The concrete beams and other concrete elements used for large constructions, such as buildings or bridges, are typically manufactured on-site of a construction project. This requires building formworks, i.e., molds, from steel, wood or other materials, which are filled with normal strength concrete (NSC). After the NSC has cured and obtained the required strength, the formwork must be removed. The removal of the formwork is time-consuming and expensive. Furthermore, because of the weight and size of the final concrete element, transport can be difficult, costly, and time-consuming.
The subject invention provides devices and methods that address the problem of on-site manufacture of beams that require a removable formwork. In one embodiment, the subject invention provides methods for forming a shell, with a void, that can be used in place of a typical formwork to manufacture a final concrete construct. The shell can be cast in a shell formwork or formed by additive manufacturing (3D printing) techniques using a first type of concrete, such as, for example, an Ultra-High Performance Concrete (UHPC). A second type of concrete, such as Normal Strength Concrete (NSC), can be placed in a void formed in the UHPC shell. Advantageously, the second type of concrete can be placed in the void on-site of a construction project. A further advantage is that the NSC incorporates the UHPC shell into a final concrete construct, eliminating the need to remove formwork after the NSC has cured.
Advantageously, the shell has considerably less weight than a standard concrete element. This allows a shell to be constructed off-site and more easily transported on-site for final deposit therein of the NSC. This can accelerate construction time and is less expensive than constructing multiple formworks on-site, which are removed after the concrete cures. The UHPC shell is also exceptionally durable and moisture-resistant, which provides a longer-lasting structure.
In order that a more precise understanding of the above recited invention can be obtained, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. The drawings presented herein may not be drawn to scale and any reference to dimensions in the drawings or the following description is specific to the embodiments disclosed. Any variations of these dimensions that will allow the subject invention to function for its intended purpose are considered to be within the scope of the subject invention.
The subject invention pertains to devices and methods for manufacturing concrete constructs that can be used in construction of buildings, bridges, and other objects. More specifically, the subject invention provides embodiments of composite concrete beams and other building elements that are more efficient and less expensive to manufacture on-site than standard formwork-cured concrete beams.
The subject invention is particularly useful in the field of bridge construction, particularly the manufacture of concrete beams, columns, and arches used in bridge construction. This does not preclude the methods and devices of the subject invention being utilized for other related purposes or other types of composite constructs, as would be apparent to a person with skill in the art and having benefit of the subject disclosure. Variations of the subject invention that provide the same functionality, in substantially the way as described herein, with substantially the same desired results, are within the scope of this invention.
The figures and descriptions of embodiments of the present invention have been simplified to illustrate elements that are relevant for a clear understanding of the invention, while eliminating, for purposes of clarity, other elements that may be well known. Those of ordinary skill in the art will recognize that other elements may be desirable and/or required to implement the present invention. However, because such elements are well known in the art, and because they do not facilitate a better understanding of the present invention, a discussion of such elements is not provided herein.
The present invention is more particularly described in the following examples that are intended to be illustrative only because numerous modifications and variations therein will be apparent to those skilled in the art. As used in the specification and in the claims, the singular for “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise.
Reference will be made to the attached Figures on which the same reference numerals are used throughout to indicate the same or similar components. With reference to the attached Figures, which show certain embodiments of the subject invention, it can be seen in
In
Preferably, the displacement piece 200 is fixed in place within the shell formwork to inhibit movement when UHPC is deposited in the shell formwork and around the displacement piece. In one embodiment, a positioning apparatus 120 is used to secure the position of the displacement piece.
In one embodiment, as the NSC cures in the void 310, an attachment will be formed at the interface 390 between the UHPC shell and NSC core, such that the UHPC shell 300 and the NSC core 400 are joined together or fuse to form a solid composite construct 500. The NSC core should be firmly positioned and tightly held within the UHPC shell. It can be helpful to increase the surface area of the point of interface 390, which can enhance and strengthen the fusion of the UHPC shell with the NSC core.
In one embodiment, the void 310 of the UHPC shell has an irregular, rough, or non-smooth surface around and to which the NSC can embed and integrate or otherwise fuse to secure itself within the shell. In a further embodiment, the displacement piece 200 includes a plurality of surface features 225 that can increase the surface area of the displacement piece, thereby increasing the surface area of the void surface, which increases contact with the NSC. Surface features can be any of a variety of indentations or raised areas that impart to the surface of the displacement piece a bumpy, ridged, indented, roughened, or otherwise non-flat appearance, which can impart or mold the same features into the surface of the void.
When the UHPC has cured, the displacement piece 200 can be removed to form the one or more voids 120 in the shell 100. Thus, in one embodiment, at least a portion of the displacement piece is left uncovered by the UHPC, so that the displacement piece will be accessible for removal after the UHPC cures. In one embodiment, the displacement piece is sacrificial such that it can be destroyed, broken, or otherwise, rendered unusable again after being removed from the void. For example, the displacement piece can be made of materials such as foam, wood, textile, plastic, aluminum, or other easily deformable metal or alloy, combinations thereof that can be removed intact or broken, chipped, cut or variously disassembled in a piecewise fashion from the cured shell.
Concrete structures are often reinforced with metal rods 610, such as, for example, mild steel bars. The concrete composite constructs 500 of the subject invention can also be reinforced with one or more metal rods, such as mild steel bars. In one embodiment, a reinforcement cage 600 of mild steel bars is arranged in the void 310 prior to the NSC being placed therein.
In a further embodiment, the UHPC shell is configured with ports 610 through which the reinforcement rods 600 extend, as shown, for example, in
Following are non-limiting examples that illustrate procedures for practicing the subject invention. These examples are provided for the purpose of illustration only and should not be construed as limiting. Thus, any and all variations that become evident as a result of the teachings herein or from the following examples are contemplated to be within the scope of the present invention.
I. Composite Construct Beam
Construction of a composite construct beam 510 begins with a shell formwork 100, such as shown in
Ultra High Performance Concrete (UHPC) can be deposited in the shell formwork and around the displacement piece. The UHPC will cure in the shell formwork and around the displacement piece. Once cured, the shell formwork and displacement piece can be removed from around the resulting UHPC shell 515, shown, for example, in
The UHPC shell is considerably lighter than a full-cast concrete beam, which makes it easier and more efficient to transport to an on-site location. On-site, the UHPC shell can be filled with a NSC, which cures in and fuses to the UHPC shell. Reinforcement structures, such as metal bars, can be placed in or through the shell formwork in advance of depositing the NSC. Ideally, the thickness of the UHPC shell will support the weight of the standard or normal strength concrete (NSC), for example, concrete made with Portland cement, without cracking or breaking. A person of skill in the art will be able to determine the dimensions of a shell formwork and displacement piece that will provide sufficient thickness to the shell to support the NSC.
Once the NSC cures, the resulting composite construct beam 510 can be manipulated and placed as any other beam would be. The UHPC shell is more durable than the NSC core and is moisture resistant. Thus, the UHPC shell can protect the inner NSC core and provide a longer lasting structure.
II. Composite Construct Column
Casting of a composite construct column 520 can proceed similarly to that of the composite construct beam, described above. Where the column shell formwork will impart a circular circumference, such as that shown in
Reinforcement structures can also be employed with a columnar concrete construct.
III. Composite Construct Arch Units
Construction of a composite construct arch unit 530, of the type typically used in short span bridge construction, begins with a shell formwork 100, such as shown in
To create the UHPC shell for an arch unit 530, a second semi-circular displacement piece 260 can be placed in the vault 252 of each of the one or more bow-shaped displacement pieces, with the curved side within the vault, such as shown in
In one embodiment, an arch unit is formed with a lip 535 one or both outer edges 536. When UHPC shells for arch units are placed next to each other, the lips can make contact, such as shown, for example in
One embodiment of an arch unit can be formed with a containment wall. For example, a specific shell formwork can be built so that an arch unit is formed with a containment wall 280 on one side. A containment wall can help to form the void 310 that will eventually contain the NSC.
Ultra High Performance Concrete (UHPC) can be deposited in the formwork and around the bow-shaped and semi-circular displacement pieces. The UHPC will cure in the formwork, in the space 270, and around the displacement pieces. Once cured, the formwork and displacement pieces can be removed from around the resulting arch unit UHPC shell 300. Multiple arch unit shells can be placed side by side, as shown, for example, in
The UHPC shell for forming the composite construct arch is considerably lighter than a full-cast arch element, which makes it easier and more efficient to transport to an on-site location. On-site, the arch shell can be filled with a NSC, which cures in and fuses to the UHPC shell. Reinforcement structures, such as metal bars, can be placed in or through the shell formwork in advance of depositing the NSC. Ideally, the thickness of the UHPC shell will support the weight of the standard or normal strength concrete (NSC), for example, concrete made with Portland cement, without cracking or breaking. A person of skill in the art will be able to determine the dimensions of a shell formwork and displacement piece that will provide sufficient thickness to the shell to support the NSC.
Once the NSC cures, the resulting composite construct arch, having one or more arches, can be manipulated and placed as any other arch would be. The UHPC shell is more durable than the NSC core and is moisture resistant. Thus, the UHPC shell can protect the inner NSC core and provide a longer lasting structure.
Example: Analysis of Performance Characteristics of Ultra-High Performance Concrete (UHPC) and Normal Strength Concrete (NSC) Composite Construct
To investigate the merits and feasibility of a composite construct using a UHPC shell as formwork, one specific application was studied. Specifically, a study was conducted on the feasibility of using a UHPC shell as formwork for a cap beam for use in modular Advanced Bridge Construction (ABC) projects.
The study had three primary objectives:
1) understand the behavior of a UHPC formwork for a beam element
2) understand the composite action between a UHPC formwork and NSC
3) obtain data pertaining to the long term shrinkage behavior of post-poured NSC
In this study, a three-point loading test was carried out on a composite construct manufactured according to the subject invention and a control beam. Comparative results are presented in terms of failure mode, load deflection and stress-strain.
Concept Development:
According to the American Association of State Highway and Transportation Officials (AASHTO) (2012), stay in place formwork is to be designed to remain elastic under construction load. Prior to conducting this study, a finite element analysis was performed using Advanced Tool for Engineering Nonlinear Analysis (ATENA) software. The aim of the analysis was to analyze stresses and deflections due to construction loads. The analysis was performed on a 2-inch thick shell for two load cases. The first load case considered stresses due to self-weight of the formwork. The second case load case considered gravity load and lateral pressure created by normal strength concrete used to fill the UHPC shell. The material properties in the model were taken from earlier published work (M. Shafieifar, M. Farzad, and A. Azizinamini, “Experimental and numerical study on mechanical properties of Ultra High Performance Concrete (UHPC),” Constr. Build. Mater., vol. 156, pp. 402-411, December 2017) that used a similar UHPC composition. The tensile capacity of the UHPC was taken as 1.2 ksi and compressive strength as 22 ksi. The shell formwork was numerically modeled using fracture plastic constitutive model in ATENA with 3-D brick element having 20 nodes. The bottom horizontal face of the prismatic beam was assumed fixed.
The results are shown in
The stresses in UHPC shell formwork were significantly lower than the tensile capacity of the UHPC. Safdar et al. (M. Safdar, T. Matsumoto, and K. Kakuma, “Flexural behavior of reinforced concrete beams repaired with ultra-high performance fiber reinforced concrete (UHPFRC),” Compos. Struct., vol. 157, pp. 448-460, December 2016) used 0.75-in and 1.5-in thick UHPC for protection of retrofitted beams while 2.3-in for strengthening. The intent of formwork is to provide both strength and durability, therefore a 2-in thickness of unreinforced UHPC was chosen for both walls and base of formwork.
Experimental Program and Testing:
To validate the concept, a composite beam (B1) was constructed with a UHPC shell formwork in a shape as shown in
Specimen Description
An experimental program consisted of testing UHPC shell beam (B1) and a control specimen (C1). The beams were designed for flexure failure. Both beams are dimensionally similar with a length of 10-ft and an effective span of 8.5-ft. The cross-section of the beam was 16-in by 22-in at the center and 16-in by 12-in at the tapered ends. Typical cap beams have tension reinforcement located at the top while compression reinforcement at the bottom. The reinforcement consisted of three #7 bars at top and three #5 bars at bottom. The stirrups, consisting of #4 bars, were placed at every 6-in along the length of beams. The reinforcement ratio of specimen for compression and tension were almost 0.3% and 0.58% at the center. Additional skin reinforcement is provided along the depth of the beam. The dimensions and reinforcement details are provided in
Construction of Specimen and Material Properties:
For beam B1, the UHPC shell formwork was constructed using a closed-cell foam (e.g., Styrofoam®) mold. Studies have shown that the best orientation and dispersion of fibers occurs when flow of UHPC is in the flexural tension direction. Accordingly, the UHPC was poured from the ends of the beam parallel to the longitudinal direction. The UHPC shell formwork was cast monolithically to avoid any connection and the closed-cell foam mold was removed. The UHPC form was covered with plastic sheet and cured for 7 days under normal room temperature (75±3° F.). No reinforcement was provided in the shell formwork. The sequence of construction for the UHPC beam is shown in
The bond between UHPC and NSC at interface is important for composite behavior. Previous studies have investigated different interface roughness for UHPC deck overlays to achieve a composite behavior. ((“Use of Ultra-High-Performance Concrete for Bridge Deck Overlays TR-683 March 2018,” 2018) Alternatively, bonding agents and adhesives have been used to facilitate the bond between UHPC and concrete surfaces (P. R. Prem, A. Ramachandra Murthy, G. Ramesh, B. H. Bharatkumar, and N. R. lyer, “Flexural Behaviour of Damaged RC Beams Strengthened with Ultra High Performance Concrete,” in Advances in Structural Engineering, New Delhi: Springer India, 2015, pp. 2057-2069 and M. A. Al-Osta, M. N. Isa, M. H. Baluch, and M. K. Rahman, “Flexural behavior of reinforced concrete beams strengthened with ultra-high performance fiber reinforced concrete,” Constr. Build. Mater., vol. 134, pp. 279-296, March 2017). The use of interface roughness and bonding adhesives are more useful when used on an existing layer of concrete such as grooved deck overlays or roughened concrete beams.
In this study, to achieve a composite action, equally spaced vertical ribs were provided inside the UHPC shell form along the depth. The ribs were 3-inches wide, 0.75-inches thick and spaced 9-inches along the length of the beam. The inner face of the formwork was not roughened and no mechanical connectors or bonding agents were used. Based on the geometry of the shell form, the clear cover for side walls was 2.75-inches and 2-inches for the bottom wall. During in situ casting of beam B1, temporary props were used at tapered ends as temporary support.
For control specimen C1, a conventional plywood formwork was used for construction. The reinforcement cages of both beam B1 and C1 were placed in the UHPC shell and plywood formwork. The cover for the control specimen C1 was kept similar to the beam B1. The NSC of the control specimen C1 and the UHPC shell beam were cast together. AASHTO (2012) specifies that the age of stay in place formwork at the time of placement of in situ concrete should be such that the differential creep and shrinkage are minimized. This is recommended to reduce interface shear stresses. For this reason, at the time of casting of NSC for both beams, the UHPC shell form had achieved an age of 64 days. To prevent drying shrinkage, the troweled surfaces of beams were covered with plastic sheeting.
For this study, Ductal® UHPC was used, which is made from a premix powder, water, superplasticizer and straight steel fibers (2% in volume). Concrete samples of 3-in×6-in and 4-in×8-in cylinders were made and tested for both UHPC and NSC, respectively. The average compressive strength of UHPC at the time of testing was 24.4 ksi which is more than the assumed value for numerical analysis. The average compressive strength for NSC was 6.4 ksi. The reinforcing steel used was a Grade 60 ASTM A706 bars in three sizes of #4, #5 and #7, with nominal yield stress of 68 ksi.
Shrinkage Monitoring
Shrinkage in concrete can cause cracking, which can lead to durability issues. In the case of UHPC shell formwork, the curing of NSC occurs inside the formwork and the performance of the interface between these two materials can pose a concern due to shrinkage of NSC. In this case, the drying occurs from the top face of the shell beam, where the NSC is exposed. The ribs in the shell formwork and the hardened UHPC restrains free shrinkage of the NSC, but causes additional stresses which must be taken into consideration.
The age of the UHPC shell formwork was 64 days at the time of in situ concreting. This difference in time of casting between two dissimilar materials may induce stresses due to differential shrinkage. To assess the differential shrinkage, strains were monitored externally on shell form and internally on in situ NSC. The strain measurements were made using vibrating wire strain gages. This monitoring was performed only on beam B1 after casting of NC. No monitoring was performed on the shell formwork prior to in situ casting. This is due to the fact that UHPC is attributed with low creep and shrinkage and any changes before in situ casting are unlikely to affect interface behavior. Therefore, prior to casting of NSC in the prefabricated shell, vibrating wire gauges (VWG) were installed. The shrinkage of the UHPC shell formwork was monitored with surface mounted VWG (Geokon Series 4000), which has a gage length, resolution, and measurement range of 150 mm, 1.0 μe and 3000 μe, respectively. The shrinkage of in situ NSC was monitored with embedded VWG (Geokon series 4200), which has a gage length, resolution and measurement range of 155 mm, 1.0 μe and 3000 μe, respectively. The embedded VWGs were mounted on rebar. For both surface and embedded VWGs the monitoring was performed starting one day after casting and continued for 56 days. Both types of VWG strain gauges were placed along the length of the specimen at various locations and depths, as shown in
Test Setup
The testing on beam specimens was carried out in the Structural Laboratory at Florida International University (FIU). The three-point loading test was carried out after completion of shrinkage monitoring of shell beam. In order to replicate the structural behavior and have a simplified test setup, the beam specimens were tested in an inverted position. The specimens were placed over roller supports giving an effective span of 8.5 ft., as shown in
Shrinkage Monitoring Results:
The shrinkage monitoring of beam B1 was started 1 day after pouring of NSC and continued over a period of 56 days. Concrete embedded VWGs measured the volume and temperature strains. The shrinkage results are plotted in
After pouring, the NSC undergoes short term thermal expansion due to exothermic reactions and then starts shrinking over a period of time. The results show that the NSC reached the peak strains after almost 12 hours of pouring. The shrinkage results are affected by the depth of gauge from the exposed surface. The VWGs on UHPC shell formwork show an initial increase in compressive strains, which stabilizes over time. This compression in the UHPC formwork is induced by shrinkage of NSC through composite action. The sudden change in slope at 18-days is attributed to removal of temporary props placed at the tapered end of the NSC beam.
Load Test Results:
The beams were tested in an inverted position and the test was carried out in a three-point loading setup. The load was applied in the center of the beams using a 16-in×16-in×2-in steel plate. A grid was marked on the face of the beams to identify and record crack patterns.
The control beam C1 was loaded and the first cracks appeared at about 15 kips. The loading was continued until a peak load of 138 kips was reached. Extensive cracking was observed at this stage. After yielding of reinforcement, there was no increase in load carrying capacity. The failure of a beam occurred when concrete crushing at the top diagonal shear cracks were observed, at which time testing was halted.
The UHPC formwork beam B1 developed initial cracks at 30 kips, which appeared in the NSC and no cracks were observed in the UHPC shell at this stage. With increased loading, the cracks in NSC spread along the length of B1 beam. A few cracks in UHPC shell were observed after 80 kips, which were concentrated mostly in the middle of the beam. The peak load was reached at 160 kips. With increased loading, a localized vertical crack formed in the UHPC shell formwork wall. This discrete crack was located on both side walls. The crack in the UHPC shell formwork caused a drop in the load capacity of the beam B1. This drop was recovered as the loading continued by strain hardening in the steel reinforcement. The UHPC shell formwork, when under compression, prevented the top of the beam from crushing and consequently the specimen experienced high ductility. The excessive ductility and deflection of the beam caused the roller support to dislodge from one end of the beam. At the end of loading, the dominant crack in the UHPC shell formwork was due to crack localization and fiber pull out in the UHPC shell in the vicinity of the vertical crack in middle of the beam. The testing was halted at this point.
The load deflection response of both the B1 and C1 test specimens are shown in
At the initial stage, the ribs provided a composite action between the shell and NSC. The composite action was reduced as the loading increased. This is primarily because UHPC does not contain large aggregates to provide interlock at the interface plane. After debonding between the interface, the NSC separated from the UHPC shell and extensive cracking was observed in NSC inside the shell, as shown in
The surface VWGs were used to monitor mechanical strains of beam B1. The arrangement of surface VWGs are used in the same configuration as shown in
The results of the experimental study demonstrate the feasibility of using prefabricated UHPC shell formwork for beam elements. Compared to the NSC control beam made by conventional methods, the UHPC shell beam showed an increase in flexure capacity and ductility.
To summarize, a composite construct 500 of the subject invention can be manufactured on-site utilizing a UHPC shell 300 that can be cast off-site. A shell formwork 100 is built to cast the UHPC shell and a displacement piece 200 positioned within the shell formwork forms the void 300 formed in a shell formwork. UHPC is deposited in the shell formwork and around the displacement piece. After the UHPC has cured, the displacement piece and shell formwork are removed to leave the UHPC shell. A reinforcement cage 600 of mild steel bars can be positioned and secured within the void and NSC can be deposited placed in the void to surround and embed the reinforcement cage. When the NSC cures the final product is a composite construct 500 with a UHPC outer layer and an inner NSC core 400. A portion of the reinforcement cage, such as the ends of the mild steel rods, can extend from the composite construct and be used to join one composite construct to another composite construct or other concrete construct to join it to the overall superstructure.
All patents, patent applications, provisional applications, and other publications referred to or cited herein are incorporated by reference in their entirety, including all figures and tables, to the extent they are not inconsistent with the explicit teachings of this specification. Additionally, the entire contents of the references cited within the references cited herein are also entirely incorporated by reference.
The examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application.
Any reference in this specification to “one embodiment,” “an embodiment,” “example embodiment,” “further embodiment,” “alternative embodiment,” etc., is for literary convenience. The implication is that any particular feature, structure, or characteristic described in connection with such an embodiment is included in at least one embodiment of the invention. The appearance of such phrases in various places in the specification does not necessarily refer to the same embodiment. In addition, any elements or limitations of any invention or embodiment thereof disclosed herein can be combined with any and/or all other elements or limitations (individually or in any combination) or any other invention or embodiment thereof disclosed herein, and all such combinations are contemplated with the scope of the invention without limitation thereto.
This application claims the benefit of U.S. Provisional Application Ser. No. 62/632,007, filed Feb. 19, 2018 and U.S. Provisional Application Ser. No. 62/594,303, filed Dec. 4, 2017, the disclosures of which are hereby incorporated by reference in their entireties, including all figures, tables and drawings.
This invention was made with government support under Grant No. DTRT13-G-UTC41 awarded by the U.S. Department of Transportation. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
1065529 | Jones | Jun 1913 | A |
20070028541 | Pasek | Feb 2007 | A1 |
20110265403 | Kim | Nov 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20190169846 A1 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
62632007 | Feb 2018 | US | |
62594303 | Dec 2017 | US |