widely used materials W. These coating techniques are costly to apply and most of them depend on line-of-sight and are not suitable for coating complex interconnect shapes. However, the only process that is low-cost and can be used to uniformly coat complex shapes is electroplating/oxidation.
Although coatings with REOs reduce the oxidation growth rate and improve the oxide scale-to-metal adhesion, these coatings are not effective barriers against Cr outward migration. Coatings with rare earth perovskites (e.g., LaMnO3) are brittle and susceptible to cracking and spallation upon thermal shocks. Also, perovskites are mixed ionic-electronic conductors and cannot inhibit oxygen inward transport and Cr outward migration. In addition, the main application technique for this type of coating is plasma spraying which is costly and produces thick and porous coatings, and deposition is highly dependent of line-of-sight which does not allow coating the complex shapes. Coatings with conductive spinels (e.g., (Co,Mn)3O4) can slow down the Cr outward diffusion and improve electrical conductivity of the interconnects [7,8] Spinel coatings can be deposited using screen printing, spraying, dip-coating, cathodic deposition followed by oxidation in air or anodic deposition of oxides followed by heat treatment to achieve spinel structure. Among the methods for application of spinel coatings, cathodic deposition of metals/alloys followed by annealing in air produces uniform, adherent coatings [4,5]. In addition, uniform coating of substrates with complex shapes is practical. However, interdiffusion between the metallic coating and the substrate during oxidation results in dilution of the alloy surface region in Cr which, in turn, leads to breakaway oxidation [2], Breakaway oxidation is the result of depletion of Cr in alloy and formation of a thick, impure and non-protective chromia layer which is susceptible to local damage. As a result, elements from the alloy start to oxidize and form oxide nodules on the surface and eventually lead to oxidation of the entire metal. Furthermore, spinels are not considered as protective oxides and cannot reduce the oxidation growth rate
Furthermore, all the above-mentioned coating techniques for alloys have been applied to overcome the oxidation related issues for temperatures in the range of 650-900° C. These coatings are not effective at temperatures higher than 900° C., and their application has not been reported in the literature.
Further, in U.S. Pat. No. 5,942,349 [9], a bi-layer protective coating for a Cr-containing interconnect device is provided. The coating on the cathode-side comprises an oxide surface layer comprising at least one metal(M) selected from the group consisting of Mn, Fe, Co and Ni, and an M-metal/Cr spinel layer between the interconnect/substrate and the oxide surface layer. The spinel layer is formed by reaction of the M-metal oxide with chromium oxide formed at the substrate surface and resists the evaporation of CFO, from the cathode-side surface of the interconnect. This coating may be applied by metal electrodeposition and oxidation. However, such coatings will not significantly reduce the oxidation rate as spinel and M metal oxide layers are not protective.
Composite electrodeposited coatings are provided which enable the practical use of chromia forming alloys as solid oxide fuel cell interconnect substrate materials at elevated temperatures up to 1000° C. for long periods of time depending on the substrate type. Usually at temperatures above 950° C., only ceramic materials can be used as interconnects.
One of the key advantages of the present invention over U.S. Pat. No. 5,942,349 is the presence of rare earth metal oxide particles in one or more of the layers of the three layer oxide coating composite matrix. Such dispersed particles act a source of rare earth ions that are essential for reduction of oxidation rate and adhesion of the oxide coating.
According to the present invention, a chromia forming alloy with adequate Cr concentration between 16 and 30 wt %, preferably between 20-28 wt % is provided as the interconnect substrate. Alternatively, oxide dispersion strengthened (ODS) or plain Cr-based alloys can be used as the interconnect substrate. However, such alloys suffer from poor oxidation behaviour, oxide scale spallation and more importantly Cr evaporation from the oxide scale.
Accordingly chromia forming alloys including but not limited to stainless steels such as AISI 430C series, Crofer® 22 APU, Crofer® 22H, ZMG232 and ZMG232L Ni superalloys such as Haynes® 230® (with 22 wt % Cr), Co superalloys such as Haynes® 188® (with 22 wt % Cr) or Cr-based alloys such as Ducralloy, are preferred as the interconnect substrate.
A composite metal matrix coating is electrodeposited on the interconnect substrate. Oxidation of such metal matrix composite forms a unique three-layer oxide scale which decreases the contact resistance, substantially increases oxidation resistance, eliminates the oxide scale spallation and reduces Cr release.
The preferred method of coating is composite electrodeposition in an electrodeposition cell from an aqueous electrolyte comprising metal ions, optionally a buffering agent, optionally a complexing agent, rare earth metal oxide particles and optionally additives (e.g., surfactants). The anode comprises the metals to be deposited, or a permanent anode such as platinised titanium.
The reactive rare earth metal oxide particles are suspended in the electrolyte, containing the depositing metal ions, by means of mechanical stirring. The anode and cathode are placed horizontally in an electrodeposition cell plating bath. Application of direct or pulsating current results in deposition of metals on the cathode/interconnect substrate. Particles are adsorbed on the surface of the cathode substrate by electrostatic and gravitational forces, and the growth of the metallic coating layer encapsulates the particles and embeds them in the coating layer. Alternatively, sequential deposition of metals (and particles) from different electrolytes is also contemplated.
Oxidation of the coated substrate in air at 500-1000° C. results in formation of a three-layer oxide scale containing rare earth metal oxide particles. An inner chromia layer forms in the vicinity of the cathode substrate surface. An intermediate oxide layer forms by reaction of chromia and oxides of deposited metal(s) and is in the form of a spinel solid solution containing Cr ions, the deposited metal(s) ions and to a smaller extent elements diffused from the substrate alloy (e.g., Mn). The top layer comprises an electronically conductive solid solution of the oxides of the deposited metals and is substantially free of Cr ions. All of these layers may contain rare earth metal oxide particles that are essential to reduce the oxide growth rate and improve interfacial adhesion of the layers to one another and to the substrate. The intermediate spinel layer stabilizes the Cr and reduces its evaporation. The top oxide layer further acts as barrier against Cr outward diffusion and prevents a contact between the cathode material and the Cr containing spinel (intermediate layer). Such an oxide structure substantially reduces the oxidation rate, eliminates the oxide scale spallation, stabilizes Cr and provides a good electronic conductivity.
Such a coated substrate is particularly useful as an interconnect on the cathode side of the cells in a fuel cell (e.g SOFC) stack, but can be used on the anode side as well.
The primary application is in a SOFC. Other applications include gas turbine engine combustors, nuclear reactor components, resistance heating and other applications requiring the use of chromia forming alloys at elevated temperatures in an oxidizing environment.
According to one aspect of the invention, we provide an oxidized metal matrix composite coated substrate e.g. in the form of an electrical interconnect device, comprising a substrate made of a material selected from the group consisting of a chromia-forming alloy containing a sufficient amount of Cr ranging from 16 to 30 wt % preferably from 20 to 28 wt %, and an oxide-dispersion strengthened Cr-based alloy and a plain Cr-based alloy, and an oxidized metal matrix composite coating in the form of a tri-layer scale on the substrate surface comprising an inner chromia layer, an intermediate layer of a spinel solid solution formed by Cr and one or more of the deposited metal(M) selected from the group consisting of Ni, Co, Cu, Fe, Mn and Zn and a mixture thereof e.g. CoCr2O4, and to a some extent elements diffused from the substrate e.g. Mn and Fe if the substrate contains any, and an electrically conductive top layer comprising a solid solution of oxides of the deposited metals which is substantially free from Cr ions, wherein one or more of such layers contains particles of doped or undoped oxides of a rare earth metal selected from the group consisting of Ce, La, Y, Zr, Hf, Gd and a mixture thereof.
The particle size of the rare earth metal oxides can vary from 0.05-50 μm, preferably 0.5-3 μm and more preferably 0.5-1 μm.
In one embodiment of this aspect of the invention, the chromia-forming alloy is selected from the group consisting of chromia-forming stainless steels and Fe, Ni or Co-based alloys.
In an embodiment of this aspect of the invention, the electrical interconnect device is included in a solid oxide fuel cell (SOFC) stack, wherein the cathode side of the cell is in physical and electrical contact with the coated side of the interconnect device.
In another aspect of the invention, we provide a method of making an oxidized metal matrix composite coated substrate e.g. an electrical interconnect device, comprising
It is noted that Ni-plating is an essential (second) step of the substrate pretreatment and essential stage of the fabrication method. However, in the course of the final stage of the interconnect fabrication, namely at the high temperature oxidation, the Ni-layer is dissolved and diffuses into the substrate and coating. Accordingly, that is why there is no distinct Ni-layer in the structure of the final coated substrate.
In an embodiment of this aspect of the invention, the coated substrate is an electrical interconnect device, included in a solid oxide fuel cell (SOFC) stack, wherein the cathode side of the cell faces the coated side of the interconnect device, and the cathode is in physical and electrical contact with the coating.
In an embodiment of this aspect of the invention, the three-layer oxidized metal matrix composite coating contains rare earth metal oxides in all three layers.
The cathode substrate is formed from a 2 mm thick Haynes® 230® sheet, cut into 20×20 mm coupons. The coupons were ground by grit 600 abrasive paper and cleaned ultrasonically in an alkaline cleaning solution containing 5 g/L NaOH, 5 g/L Na3PO4 and 0.1 g/L sodium dodecyl sulphate (SDS) for 2 minutes at 50-60° C. to remove contaminants from the surface. After alkaline cleaning, the samples were etched in 50% HCl at 50° C. for 2 minutes to remove metallic residues and native oxides. Anodic activation, followed by cathodic strike Ni plating, was performed according to ASTM B254-92 (2004) Practice 7.6.1 (Table III), in order to remove and prevent the reformation of the chromium oxide surface passive layer which inhibits electrodeposition on the cathode substrate Rinsing with deionized water was performed in between each process step.
The Haynes 230® coupons were then electrodeposited for 8 minutes in a Ni—Co/GDC bath, and optionally for 2 minutes in a separate pure Ni bath. The composition and current density of the Ni electrodeposition was identical to those of the Ni—Co/GDC, except that there was no Co or GDC present.
The purpose of the final Ni layer (shown in
To characterize the oxide scale, coated and uncoated specimens were oxidized in air at 1000° C. The samples oxidized for 170, 500 and 1000 hrs were characterized by means of a scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS). For this purpose, cross-sectional and plan view imaging along with EDS chemical analysis were performed. Cold mounting with epoxy resin followed by conventional grinding and polishing was used to prepare samples for cross-sectional analysis. Before mounting, specimens were gold coated with a sputter coater and electrodeposited with a layer of Ni to protect the oxide scale from being damaged during the polishing. Phase identification for oxide scale was performed via a glancing angle X-ray diffraction (XRD) technique. To avoid interference from the substrate, the incident X-ray beam angle was kept constant at 10° and a detector was scanned from 20 to 90°.
To analyze the kinetics of oxidation, coated and uncoated coupons were weighed periodically to obtain weight gain profiles as a function of time. The samples were air-cooled from furnace temperature for each weight gain test.
To measure the area specific resistance (ASR) of the coated and uncoated specimens, two samples were spot welded to Pt wires and pre-oxidized for 24 hours. Pre-oxidized coupons were placed face to face with a layer of Pt ink applied between them. To ensure a good contact between the samples, a spring load of 5 N was applied to the test coupons. Schematic representation of the experimental set-up used to measure the ASR is shown in
where R is the resistance (Ω), A is the surface area of the contact through which the current passes (cm2), V is voltage (V) and I is current (A). Since the current passes through two oxide scales, the ASR is divided by 2. The resistance contribution from the metallic substrate is neglected due much higher conductivity of metals over metal oxides.
To analyse Cr diffusion into the cathode materials, coated and uncoated samples were pre-oxidized in air at 1000° C. for 24 hours and subsequently screen printed with a ˜30 μm cathode paste. The cathode paste contained lanthanum strontium manganite (LSM) which is a standard cathode material and an organic binder. The screen printed coupons were further oxidized in air at 1000° C. for 170 hours. Cross sections of these specimens were analysed by SEM/FOX.
More specifically,
The ASR values for coated and uncoated coupons measured in air at 1000° C. are shown as function of time in
The amount of Cr diffused in the LSM layer in 170 hours for coated and uncoated Haynes® 234® coupons covered with a layer of screen printed LSM was determined by EDX. The amount of Cr diffused into the LSM overlaying layer is up to 1 wt % (the lower limit of detection by EDX) for the coated specimen while Cr diffused into the LSM from the uncoated sample ranges between 3-6 wt %. For both samples a uniform distribution of Cr is observed throughout the LSM layer. As seen in
The procedure described in Example 1 was used to coat ZMG232L, ferritic stainless steel (Hitachi product). The coating composition is also the same as in Example 1. The composition for ZMG232L is listed in Table IV. The measurement and characterization techniques were identical to Example 1. The oxidation weight gain profiles in
As seen in
Interconnect plates of Crofer® 22H (see Table V for composition) were coated using the same coating composition and technique described in Example 1. Short stack cell testing was performed for 800 hours at 700° C. and is intended to be continued for several thousand hours. The coated interconnect plates showed 0.1-0.2%/1000 hours less degradation than uncoated plates. However, longer times are required to observe the full benefits of the coating since chromium poisoning effect requires several thousand of hours to appear.
The composite coating material according to the present invention meets the criteria for interconnect application. In Examples 1 and 2, the oxidized Ni—Co/GDC coating on a Haynes® 230® and ZMG232L® substrates provides a unique oxide scale tri-layer structure, comprising an inner chromia (containing GDC particles) layer, an intermediate CoCr2O4 spinel (containing GDC particles) layer, and an outer (Ni, Co)O solid solution layer. This oxide scale structure offers the following advantages over the uncoated substrate:
The coating technique according to the present invention, comprising composite electrodeposition, offers the following unique advantages over other coating techniques:
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA2011/000269 | 3/15/2011 | WO | 00 | 9/6/2012 |
Number | Date | Country | |
---|---|---|---|
61282669 | Mar 2010 | US |