The present invention is generally directed to methods of making composite articles, such as tool blanks, cutting inserts, spade drill inserts, and ballnose endmills, having a composite construction including regions of differing characteristics or properties. The method of the present invention finds general application in the production of cutting tools and may be applied in, for example, the production of cemented carbide rotary tools used in material removal operations such as turning, milling, threading, grooving, drilling, reaming, countersinking, counterboring, and end milling. The cutting inserts of the present invention may be made of two similar cemented carbide materials but different grades.
Cutting inserts employed for metal machining are commonly fabricated from composite materials due to their attractive combinations of mechanical properties such as strength, toughness, and wear resistance compared to other tool materials such as tool steels and ceramics. Conventional cutting inserts made from composite materials, such as cemented carbides, are based on a “monolithic” construction, i.e., they are fabricated from a single grade of cemented carbide. In this manner, conventional monolithic cutting tools have the same mechanical and chemical properties at all locations throughout the tool.
Cemented carbides materials comprise at least two phases: at least one hard ceramic component and a softer matrix of metallic binder. The hard ceramic component may be, for example, carbides of any carbide forming element, such as titanium, chromium, vanadium, zirconium, hafnium, molybdenum, tantalum, tungsten, and niobium. A common example is tungsten carbide. The binder may be a metal or metal alloy, typically cobalt, nickel, iron or alloys of these metals. The binder “cements” the ceramic component within a matrix interconnected in three dimensions. Cemented carbides may be fabricated by consolidating a powdered metal of at least one powdered ceramic component and at least one powdered binder.
The physical and chemical properties of cemented carbide materials depend in part on the individual components of the metallurgical powders used to produce the material. The properties of the cemented carbide materials are determined by, for example, the chemical composition of the ceramic component, the particle size of the ceramic component, the chemical composition of the binder, and the ratio of binder to ceramic component. By varying the components of the metallurgical powder, tools, such as inserts, including indexable inserts, drills and end mills can be produced with unique properties matched to specific applications.
In applications of machining today's modern metal materials, enriched grades of carbide materials are often desired to achieve the desired quality and productivity requirements. However, cutting inserts fabricated from a monolithic carbide construction using the higher grades of cemented carbides are expensive to fabricate, primarily due to the high material costs. In addition, it is difficult to optimize the composition of the conventional monolithic indexable cutting inserts comprising a single grade of carbide material to meet the different demands of each location in the insert.
Composite rotary tools made of two or more different carbide materials or grades are described in U.S. Pat. No. 6,511,265. At this time, composite carbide cutting inserts are more difficult to manufacture than rotary cutting tools. First, the size of cutting inserts are, typically, much smaller than rotary cutting tools; second, the geometry, in particular cutting edges and chip breaker configurations of today's cutting inserts are complex in nature; and third, a higher dimensional accuracy and better surface quality are required. With cutting inserts, the final product is produced by pressing and sintering product and does not include subsequent grinding operations.
U.S. Pat. No. 4,389,952 issued in 1983 presents an innovative idea to make composite cemented carbide tool by first manufacturing a slurry containing a mixture of carbide powder and a liquid vehicle, then creating a layer of the mixture to the green compact of another different carbide through either painting or spraying. Such a composite carbide tool has distinct mechanical properties between the core region and the surface layer. The claimed applications of this method include rock drilling tools, mining tools and indexable cutting inserts for metal machining. However, the slurry-based method can only be applicable to indexable cutting inserts without chip breaker geometry or the chip breaker with very simple geometry. This is because a thick layer of slurry will obviously alter the chip breaker geometry, in particular widely used indexable cutting inserts have intricate chip breaker geometry required to meet the ever-increasing demands for machining a variety of work materials. In addition, the slurry-based method involves a considerable increase in manufacturing operations and production equipment.
For cutting inserts in rotary tool applications, the primary function of the central region is to initially penetrate the work piece and remove most of the material as the hole is being formed, while the primary purpose of the periphery region of the cutting insert is to enlarge and finish the hole. During the cutting process, the cutting speed varies significantly from a center region of the insert to the insert's outer periphery region. The cutting speeds of an inner region, an intermediate region, and a periphery region of an insert are all different and therefore experience different stresses and forms of wear. Obviously, the cutting speeds increase as the distance from the axis of rotation of the tool increases. As such, inserts in rotary cutting tools comprising a monolithic construction are inherently limited in their performance and range of applications.
Drilling inserts and other rotary tools having a monolithic construction will, therefore, not experience uniform wear and/or chipping and cracking at different points ranging from the center to the outside edge of the tool's cutting surface. Also, in drilling casehardened materials, the chisel edge is typically used to penetrate the case, while the remainder of the drill body removes material from the casehardened material's softer core. Therefore, the chisel edge of conventional drilling inserts of monolithic construction used in that application will wear at a much faster rate than the remainder of the cutting edge, resulting in a relatively short service life. In both instances, because of the monolithic construction of conventional cemented carbide drilling inserts, frequent tool changes result in excessive downtime for the machine tool that is being used.
There is a need to develop cutting inserts, optionally comprising modern chip breaker geometry, for metal machining applications and the methods of forming such inserts.
Embodiments of the present invention include a method of producing a composite article, comprising introducing a first powdered metal grade from a feed shoe into a first portion of a cavity in a die and a second powdered metal grade from the feed shoe into a second portion of the cavity, wherein the first powder metal grade differs from the second powdered metal grade in chemical composition or particle size. The first powdered metal and the second powdered metal may be consolidated to form a compact. In various embodiments, the metal powders are directly fed into the die cavity. Also, in many embodiments, the method of the present invention allows substantially simultaneous introduction of the two or more metal powders into the die cavity or other mold cavity.
A further embodiment of the method of producing a composite article comprises introducing a first powdered metal grade from a first feed shoe into a first portion of a cavity in a die and a second powdered metal grade from a second feed shoe into a second portion of the cavity, wherein the first powder metal grade differs from the second powdered metal grade in at least one characteristic.
Other embodiments of the present invention comprise composite inserts for material removal operations. The composite inserts may comprise a first region and a second region, wherein the first region comprises a first composite material and the second region comprises a second composite material and the first composite material differs from the second composite material in at least one characteristic. More specifically, composite inserts for modular rotary tools are provided comprising a central region and a periphery region, wherein the central region comprises a first composite material and the periphery region comprises a second composite material and the first composite material differs from the second composite material in at least one characteristic. A central region may be broadly interpreted to mean a region generally including the center of the insert or for a composite rotary tool, the central region comprises the cutting edge with the lowest cutting speeds, typically the cutting edge that is closest to the axis of rotation. A periphery region comprises at least a portion of the periphery of the insert, or for a composite rotary tool, the periphery region comprises the cutting edge with the higher cutting speeds, typically including a cutting edge that is further from the axis of rotation. It should be noted that the central region may also comprise a portion of the periphery of the insert.
Unless otherwise indicated, all numbers expressing quantities of ingredients, time, temperatures, and so forth used in the present specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, may inherently contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
The reader will appreciate the foregoing details and advantages of the present invention, as well as others, upon consideration of the following detailed description of embodiments of the invention. The reader also may comprehend such additional details and advantages of the present invention upon making and/or using embodiments within the present invention.
a through 1d depict an embodiment of a square indexable cutting insert of the present invention comprising three regions of composite materials;
a through 2d depict an embodiment of a square indexable cutting insert of the present invention comprising two regions of composite materials;
a through 3d depict an embodiment of a diamond shaped indexable cutting insert of the present invention comprising three regions of composite materials;
a through 4d depict an embodiment of a square indexable cutting insert of the present invention comprising two regions of composite materials;
a through 5d depict an embodiment of a diamond shaped indexable cutting insert of the present invention comprising four regions of composite materials;
a and 10b depict an embodiment of the method of the present invention;
a and 11b depict an embodiment of the method of the present invention;
a and 12b depict an embodiment of the method of the present invention;
a and 13b depict an embodiment of the method of the present invention;
a through 14d depict an embodiment of the method of the present invention;
d depict an embodiment of the method of the present invention;
a through 16d depict an embodiment of the method of the present invention;
a through 17d depict an embodiment of a feed shoe for use in embodiments of the method of the present invention;
a through 18d depict an embodiment of a feed shoe equipped with a rack and pinion for use in an embodiment of the method of the present invention;
a through 22d depict an embodiment of the method of the present invention;
a through 23d depict an embodiment of the method of the present invention;
a through 24c depict an embodiment ball nose insert of the present invention and an embodiment ball nose insert of the present invention in a tool holder;
a and 25b depict an embodiment spade drill insert of the present invention and an embodiment spade drill insert of the present invention in a tool holder;
a and 26b depict an embodiment ball nose insert of the present invention;
a and 27b depict an embodiment spade drill insert of the present invention;
a and 28b depict an embodiment cutting insert of the present invention;
a and 29b depict an embodiment spade drill insert of the present invention comprising two regions of composite materials;
a through 30c depict an embodiment round shaped cutting insert of the present invention comprising two regions of composite materials;
a and 31b depict an embodiment round shaped cutting insert of the present invention comprising two regions of composite materials;
a and 32b depict an embodiment of the method of the present invention which may be used to produce the round shaped indexable cutting insert of
a and 33b depict an embodiment of a gear that may be used in the method of
a and 34b depict an embodiment of a method of the present invention wherein the gear of
The present invention provides composite articles, such as cutting inserts, rotary cutting inserts, drilling inserts, milling inserts, spade drills, spade drill inserts, ballnose inserts and method of making such composite articles. The composite articles, specifically composite inserts, may further comprise chip forming geometries on either the top or bottom surfaces, or on both the top and bottom surfaces. The chip forming geometry of the composite article may be a complex chip forming geometry. Complex chip forming geometry may be any geometry that has various configurations on the tool rake face, such as lumps, bumps, ridges, grooves, lands, backwalls, or combinations of such features.
As used herein, “composite article” or “composite insert” refers to an article or insert having discrete regions differing in physical properties, chemical properties, chemical composition and/or microstructure. These regions do not include mere coatings applied to an article or insert. These differences result in the regions differing with respect to at least one characteristic. The characteristic of the regions may be at least one of, for example, hardness, tensile strength, wear resistance, fracture toughness, modulus of elasticity, corrosion resistance, coefficient of thermal expansion, and coefficient of thermal conductivity. As used herein, a “composite material” is a material that is a composite of two or more phases, for example, a ceramic component in a binder, such as a cemented carbide. Composite inserts that may be constructed as provided in the present invention include inserts for turning, cutting, slotting, milling, drilling, reaming, countersinking, counterboring, end milling, and tapping of materials, for example.
The present invention more specifically provides composite articles and composite inserts having at least one cutting edge and at least two regions of composite materials that differ with respect to at least one characteristic. The composite inserts may further be indexable and/or comprise chip forming geometries. The differing characteristics may be provided by variation of at least one of the chemical composition and the microstructure among the two regions of cemented carbide material. The chemical composition of a region is a function of, for example, the chemical composition of the ceramic component and/or binder of the region and the carbide-to-binder ratio of the region. For example, one of two cemented carbide regions of a rotary tool may exhibit greater wear resistance, enhanced hardness, and/or a greater modulus of elasticity than the other of the two regions.
Embodiments of the present invention include a method of producing a composite article comprising introducing a first powdered metal grade from a feed shoe into a first portion of a cavity in a die and a second powdered metal grade from the feed shoe into a second portion of the cavity, wherein the first powder metal grade differs from the second powdered metal grade in at least one characteristic. The powdered metal grade may then be consolidated to form a compact. The powdered metal grades may individually comprise hard particles, such as a ceramic component, and a binder material. The hard particles may independently comprise at least one of a carbide, a nitride, a boride, a silicide, an oxide, and solid solutions thereof. The binder may comprise at least one metal selected from cobalt, nickel, iron and alloys thereof. The binder also may comprise, for example, elements such as tungsten, chromium, titanium, tantalum, vanadium, molybdenum, niobium, zirconium, hafnium, ruthenium, palladium, and carbon up to the solubility limits of these elements in the binder. Additionally, the binder may contain up to 5 weight percent of elements such as copper, manganese, silver, aluminum, and ruthenium. One skilled in the art will recognize that any or all of the constituents of the cemented hard particle material may be introduced in elemental form, as compounds, and/or as master alloys. Further embodiments may include introducing a third powdered metal grade from the feed shoe into the cavity.
Sintering the compact will form a composite article having a first region comprising a first composite material and a second region comprising a second composite material, wherein the first composite material and the second composite material differ in at least one characteristic. The characteristic in which the regions differ may be at least one of the group consisting of composition, grain size, modulus of elasticity, hardness, wear resistance, fracture toughness, tensile strength, corrosion resistance, coefficient of thermal expansion, and coefficient of thermal conductivity.
The first and second composite materials may individually comprise hard particles in a binder, wherein the hard particles independently comprise at least one of a carbide, a nitride, a boride, a silicide, an oxide, and solid solutions thereof and the binder material comprises at least one metal selected from cobalt, nickel, iron and alloys thereof. In certain embodiments, the hard particles may individually be a metal carbide. The metal of the metal carbide may be selected from any carbide forming element, such as titanium, chromium, vanadium, zirconium, hafnium, molybdenum, tantalum, tungsten, and niobium. The metal carbide of the first composite material may differ from the metal carbide of the second composite material in at least one of chemical composition and average grain size. The binder material of the first powdered metal grade and the binder of the second powdered metal grade may each individually comprise a metal selected from the group consisting of cobalt, cobalt alloy, nickel, nickel alloy, iron, and iron alloy. The first powdered metal grade and the second powdered metal grade may individually comprise 2 to 40 weight percent of the binder and 60 to 98 weight percent of the metal carbide by total weight of the powdered metal. The binder of the first powdered metal grade and the binder of the second powdered metal grade may differ in chemical composition, weight percentage of the binder in the powdered metal grade, or both. In some embodiments, the first powdered metal grade and the second powdered metal grade includes from 1 to 10 weight percent more of the binder than the other of the first powdered metal grade and the second powdered metal grade.
Embodiments of the cutting insert may also include hybrid cemented carbides, such as, but not limited to, any of the hybrid cemented carbides described in copending U.S. patent application Ser. No. 10/735,379, which is hereby incorporated by reference in its entirety. Generally, a hybrid cemented carbide is a material comprising particles of at least one cemented carbide grade dispersed throughout a second cemented carbide continuous phase, thereby forming a composite of cemented carbides. The hybrid cemented carbides of U.S. patent application Ser. No. 10/735,379 have low contiguity ratios and improved properties relative to other hybrid cemented carbides. Preferably, the contiguity ratio of the dispersed phase of a hybrid cemented carbide may be less than or equal to 0.48. Also, a hybrid cemented carbide composite of the present invention preferably has a dispersed phase with a hardness greater than the hardness of the continuous phase. For example, in certain embodiments of the hybrid cemented carbides used in one or more zones of cutting inserts of the present invention, the hardness of the dispersed phase is preferably greater than or equal to 88 HRA and less than or equal to 95 HRA, and the hardness of the continuous phase is greater than or equal to 78 and less than or equal to 91 HRA.
It will be apparent to one skilled in the art, however, that the following discussion of the present invention also may be adapted to the fabrication of composite inserts having more complex geometry and/or more than two regions. Thus, the following discussion is not intended to restrict the invention, but merely to illustrate embodiments of it.
In certain embodiments, the ceramic components may comprise less than 5% cubic carbides, such as tantalum carbide, niobium carbide and titanium carbide, or, in some applications less than 3 wt. % cubic carbides. In embodiments of the present invention, it may be advantageous to avoid cubic carbides or only include low concentrations of cubic carbides because cubic carbides reduce the strength transverse rupture strength, increase the production costs, and reduce the fracture toughness of the final article. This is especially important for tools used to machine hard work pieces where the machining results in a shearing action and the strength of the drill should be the greatest. Other disadvantages include reduced thermal-shock resistance due to a higher thermal-expansion coefficient and lower thermal conductivity and reduced abrasive wear resistance.
One skilled in the art, after having considered the description of present invention, will understand that the improved rotary tool of this invention could be constructed with several layers of different cemented carbide materials to produce a progression of the magnitude of one or more characteristics from a central region of the tool to its periphery. A major advantage of the composite articles and composite inserts of the present invention is the flexibility available to the tool designer to tailor properties of regions of the tools to suit different applications. For example, the size, location, thickness, geometry, and/or physical properties of the individual cemented carbide material regions of a particular composite blank of the present invention may be selected to suit the specific application of the rotary tool fabricated from the blank. Thus, for example, the stiffness of one or more regions of the insert may be increased if the insert experiences significant bending during use. Such a region may comprise a cemented carbide material having an enhanced modulus of elasticity, for example, or the hardness and/or wear resistance of one or more cemented carbide regions having cutting surfaces and that experience cutting speeds greater than other regions may be increased; and/or the corrosion resistance of regions of cemented carbide material subject to chemical contact during use may be enhanced.
Embodiments of the composite inserts may be optimized to have a surface region of a carbide material of harder grade to achieve better wear resistance and the core region as a carbide material of tougher grade to increase shock or impact resistance. Therefore, the composite indexable carbide cutting inserts made from the present invention have dual benefits in reduced manufacturing cost and improved machining performance.
The cutting insert 1 of
a to 2d illustrate a composite indexable cutting insert 11 with built-in chip breakers on the topside only. The cutting insert 11 may be indexed four times.
Embodiments of the composite carbide indexable cutting inserts are not limited to the cutting inserts 1 and 11 shown in
Based on the principle of this invention,
Based on the principle of this invention, a further embodiment as shown in
a to 5d comprise a further embodiment of a composite indexable cutting insert with built-in chip breakers on both top and bottom sides. The cutting insert 41 has a diamond shape and may be indexed four times (two times on each side). As shown in
It should be emphasized that the shape of indexable cutting inserts may be any positive/negative geometrical styles known to one skilled in the art for metal machining applications and any desired chip forming geometry may be included.
The manufacturing methods used to create the novel composite carbide indexable cutting inserts, with or without chip breaker geometry, of this invention are based on conventional carbide powder processing methods. In an embodiment of the method of the present invention, the powdered metal grades may be introduced into a portion of a cavity of die by a single feed shoe or multiple feed shoes. In certain embodiments, at least one of the feed shoes may comprise at least two feed sections to facilitate filling of each portion of the cavity with the same shoe. Embodiments of the method may further include introducing partitions into the cavity to form the portions of the cavity of the die. The partitions may be attached to the shoe or introduced into the cavity by another portion of the apparatus. The partitions may be lowered into the cavity by a motor, hydraulics, pneumatics or a solenoid.
a and 10b schematically illustrate the conventional carbide powder pressing setup.
For different constructions of the composite cutting inserts provided in this invention, different manufacturing methods may be used. The processes are exemplified by two basic types of composite constructions of the cutting inserts, mainly depending on the split plane (single or multiple/horizontal and vertical). As used herein, a “split plane” is an interface in a composition article or composite insert between two different composite materials. The first basic type of composite inserts with two different composition materials 99 and 100 is schematically demonstrated in
A second basic embodiment of composite insert with two different composite materials 109 and 110 is schematically demonstrated in
The combinations of above-described two basic embodiments of composite constructions provided in this invention may then create various types of more complex composite constructions comprising multiple split planes that may be perpendicular to and split planes (single or multiple) that may be parallel to the pressing center axial line. As shown in
a to 14d are representative schematics (not shown to scale) of an embodiment of a manufacturing method for fabricating the composite cutting inserts of the first basic embodiment of the composite construction provided in this invention. As shown in
a to 16d is a schematic representation (not to scale) depicting another embodiment of the manufacturing method for fabricating the composite carbide indexable cutting inserts of a second basic embodiment of composite construction provided in this invention, specifically, a composite carbide cutting insert similar to that in the previous
Other than the above-described preferred manufacturing methods, which are mainly based on the movement of the bottom punch and the multiple carbide powder filling systems, another preferred manufacturing method shown in
Using a composite cutting insert having the second basic embodiment of composite construction (defined in
Shown in
Shown in
As shown in
It should be addressed here that the manufacturing methods for making the composite cutting inserts provided in this invention are not limited to the above-described manufacturing methods shown in
An additional embodiment of a method of producing the composite rotary tools of the present invention and composite blanks used to produce those tools comprises placing a first metallurgical powder into a void of a first region of a mold. Preferably, the mold is a dry-bag rubber mold. A second metallurgical powder is placed into a second region of the void of the mold. Depending on the number of regions of different cemented carbide materials desired in the rotary tool, the mold may be partitioned into additional regions in which particular metallurgical powders are disposed. The mold may be segregated into regions by placing a physical partition in the void of the mold to define the several regions. The metallurgical powders are chosen to achieve the desired properties of the corresponding regions of the rotary tool as described above. A portion of at least the first region and the second region are brought into contact with each other, and the mold is then isostatically compressed to densify the metallurgical powders to form a compact of consolidated powders. The compact is then sintered to further densify the compact and to form an autogenous bond between the first and second, and, if present, other regions. The sintered compact provides a blank that may be machined to include a cutting edge and/or other physical features of the geometry of a particular rotary tool. Such features are known to those of ordinary skill in the art and are not specifically described herein.
Such embodiments of the method of the present invention provide the cutting insert designer increased flexibility in design of the different zones for particular applications. The first green compact may be designed in any desired shape from any desired cemented hard particle material. In addition, the process may be repeated as many times as desired, preferably prior to sintering. For example, after consolidating to form the second green compact, the second green compact may be placed in a third mold with a third powder and consolidated to form a third green compact. By such a repetitive process, more complex shapes may be formed, cutting inserts including multiple clearly defined regions of differing properties may be formed, and the cutting insert designer will be able to design cutting inserts with specific wear capabilities in specific zones or regions.
One skilled in the art would understand the process parameters required for consolidation and sintering to form cemented hard particle articles, such as cemented carbide cutting inserts. Such parameters may be used in the methods of the present invention, for example, sintering may be performed at a temperature suitable to densify the article, such as at temperatures up to 1500° C.
Another possible manufacturing method for fabricating the composite cutting inserts of this invention is shown in principle in
Embodiments of the article of the present invention also include inserts for rotary tools. Modular rotary tools typically comprise a cemented carbide insert affixed to a cutter body. The cutter body may, typically, be made from steel. The insert of the rotary tool may be affixed to the cutter body by a clamp or screw, for example. The components of a typical modular ballnose endmill 300 are shown in
Embodiments of the invention also include composite inserts for a modular rotary tool. The composite inserts may comprise at least a central region and a periphery region, wherein the central region comprises a first composite material and the periphery region comprises a second composite material. The first composite material may differ from the second composite material in at least one characteristic. The characteristic may be at least one characteristic selected from the group consisting of composition, grain size, modulus of elasticity, hardness, wear resistance, fracture toughness, tensile strength, corrosion resistance, coefficient of thermal expansion, and coefficient of thermal conductivity, and the composite materials may be as described above. The composite inserts may be a ballnose endmill insert, a spade drill insert, or any other rotary tool insert. For example,
In further examples,
In certain embodiments, the composite insert may comprise a composite material having a modulus of elasticity within the central region that differs from the modulus of elasticity of the second composite material within the periphery region. In certain applications, the modulus of elasticity of the central region may be greater than the modulus of elasticity of the periphery region. For example, the modulus of elasticity of the first composite material within the central region may be between 90×106 to 95×106 psi and the modulus of elasticity of the second composite material within the periphery region may be between 69×106 to 92×106 psi.
In certain embodiments, the composite insert may comprise a composite material having a hardness or wear resistance within the central region that differs from the hardness or wear resistance of the second composite material within the periphery region. In certain applications, the hardness or wear resistance of the periphery region may be greater than the hardness or wear resistance of the central region. These differences in properties and characteristics may be obtained by using cemented carbide materials comprising a difference in binder concentration. For example, in certain embodiments, the first composite material may comprise 6 to 15 weight percent cobalt alloy and the second composite material may comprise 10 to 15 weight percent cobalt alloy. Embodiments of the rotary tool cutting inserts may comprise more than two composite materials or comprise more than two regions, or both.
Further embodiments of the inserts of the present invention are shown in
a and 29b illustrate an embodiment of a composite spade drill insert 440 that has cemented carbide grade at the cutting tip 441 in the central region 442 and another different cemented carbide material at the periphery region 443. The cutting speeds in the central region 442 along the central region cutting edge 444 will be slower than the cutting speeds along the periphery region cutting region 445.
a, 30b, and 30c illustrate an embodiment of a composite indexable cutting insert 450 with an angled side surface 453 that has a cemented carbide grade at the entire periphery region 452 and a different cemented carbide grade at the central region 451. The central region 451 may comprise a tough cemented carbide grade that supports the more wear resistant grade of at the cutting edge of the periphery region 452. Further,
A novel manufacturing method is also provided for producing composite cutting inserts with one composite material at the entire periphery region and another different composite material at the central portion. A feed shoe may be modified to fill a cavity in a die, such that one composite grade is distributed along the periphery and a different composite material is distributed in the central region. The shoe may be designed to feed by gravity in the concentric regions of the cavity where the powdered metal is distributed by multiple feed tubes or by one feed tube designed to fill each region. Another embodiment of a method of the present invention is shown in
a and 32b schematically illustrate a motorized powder feed shoe mechanism 500 for producing a typical round cutting insert with the composite construction as shown in
Details of the above large gear 523 are shown in
a and 34b demonstrates (not to scale) an integrated feed shoe system 540 with two feed hoppers. The feed shoe system 540 is driven by a kind of linear precision position unit through the driving shaft 541, thus the feed shoe system 540 can be precisely located above the periphery cavity 542 and the center cavity 543. The feed shoe system 540 is equipped with a feed hopper unit 544 for feeding the metal powders into the periphery cavity 542 and another feed hopper unit 545 for feeding the metal powders into the center cavity 543. Both the feed hopper units 544 and 545 are supported by the hopper base 550. The thin cylindrical splitter 546 is positioned at the top surface of the bottom punch 547. The metal powders 560 from the feed hopper unit 545 are introduced directly into the center cavity 543 while the metal powders 562 from the feed hopper unit 544 are introduced into the periphery cavity 542 by the multiple blades 563 that dispense the metal powders 562 uniformly into the periphery cavity 542 through the controlled rotation of the large gear 564. Preferably, all the metal powders are fed directly into the cavity.
In
It is to be understood that the present description illustrates those aspects of the invention relevant to a clear understanding of the invention. Certain aspects of the invention that would be apparent to those of ordinary skill in the art and that, therefore, would not facilitate a better understanding of the invention have not been presented in order to simplify the present description. Although embodiments of the present invention have been described, one of ordinary skill in the art will, upon considering the foregoing description, recognize that many modifications and variations of the invention may be employed. All such variations and modifications of the invention are intended to be covered by the foregoing description and the following claims.
This application is a divisional application of prior application Ser. No. 11/206,368, filed Aug. 18, 2005.
Number | Name | Date | Kind |
---|---|---|---|
1509438 | Miller | Sep 1924 | A |
1530293 | Breitenstein | Mar 1925 | A |
1808138 | Hogg et al. | Jun 1931 | A |
1811802 | Newman | Jun 1931 | A |
1912298 | Newman | May 1933 | A |
2054026 | Benninghoff | Sep 1936 | A |
2093507 | Bartek | Sep 1937 | A |
2093742 | Staples | Sep 1937 | A |
2093986 | Staples | Sep 1937 | A |
2240840 | Fischer | May 1941 | A |
2246237 | Benninghoff | Jun 1941 | A |
2283280 | Nell | May 1942 | A |
2299207 | Bevillard | Oct 1942 | A |
2351827 | McAllister | Jun 1944 | A |
2422994 | Taylor | Jun 1947 | A |
2819958 | Abkowitz et al. | Jan 1958 | A |
2819959 | Abkowitz et al. | Jan 1958 | A |
2906654 | Abkowitz | Sep 1959 | A |
2954570 | Couch | Oct 1960 | A |
3041641 | Hradek et al. | Jul 1962 | A |
3093850 | Kelso | Jun 1963 | A |
3368881 | Abkowitz et al. | Feb 1968 | A |
3471921 | Feenstra | Oct 1969 | A |
3482295 | Trent | Dec 1969 | A |
3490901 | Hachisuka et al. | Jan 1970 | A |
3581835 | Stebley | Jun 1971 | A |
3629887 | Urbanic | Dec 1971 | A |
3660050 | Iler et al. | May 1972 | A |
3757879 | Wilder et al. | Sep 1973 | A |
3776655 | Urbanic | Dec 1973 | A |
3782848 | Pfeifer | Jan 1974 | A |
3806270 | Tanner et al. | Apr 1974 | A |
3812548 | Theuerkaue | May 1974 | A |
3889516 | Yankee et al. | Jun 1975 | A |
RE28645 | Aoki et al. | Dec 1975 | E |
3942954 | Frehn | Mar 1976 | A |
3987859 | Lichte | Oct 1976 | A |
4009027 | Naidich et al. | Feb 1977 | A |
4017480 | Baum | Apr 1977 | A |
4047828 | Makely | Sep 1977 | A |
4094709 | Rozmus | Jun 1978 | A |
4097180 | Kwieraga | Jun 1978 | A |
4097275 | Horvath | Jun 1978 | A |
4106382 | Salje et al. | Aug 1978 | A |
4126652 | Oohara et al. | Nov 1978 | A |
4128136 | Generoux | Dec 1978 | A |
4170499 | Thomas et al. | Oct 1979 | A |
4198233 | Frehn | Apr 1980 | A |
4221270 | Vezirian | Sep 1980 | A |
4229638 | Lichte | Oct 1980 | A |
4233720 | Rozmus | Nov 1980 | A |
4255165 | Dennis et al. | Mar 1981 | A |
4270952 | Kobayashi | Jun 1981 | A |
4276788 | van Nederveen | Jul 1981 | A |
4277106 | Sahley | Jul 1981 | A |
4306139 | Shinozaki et al. | Dec 1981 | A |
4311490 | Bovenkerk et al. | Jan 1982 | A |
4325994 | Kitashima et al. | Apr 1982 | A |
4327156 | Dillon et al. | Apr 1982 | A |
4340327 | Martins | Jul 1982 | A |
4341557 | Lizenby | Jul 1982 | A |
4351401 | Fielder | Sep 1982 | A |
4376793 | Jackson | Mar 1983 | A |
4389952 | Dreier et al. | Jun 1983 | A |
4396321 | Holmes | Aug 1983 | A |
4398952 | Drake | Aug 1983 | A |
4423646 | Bernhardt | Jan 1984 | A |
4478297 | Radtke | Oct 1984 | A |
4499048 | Hanejko | Feb 1985 | A |
4499795 | Radtke | Feb 1985 | A |
4520882 | van Nederveen | Jun 1985 | A |
4526748 | Rozmus | Jul 1985 | A |
4547104 | Holmes | Oct 1985 | A |
4547337 | Rozmus | Oct 1985 | A |
4550532 | Fletcher, Jr. et al. | Nov 1985 | A |
4552232 | Frear | Nov 1985 | A |
4553615 | Grainger | Nov 1985 | A |
4554130 | Ecer | Nov 1985 | A |
4562990 | Rose | Jan 1986 | A |
4574011 | Bonjour et al. | Mar 1986 | A |
4579713 | Lueth | Apr 1986 | A |
4587174 | Yoshimura et al. | May 1986 | A |
4592685 | Beere | Jun 1986 | A |
4596694 | Rozmus | Jun 1986 | A |
4597466 | Ecer | Jul 1986 | A |
4597730 | Rozmus | Jul 1986 | A |
4604106 | Hall | Aug 1986 | A |
4605343 | Hibbs, Jr. et al. | Aug 1986 | A |
4609577 | Long | Sep 1986 | A |
4630693 | Goodfellow | Dec 1986 | A |
4642003 | Yoshimura | Feb 1987 | A |
4649086 | Johnson | Mar 1987 | A |
4656002 | Lizenby et al. | Apr 1987 | A |
4662461 | Garrett | May 1987 | A |
4667756 | King et al. | May 1987 | A |
4686080 | Hara et al. | Aug 1987 | A |
4686156 | Baldoni, II et al. | Aug 1987 | A |
4694919 | Barr | Sep 1987 | A |
4708542 | Emanuelli | Nov 1987 | A |
4722405 | Langford | Feb 1988 | A |
4729789 | Ide et al. | Mar 1988 | A |
4743515 | Fischer et al. | May 1988 | A |
4744943 | Timm | May 1988 | A |
4749053 | Hollingshead | Jun 1988 | A |
4752159 | Howlett | Jun 1988 | A |
4752164 | Leonard, Jr. | Jun 1988 | A |
4761844 | Turchan | Aug 1988 | A |
4779440 | Cleve et al. | Oct 1988 | A |
4780274 | Barr | Oct 1988 | A |
4804049 | Barr | Feb 1989 | A |
4809903 | Eylon et al. | Mar 1989 | A |
4813823 | Bieneck | Mar 1989 | A |
4831674 | Bergstrom et al. | May 1989 | A |
4838366 | Jones | Jun 1989 | A |
4861350 | Phaal et al. | Aug 1989 | A |
4871377 | Frushour | Oct 1989 | A |
4881431 | Bieneck | Nov 1989 | A |
4884477 | Smith et al. | Dec 1989 | A |
4889017 | Fuller et al. | Dec 1989 | A |
4899838 | Sullivan et al. | Feb 1990 | A |
4919013 | Smith et al. | Apr 1990 | A |
4923512 | Timm et al. | May 1990 | A |
4934040 | Turchan | Jun 1990 | A |
4943191 | Schmitt | Jul 1990 | A |
4956012 | Jacobs et al. | Sep 1990 | A |
4968348 | Abkowitz et al. | Nov 1990 | A |
4971485 | Nomura et al. | Nov 1990 | A |
4991670 | Fuller et al. | Feb 1991 | A |
5000273 | Horton et al. | Mar 1991 | A |
5010945 | Burke | Apr 1991 | A |
5030598 | Hsieh | Jul 1991 | A |
5032352 | Meeks et al. | Jul 1991 | A |
5041261 | Buljan et al. | Aug 1991 | A |
5049450 | Dorfman et al. | Sep 1991 | A |
RE33753 | Vacchiano et al. | Nov 1991 | E |
5067860 | Kobayashi et al. | Nov 1991 | A |
5080538 | Schmidtt | Jan 1992 | A |
5090491 | Tibbitts et al. | Feb 1992 | A |
5092412 | Walk | Mar 1992 | A |
5094571 | Ekerot | Mar 1992 | A |
5098232 | Benson | Mar 1992 | A |
5110687 | Abe et al. | May 1992 | A |
5112162 | Hartford et al. | May 1992 | A |
5112168 | Glimpel | May 1992 | A |
5116659 | Glatzle et al. | May 1992 | A |
5126206 | Garg et al. | Jun 1992 | A |
5127776 | Glimpel | Jul 1992 | A |
5161898 | Drake | Nov 1992 | A |
5174700 | Sgarbi et al. | Dec 1992 | A |
5179772 | Braun et al. | Jan 1993 | A |
5186739 | Isobe et al. | Feb 1993 | A |
5203513 | Keller et al. | Apr 1993 | A |
5203932 | Kato et al. | Apr 1993 | A |
5232522 | Doktycz et al. | Aug 1993 | A |
5266415 | Newkirk et al. | Nov 1993 | A |
5273380 | Musacchia | Dec 1993 | A |
5281260 | Kumar et al. | Jan 1994 | A |
5286685 | Schoennahl et al. | Feb 1994 | A |
5305840 | Liang et al. | Apr 1994 | A |
5311958 | Isbell et al. | May 1994 | A |
5326196 | Noll | Jul 1994 | A |
5333520 | Fischer et al. | Aug 1994 | A |
5338135 | Noguchi et al. | Aug 1994 | A |
5348806 | Kojo et al. | Sep 1994 | A |
5354155 | Adams | Oct 1994 | A |
5359772 | Carlsson et al. | Nov 1994 | A |
5373907 | Weaver | Dec 1994 | A |
5376329 | Morgan et al. | Dec 1994 | A |
5413438 | Turchan | May 1995 | A |
5423899 | Krall et al. | Jun 1995 | A |
5429459 | Palm | Jul 1995 | A |
5433280 | Smith | Jul 1995 | A |
5438858 | Friedrichs | Aug 1995 | A |
5443337 | Katayama | Aug 1995 | A |
5452771 | Blackman et al. | Sep 1995 | A |
5467669 | Stroud | Nov 1995 | A |
5474407 | Rodel et al. | Dec 1995 | A |
5479997 | Scott et al. | Jan 1996 | A |
5480272 | Jorgensen et al. | Jan 1996 | A |
5482670 | Hong | Jan 1996 | A |
5484468 | Östlund et al. | Jan 1996 | A |
5487626 | Von Holst et al. | Jan 1996 | A |
5496137 | Ochayon et al. | Mar 1996 | A |
5505748 | Tank et al. | Apr 1996 | A |
5506055 | Dorfman et al. | Apr 1996 | A |
5518077 | Blackman et al. | May 1996 | A |
5525134 | Mehrotra et al. | Jun 1996 | A |
5541006 | Conley | Jul 1996 | A |
5543235 | Mirchandani et al. | Aug 1996 | A |
5544550 | Smith | Aug 1996 | A |
5560440 | Tibbitts | Oct 1996 | A |
5570978 | Rees et al. | Nov 1996 | A |
5580666 | Dubensky et al. | Dec 1996 | A |
5586612 | Isbell et al. | Dec 1996 | A |
5590729 | Cooley et al. | Jan 1997 | A |
5593474 | Keshavan et al. | Jan 1997 | A |
5601857 | Friedrichs | Feb 1997 | A |
5603075 | Stoll et al. | Feb 1997 | A |
5609447 | Britzke et al. | Mar 1997 | A |
5611251 | Katayama | Mar 1997 | A |
5612264 | Nilsson et al. | Mar 1997 | A |
5628837 | Britzke et al. | May 1997 | A |
RE35538 | Akesson et al. | Jun 1997 | E |
5641251 | Leins et al. | Jun 1997 | A |
5641921 | Dennis et al. | Jun 1997 | A |
5662183 | Fang | Sep 1997 | A |
5666864 | Tibbitts | Sep 1997 | A |
5677042 | Massa et al. | Oct 1997 | A |
5679445 | Massa et al. | Oct 1997 | A |
5686119 | McNaughton, Jr. | Nov 1997 | A |
5697042 | Massa et al. | Dec 1997 | A |
5697046 | Conley | Dec 1997 | A |
5697462 | Grimes et al. | Dec 1997 | A |
5704736 | Giannetti | Jan 1998 | A |
5718948 | Ederyd et al. | Feb 1998 | A |
5732783 | Truax et al. | Mar 1998 | A |
5733078 | Matsushita et al. | Mar 1998 | A |
5733649 | Kelley et al. | Mar 1998 | A |
5733664 | Kelley et al. | Mar 1998 | A |
5750247 | Bryant et al. | May 1998 | A |
5753160 | Takeuchi et al. | May 1998 | A |
5755033 | Günter et al. | May 1998 | A |
5755298 | Langford, Jr. et al. | May 1998 | A |
5762843 | Massa et al. | Jun 1998 | A |
5765095 | Flak et al. | Jun 1998 | A |
5776593 | Massa et al. | Jul 1998 | A |
5778301 | Hong | Jul 1998 | A |
5789686 | Massa et al. | Aug 1998 | A |
5791833 | Niebauer | Aug 1998 | A |
5792403 | Massa et al. | Aug 1998 | A |
5803152 | Dolman et al. | Sep 1998 | A |
5806934 | Massa et al. | Sep 1998 | A |
5830256 | Northrop et al. | Nov 1998 | A |
5851094 | Stand et al. | Dec 1998 | A |
5856626 | Fischer et al. | Jan 1999 | A |
5865571 | Tankala et al. | Feb 1999 | A |
5873684 | Flolo | Feb 1999 | A |
5880382 | Fang et al. | Mar 1999 | A |
5890852 | Gress | Apr 1999 | A |
5893204 | Symonds | Apr 1999 | A |
5897830 | Abkowitz et al. | Apr 1999 | A |
5899257 | Alleweireldt et al. | May 1999 | A |
5947660 | Karlsson et al. | Sep 1999 | A |
5957006 | Smith | Sep 1999 | A |
5963775 | Fang | Oct 1999 | A |
5964555 | Strand | Oct 1999 | A |
5967249 | Butcher | Oct 1999 | A |
5971670 | Pantzar et al. | Oct 1999 | A |
5976707 | Grab et al. | Nov 1999 | A |
5988953 | Berglund et al. | Nov 1999 | A |
6007909 | Rolander et al. | Dec 1999 | A |
6012882 | Turchan | Jan 2000 | A |
6022175 | Heinrich et al. | Feb 2000 | A |
6029544 | Katayama | Feb 2000 | A |
6051171 | Takeuchi et al. | Apr 2000 | A |
6063333 | Dennis | May 2000 | A |
6068070 | Scott | May 2000 | A |
6073518 | Chow et al. | Jun 2000 | A |
6076999 | Hedberg et al. | Jun 2000 | A |
6086003 | Günter et al. | Jul 2000 | A |
6086980 | Foster et al. | Jul 2000 | A |
6089123 | Chow et al. | Jul 2000 | A |
6109377 | Massa et al. | Aug 2000 | A |
6109677 | Anthony | Aug 2000 | A |
6135218 | Deane et al. | Oct 2000 | A |
6148936 | Evans et al. | Nov 2000 | A |
6200514 | Meister | Mar 2001 | B1 |
6209420 | Butcher et al. | Apr 2001 | B1 |
6214134 | Eylon et al. | Apr 2001 | B1 |
6214287 | Waldenström | Apr 2001 | B1 |
6220117 | Butcher | Apr 2001 | B1 |
6227188 | Tankala et al. | May 2001 | B1 |
6228139 | Oskarrson | May 2001 | B1 |
6241036 | Lovato et al. | Jun 2001 | B1 |
6248277 | Friedrichs | Jun 2001 | B1 |
6254658 | Taniuchi et al. | Jul 2001 | B1 |
6287360 | Kembaiyan et al. | Sep 2001 | B1 |
6290438 | Papajewski | Sep 2001 | B1 |
6293986 | Rödiger et al. | Sep 2001 | B1 |
6299658 | Moriguchi et al. | Oct 2001 | B1 |
6302224 | Sherwood, Jr. | Oct 2001 | B1 |
6345941 | Fang et al. | Feb 2002 | B1 |
6353771 | Southland | Mar 2002 | B1 |
6372346 | Toth | Apr 2002 | B1 |
6374932 | Brady | Apr 2002 | B1 |
6375706 | Kembaiyan et al. | Apr 2002 | B2 |
6386954 | Sawabe et al. | May 2002 | B2 |
6395108 | Eberle et al. | May 2002 | B2 |
6402439 | Puide et al. | Jun 2002 | B1 |
6425716 | Cook | Jul 2002 | B1 |
6450739 | Puide et al. | Sep 2002 | B1 |
6453899 | Tselesin | Sep 2002 | B1 |
6454025 | Runquist et al. | Sep 2002 | B1 |
6454028 | Evans | Sep 2002 | B1 |
6454030 | Findley et al. | Sep 2002 | B1 |
6458471 | Lovato et al. | Oct 2002 | B2 |
6461401 | Kembaiyan et al. | Oct 2002 | B1 |
6474425 | Truax et al. | Nov 2002 | B1 |
6499917 | Parker et al. | Dec 2002 | B1 |
6499920 | Sawabe | Dec 2002 | B2 |
6500226 | Dennis | Dec 2002 | B1 |
6502623 | Schmitt | Jan 2003 | B1 |
6511265 | Mirchandani et al. | Jan 2003 | B1 |
6544308 | Griffin et al. | Apr 2003 | B2 |
6546991 | Dworog et al. | Apr 2003 | B2 |
6551035 | Bruhn et al. | Apr 2003 | B1 |
6562462 | Griffin et al. | May 2003 | B2 |
6576182 | Ravagni et al. | Jun 2003 | B1 |
6585064 | Griffin et al. | Jul 2003 | B2 |
6589640 | Griffin et al. | Jul 2003 | B2 |
6599467 | Yamaguchi et al. | Jul 2003 | B1 |
6607693 | Saito et al. | Aug 2003 | B1 |
6607835 | Fang et al. | Aug 2003 | B2 |
6651757 | Belnap et al. | Nov 2003 | B2 |
6655481 | Findley et al. | Dec 2003 | B2 |
6655882 | Heinrich et al. | Dec 2003 | B2 |
6676863 | Christiaens et al. | Jan 2004 | B2 |
6685880 | Engstrom et al. | Feb 2004 | B2 |
6688988 | McClure | Feb 2004 | B2 |
6695551 | Silver | Feb 2004 | B2 |
6706327 | Blomstedt et al. | Mar 2004 | B2 |
6716388 | Bruhn et al. | Apr 2004 | B2 |
6719074 | Tsuda et al. | Apr 2004 | B2 |
6737178 | Ota et al. | May 2004 | B2 |
6742608 | Murdoch | Jun 2004 | B2 |
6742611 | Illerhaus et al. | Jun 2004 | B1 |
6756009 | Sim et al. | Jun 2004 | B2 |
6764555 | Hiramatsu et al. | Jul 2004 | B2 |
6766870 | Overstreet | Jul 2004 | B2 |
6767505 | Witherspoon et al. | Jul 2004 | B2 |
6782958 | Liang et al. | Aug 2004 | B2 |
6799648 | Brandenberg et al. | Oct 2004 | B2 |
6808821 | Fujita et al. | Oct 2004 | B2 |
6844085 | Takayama et al. | Jan 2005 | B2 |
6848521 | Lockstedt et al. | Feb 2005 | B2 |
6849231 | Kojima et al. | Feb 2005 | B2 |
6892793 | Liu et al. | May 2005 | B2 |
6899495 | Hansson et al. | May 2005 | B2 |
6918942 | Hatta et al. | Jul 2005 | B2 |
6948890 | Svensson et al. | Sep 2005 | B2 |
6949148 | Sugiyama et al. | Sep 2005 | B2 |
6955233 | Crowe et al. | Oct 2005 | B2 |
6958099 | Nakamura et al. | Oct 2005 | B2 |
7014719 | Suzuki et al. | Mar 2006 | B2 |
7014720 | Iseda | Mar 2006 | B2 |
7044243 | Kembaiyan et al. | May 2006 | B2 |
7048081 | Smith et al. | May 2006 | B2 |
7070666 | Druschitz et al. | Jul 2006 | B2 |
7090731 | Kashima et al. | Aug 2006 | B2 |
7101128 | Hansson | Sep 2006 | B2 |
7101446 | Takeda et al. | Sep 2006 | B2 |
7112143 | Muller | Sep 2006 | B2 |
7125207 | Craig et al. | Oct 2006 | B2 |
7128773 | Liang et al. | Oct 2006 | B2 |
7147413 | Henderer et al. | Dec 2006 | B2 |
7207750 | Annanolli et al. | Apr 2007 | B2 |
7238414 | Benitsch et al. | Jul 2007 | B2 |
7244519 | Festeau et al. | Jul 2007 | B2 |
7250069 | Kembaiyan et al. | Jul 2007 | B2 |
7261782 | Hwang et al. | Aug 2007 | B2 |
7270679 | Istephanous et al. | Sep 2007 | B2 |
7296497 | Kugelberg et al. | Nov 2007 | B2 |
7381283 | Lee et al. | Jun 2008 | B2 |
7384413 | Gross et al. | Jun 2008 | B2 |
7384443 | Mirchandani et al. | Jun 2008 | B2 |
7410610 | Woodfield et al. | Aug 2008 | B2 |
7497396 | Splinter et al. | Mar 2009 | B2 |
7524351 | Hua et al. | Apr 2009 | B2 |
7556668 | Eason et al. | Jul 2009 | B2 |
7575620 | Terry et al. | Aug 2009 | B2 |
7625157 | Prichard et al. | Dec 2009 | B2 |
7661491 | Kembaiyan et al. | Feb 2010 | B2 |
7703555 | Overstreet | Apr 2010 | B2 |
7832456 | Calnan et al. | Nov 2010 | B2 |
7832457 | Calnan et al. | Nov 2010 | B2 |
7846551 | Fang et al. | Dec 2010 | B2 |
7887747 | Iwasaki et al. | Feb 2011 | B2 |
8025112 | Mirchandani et al. | Sep 2011 | B2 |
8087324 | Mirchandani et al. | Jan 2012 | B2 |
8109177 | Kembaiyan et al. | Feb 2012 | B2 |
8137816 | Fang et al. | Mar 2012 | B2 |
8141665 | Ganz | Mar 2012 | B2 |
20020004105 | Kunze et al. | Jan 2002 | A1 |
20030010409 | Kunze et al. | Jan 2003 | A1 |
20030041922 | Hirose et al. | Mar 2003 | A1 |
20030219605 | Molian et al. | Nov 2003 | A1 |
20040013558 | Kondoh et al. | Jan 2004 | A1 |
20040060742 | Kembaiyan et al. | Apr 2004 | A1 |
20040105730 | Nakajima | Jun 2004 | A1 |
20040129403 | Liu et al. | Jul 2004 | A1 |
20040141871 | Kondo et al. | Jul 2004 | A1 |
20040228695 | Clauson | Nov 2004 | A1 |
20040234820 | Majagi | Nov 2004 | A1 |
20040244540 | Oldham et al. | Dec 2004 | A1 |
20040245022 | Izaguirre et al. | Dec 2004 | A1 |
20040245024 | Kembaiyan | Dec 2004 | A1 |
20050008524 | Testani | Jan 2005 | A1 |
20050025928 | Annanolli et al. | Feb 2005 | A1 |
20050084407 | Myrick | Apr 2005 | A1 |
20050103404 | Hsieh et al. | May 2005 | A1 |
20050117984 | Eason et al. | Jun 2005 | A1 |
20050126334 | Mirchandani | Jun 2005 | A1 |
20050194073 | Hamano et al. | Sep 2005 | A1 |
20050211475 | Mirchandani et al. | Sep 2005 | A1 |
20050238749 | Freidhoff et al. | Oct 2005 | A1 |
20050247491 | Mirchandani et al. | Nov 2005 | A1 |
20050268746 | Abkowitz et al. | Dec 2005 | A1 |
20060016521 | Hanusiak et al. | Jan 2006 | A1 |
20060032677 | Azar et al. | Feb 2006 | A1 |
20060043648 | Takeuchi et al. | Mar 2006 | A1 |
20060060392 | Eyre | Mar 2006 | A1 |
20060131081 | Mirchandani et al. | Jun 2006 | A1 |
20060286410 | Ahlgren et al. | Dec 2006 | A1 |
20060288820 | Mirchandani et al. | Dec 2006 | A1 |
20070042217 | Fang et al. | Feb 2007 | A1 |
20070082229 | Mirchandani et al. | Apr 2007 | A1 |
20070102198 | Oxford et al. | May 2007 | A1 |
20070102199 | Smith et al. | May 2007 | A1 |
20070102200 | Choe et al. | May 2007 | A1 |
20070102202 | Choe et al. | May 2007 | A1 |
20070108650 | Mirchandani et al. | May 2007 | A1 |
20070126334 | Nakamura et al. | Jun 2007 | A1 |
20070163679 | Fujisawa et al. | Jul 2007 | A1 |
20070193782 | Fang et al. | Aug 2007 | A1 |
20080011519 | Smith et al. | Jan 2008 | A1 |
20080101977 | Eason et al. | May 2008 | A1 |
20080145686 | Mirchandani et al. | Jun 2008 | A1 |
20080163723 | Mirchandani et al. | Jul 2008 | A1 |
20080196318 | Bost et al. | Aug 2008 | A1 |
20080302576 | Mirchandani et al. | Dec 2008 | A1 |
20090136308 | Newitt | May 2009 | A1 |
20090180915 | Mirchandani et al. | Jul 2009 | A1 |
20090293672 | Mirchandani et al. | Dec 2009 | A1 |
20090301788 | Stevens et al. | Dec 2009 | A1 |
20100044114 | Mirchandani et al. | Feb 2010 | A1 |
20100044115 | Mirchandani et al. | Feb 2010 | A1 |
20100278603 | Fang et al. | Nov 2010 | A1 |
20100290849 | Mirchandani et al. | Nov 2010 | A1 |
20110011965 | Mirchandani et al. | Jan 2011 | A1 |
20110107811 | Mirchandani et al. | May 2011 | A1 |
20110265623 | Mirchandani et al. | Nov 2011 | A1 |
20110284179 | Stevens et al. | Nov 2011 | A1 |
20110287238 | Stevens et al. | Nov 2011 | A1 |
20110287924 | Stevens | Nov 2011 | A1 |
20110290566 | Mirchandani et al. | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
695583 | Feb 1998 | AU |
2212197 | Oct 2000 | CA |
102006030661 | Jan 2008 | DE |
0157625 | Oct 1985 | EP |
0264674 | Apr 1988 | EP |
0453428 | Oct 1991 | EP |
0641620 | Feb 1998 | EP |
0995876 | Apr 2000 | EP |
1065021 | Jan 2001 | EP |
1066901 | Jan 2001 | EP |
1106706 | Jun 2001 | EP |
0759480 | Jan 2002 | EP |
1244531 | Oct 2004 | EP |
1686193 | Aug 2006 | EP |
2627541 | Aug 1989 | FR |
622041 | Apr 1949 | GB |
945227 | Dec 1963 | GB |
1082568 | Sep 1967 | GB |
1309634 | Mar 1973 | GB |
1420906 | Jan 1976 | GB |
1491044 | Nov 1977 | GB |
2158744 | Nov 1985 | GB |
2218931 | Nov 1989 | GB |
2315452 | Feb 1998 | GB |
2324752 | Nov 1998 | GB |
2352727 | Feb 2001 | GB |
2384745 | Aug 2003 | GB |
2385350 | Aug 2003 | GB |
2393449 | Mar 2004 | GB |
2397832 | Aug 2004 | GB |
2435476 | Aug 2007 | GB |
51-124876 | Oct 1976 | JP |
59-54510 | Mar 1984 | JP |
59-56501 | Apr 1984 | JP |
59-67333 | Apr 1984 | JP |
59-169707 | Sep 1984 | JP |
59-175912 | Oct 1984 | JP |
60-48207 | Mar 1985 | JP |
60-172403 | Sep 1985 | JP |
61-243103 | Oct 1986 | JP |
61057123 | Dec 1986 | JP |
62-34710 | Feb 1987 | JP |
62-063005 | Mar 1987 | JP |
62-218010 | Sep 1987 | JP |
62-278250 | Dec 1987 | JP |
1-171725 | Jul 1989 | JP |
2-95506 | Apr 1990 | JP |
2-269515 | Nov 1990 | JP |
3-43112 | Feb 1991 | JP |
3-73210 | Mar 1991 | JP |
5-50314 | Mar 1993 | JP |
5-92329 | Apr 1993 | JP |
H05-64288 | Aug 1993 | JP |
H03-119090 | Jun 1995 | JP |
8-120308 | May 1996 | JP |
H8-209284 | Aug 1996 | JP |
8-294805 | Nov 1996 | JP |
9-192930 | Jul 1997 | JP |
9-253779 | Sep 1997 | JP |
10-138033 | May 1998 | JP |
10 219385 | Aug 1998 | JP |
H10-511740 | Nov 1998 | JP |
11-30516 | Nov 1999 | JP |
2000-355725 | Dec 2000 | JP |
2002-097885 | Apr 2002 | JP |
2002-166326 | Jun 2002 | JP |
2002-317596 | Oct 2002 | JP |
2003-306739 | Oct 2003 | JP |
2004-514065 | May 2004 | JP |
2004-160591 | Jun 2004 | JP |
2004-181604 | Jul 2004 | JP |
2004-190034 | Jul 2004 | JP |
2005-111581 | Apr 2005 | JP |
20050055268 | Jun 2005 | KR |
2135328 | Aug 1999 | RU |
2167262 | May 2001 | RU |
967786 | Oct 1982 | SU |
975369 | Nov 1982 | SU |
990423 | Jan 1983 | SU |
1269922 | Nov 1986 | SU |
1292917 | Feb 1987 | SU |
1350322 | Nov 1987 | SU |
6742 | Dec 1994 | UA |
63469 | Jan 2006 | UA |
23749 | Jun 2007 | UA |
WO 9205009 | Apr 1992 | WO |
WO 9222390 | Dec 1992 | WO |
WO 9734726 | Sep 1997 | WO |
WO 9828455 | Jul 1998 | WO |
WO 9913121 | Mar 1999 | WO |
WO 0043628 | Jul 2000 | WO |
WO 0052217 | Sep 2000 | WO |
WO 0143899 | Jun 2001 | WO |
WO 03010350 | Feb 2003 | WO |
WO 03011508 | Feb 2003 | WO |
WO 03049889 | Jun 2003 | WO |
WO 2004053197 | Jun 2004 | WO |
WO 2005045082 | May 2005 | WO |
WO 2005054530 | Jun 2005 | WO |
WO 2005061746 | Jul 2005 | WO |
WO 2005106183 | Nov 2005 | WO |
WO 2006071192 | Jul 2006 | WO |
WO 2006104004 | Oct 2006 | WO |
WO 2007001870 | Jan 2007 | WO |
WO 2007022336 | Feb 2007 | WO |
WO 2007030707 | Mar 2007 | WO |
WO 2007044791 | Apr 2007 | WO |
WO 2007127680 | Nov 2007 | WO |
WO 2008098636 | Aug 2008 | WO |
WO 2008115703 | Sep 2008 | WO |
WO 2011008439 | Jan 2011 | WO |
Entry |
---|
US 4,966,627, 10/1990, Keshavan et al. (withdrawn) |
Advisory Action mailed Jun. 29, 2009 in U.S. Appl. No. 10/903,198. |
ASM Materials Engineering Dictionary, J. R. Davis, Ed., ASM International, Fifth printing (Jan. 2006), p. 98. |
Coyle, T.W. and A. Bahrami, “Structure and Adhesion of Ni and Ni-WC Plasma Spray Coatings,” Thermal Spray, Surface Engineering via Applied Research, Proceedings of the 1st International Thermal Spray Conference, May 8-11, 2000, Montreal, Quebec, Canada, 2000, pp. 251-254. |
Deng, X. et al., “Mechanical Properties of a Hybrid Cemented Carbide Composite,” International Journal of Refractory Metals and Hard Materials, Elsevier Science Ltd., vol. 19, 2001, pp. 547-552. |
Gurland, J. Quantitative Microscopy, R.T. DeHoff and F.N. Rhines, eds., McGraw-Hill Book Company, New York, 1968, pp. 279-290. |
Gurland, Joseph, “Application of Quantitative Microscopy to Cemented Carbides,” Practical Applications of Quantitative Matellography, ASTM Special Technical Publication 839, ASTM 1984, pp. 65-84. |
Hayden, Matthew and Lyndon Scott Stephens, “Experimental Results for a Heat-Sink Mechanical Seal,” Tribology Transactions, 48, 2005, pp. 352-361. |
Metals Handbook, vol. 16 Machining, “Tapping” (ASM International 1989), pp. 255-267. |
Notice of Allowance issued on Jan. 27, 2009 in U.S. Appl. No. 11/116,752. |
Notice of Allowance mailed Oct. 21, 2002 in U.S. Appl. No. 09/460,540. |
Notice of Allowance issued on Nov. 13, 2008 in U.S. Appl. No. 11/206,368. |
Notice of Allowance issued on Nov. 26, 2008 in U.S. Appl. No. 11/013,842. |
Notice of Allowance issued on Nov. 30, 2009 in U.S. Appl. No. 11/206,368. |
Notice of Allowance issued on Jan. 26, 2010 in U.S. Appl. No. 11/116,752. |
Office Action (Advisory Action) mailed Mar. 15, 2002 in U.S. Appl. No. 09/460,540. |
Office Action (final) mailed Dec. 1, 2001 in U.S. Appl. No. 09/460,540. |
Office Action (non-final) mailed Jun. 1, 2001 in U.S. Appl. No. 09/460,540. |
Office Action (non-final) mailed Jun. 18, 2002 in U.S. Appl. No. 09/460,540. |
Office Action issued on Aug. 12, 2008 in U.S. Appl. No. 11/116,752. |
Office Action issued on Jul. 9, 2009 in U.S. Appl. No. 11/116,752. |
Office Action issued on Aug. 31, 2007 in U.S. Appl. No. 11/206,368. |
Office Action issued on Feb. 28, 2008 in U.S. Appl. No. 11/206,368. |
Office Action issued on Jan. 15, 2008 in U.S. Appl. No. 11/116,752. |
Office Action issued on Jan. 16, 2007 in U.S. Appl. No. 11/013,842. |
Office Action issued on Jan. 24, 2008 in U.S. Appl. No. 10/848,437. |
Office Action issued on Jul. 16, 2008 in U.S. Appl. No. 11/013,842. |
Office Action issued on Jul. 30, 2007 in U.S. Appl. No. 11/013,842. |
Office Action mailed Apr. 30, 2009 in U.S. Appl. No. 11/206,368. |
Office Action mailed Oct. 31, 2008 in U.S. Appl. No. 10/903,198. |
Office Action mailed Apr. 17, 2009 in U.S. Appl. No. 10/903,198. |
Peterman, Walter, “Heat-Sink Compound Protects the Unprotected,” Welding Design and Fabrication, Sep. 2003, pp. 20-22. |
Pre-Appeal Brief Conference Decision issued on May 14, 2008 in U.S. Appl. No. 10/848,437. |
Pre-Appeal Conference Decision issued on Jun. 19, 2008 in U.S. Appl. No. 11/206,368. |
Restriction Requirement issued on Sep. 8, 2006 in U.S. Appl. No. 10/848,437. |
Sriram, et al., “Effect of Cerium Addition on Microstructures of Carbon-Alloyed Iron Aluminides,” Bull. Mater. Sci., vol. 28, No. 6, Oct. 2005, pp. 547-554. |
Underwood, Quantitative Stereology, pp. 23-108 (1970). |
U.S. Appl. No. 12/464,607, filed May 12, 2009. |
U.S. Appl. No. 12/502,277, filed Jul. 14, 2009. |
U.S. Appl. No. 12/616,300, filed Nov. 11, 2009. |
Office Action malied Mar. 12, 2009 in U.S. Appl. No. 11/585,408. |
Office Action mailed Sep. 22, 2009 in U.S. Appl. No. 11/585,408. |
Office Action mailed Sep. 7, 2010 in U.S. Appl. No. 11/585,408. |
Office Action mailed Feb. 16, 2011 in U.S. Appl. No. 11/585,408. |
Advisory Action mailed May 3, 2011 in U.S. Appl. No. 11/585,408. |
Office Action mailed Aug. 17, 2011 in U.S. Appl. No. 11/585,408. |
Notice of Allowance mailed May 9, 2012 in U.S. Appl. No. 11/585,408. |
Restriction Requirement mailed Jul. 24, 2008 in U.S. Appl. No. 11/167,811. |
Office Action mailed Oct. 21, 2008 in U.S. Appl. No. 11/167,811. |
Final Office Action mailed Jun. 12, 2009 in U.S. Appl. No. 11/167,811. |
Office Action mailed Aug. 28, 2009 in U.S. Appl. No. 11/167,811. |
Office Action mailed Mar. 2, 2010 in U.S. Appl. No. 11/167,811. |
Office Action mailed Aug. 19, 2010 in U.S. Appl. No. 11/167,811. |
Advisory Action Before the Filing of an Appeal Brief mailed May 12, 2010 in U.S. Appl. No. 11/167,811. |
Office Action mailed Feb. 3, 2011 in U.S. Appl. No. 11/167,811. |
Advisory Action, mailed May 11, 2011 in U.S. Appl. No. 11/167,811. |
Office Action mailed Jul. 22, 2011 in U.S. Appl. No. 11/167,811. |
Office Action mailed Mar. 28,2012 in U.S. Appl. No. 11/167,811. |
Office Action mailed Mar. 19, 2009 in U.S. Appl. No. 11/737,993. |
Office Action mailed Jun. 3 2009 in U.S. Appl. No. 11/737,993. |
Office Action mailed Dec. 9, 2009 in U.S. Appl. No. 11/737,993. |
Office Action mailed Feb. 24, 2010 in U.S. Appl. No. 11/737,993. |
Office Action mailed Jun. 29. 2010 in U.S. Appl. No. 11/737,993. |
Advisory Action Before the Filing of an Appeal Brief mailed Sep. 9, 2010 in U.S. Appl. No. 11/737,993. |
Pre-Brief Appeal Conference Decision mailed Nov. 22, 2010 in U.S. Appl. No. 11/737,993. |
Office Action mailed Apr. 20. 2011 in U.S. Appl. No. 11/737,993. |
Office Action mailed Aug. 3, 2011 in U.S. Appl. No. 11/737,993. |
Office Action mailed Oct. 11, 2011 in U.S. Appl. No. 11/737,993. |
Office Action mailed Jan. 6, 2012 in U.S. Appl. No. 11/737,993. |
Advisory Action Before the Filing of an Appeal Brief mailed Mar. 22, 2012 in U.S. Appl. No. 11/737,993. |
Restriction Requirement mailed Sep. 17, 2010 in U.S. Appl. No. 12/397,597. |
Office Action mailed Nov. 15, 2010 in U.S. Appl. No. 12/397,597. |
Office Action mailed Jun. 7, 2011 in U.S. Appl. No. 12/397,597. |
Advisory Action Before the Filing of an Appeal Brief mailed Aug. 31, 2011 in U.S. Appl. No. 12/397,597. |
Office Action mailed Nov. 17, 2011 in U.S. Appl. No. 12/397,597. |
Advisory Action mailed Jan. 26, 2012 in U.S. Appl. No. 12/397,597. |
Office Action mailed Apr. 13, 2012 in U.S. Appl. No. 12/397,597. |
Office Action mailed Dec. 29, 2005 in U.S. Appl. No. 10/903,198. |
Office Action mailed Sep. 29, 2006 in U.S. Appl. No. 10/903,198. |
Office Action mailed Mar. 27, 2007 in U.S. Appl. No. 10/903,198. |
Office Action mailed Sep. 26, 2007 in U.S. Appl. No. 10/903,198. |
Office Action mailed Jan. 16, 2008 in U.S. Appl. No. 10/903,198. |
Examiner's Answer mailed Aug. 17, 2010 in U.S. Appl. No. 10/903,198. |
Office Action mailed Apr. 22, 2010 in U.S. Appl. No. 12/196,951. |
Office Action mailed Oct. 29, 2010 in U.S. Appl. No. 12/196,951. |
Office Action mailed Apr. 12, 2011 in U.S. Appl. No. 12/196,951. |
Office Action mailed Oct. 19, 2011 in U.S. Appl. No. 12/196,951. |
Office Action mailed Mar. 19, 2012 in U.S. Appl. No. 12/196,951. |
Office Action mailed Aug. 29, 2011 in U.S. Appl. No. 12/476,738. |
Office Action mailed Dec. 21, 2011 in U.S. Appl. No. 12/476,738. |
Notice of Allowance mailed Apr. 17, 2012 in U.S. Appl. No. 12/476,738. |
Office Action mailed Nov. 14, 2011 in U.S. Appl. No. 12/502,277. |
Office Action mailed Jan. 20, 2012 in U.S. Appl. No. 12/502,277. |
Office Action mailed Mar. 15, 2012 in U.S. Appl. No. 12/464,607. |
Notice of Allowance mailed Apr. 9, 2012 in U.S. Appl. No. 12/464,607. |
Office Action mailed Oct. 31, 2011 in U.S. Appl. No. 13/207,478. |
Office Action mailed Mar. 2, 2012 in U.S. Appl. No. 13/207,478. |
Notice of Allowance mailed Apr. 13, 2012 in U.S. Appl. No. 13/207,478. |
Notice Office Action mailed Dec. 5, 2011 in U.S. Appl. No. 13/182,474. |
Office Action mailed Apr. 27, 2012 in U.S. Appl. No. 13/182,474. |
Office Action mailed May 14, 2009 in U.S. Appl. No. 11/687,343. |
Office Action mailed Jan. 21, 2010 in U.S. Appl. No. 11/687,343. |
Notice of Allowance mailed May 18, 2010 in U.S. Appl. No. 11/687,343. |
Restriction Requirement mailed Aug. 4, 2010 in U.S. Appl. No. 12/196,815. |
Office Action mailed Oct. 27, 2010 in U.S. Appl. No. 12/196,815. |
Office Action Action mailed Nov. 17, 2010 in U.S. Appl. No. 12/196,815. |
Notice of Allowance mailed Jan. 27, 2011 in U.S. Appl. No. 12/196,815. |
Notice of Allowance mailed May 16, 2011 in U.S. Appl. No. 12/196,815. |
Office Action mailed Sep. 2, 2011 in U.S. Appl. No. 12/850,003. |
Notice of Allowance mailed Nov. 15, 2011 in U.S. Appl. No. 12/850,003. |
Office Action mailed May 3, 2010 in U.S. Appl. No. 11/924,273. |
Office Action mailed Oct. 14, 2010 in U.S. Appl. No. 11/924,273. |
Office Office Action mailed Feb. 2, 2011 in U.S. Appl. No. 11/924,273. |
Interview Summary mailed Feb. 16, 2011 in U.S. Appl. No. 11/924,273. |
Interview Summary mailed May 9, 2011 in U.S. Appl. No. 11/924,273. |
Notice of Allowance mailed Jun. 24. 2011 in U.S. Appl. No. 11/924,273. |
Metals Handbook, vol. 16 Machining, “Cemented Carbides” (ASM International 1989), pp. 71-89. |
Shi et al., “Composite Ductility—The Role of Reinforcement and Matrix”, TMS Meeting, Las Vegas, NV, Feb. 12-16, 1995, 10 pages. |
Tracey et al., “Development of Tungsten Carbide-Cobalt-Ruthenium Cutting Tools for Machining Steels” Proceedings Annual Microprogramming Workshop, vol. 14, 1981, pp. 281-292. |
Vander Vort, “Introduction to Quantitative Metallography”, Tech Notes, vol. 1, Issue 5, published by Buehler, Ltd. 1997, 6 pages. |
You Tube, “The Story Behing Kennametal's Beyon Blast”, dated Sep. 14, 2010, http://www.youtube.com/watch?v=8—A-bYVwmU8 (3 pages) accessed on Oct. 14, 2010. |
Kennametal press release on Jun. 10, 2010, http://news.thomasnet.com/companystory/Kennametal-Launches-Beyond-BLAST-TM-at-IMTS-2010-Booth-W-1522-833445 (2 pages) accessed on Oct. 14, 2010. |
Pages from Kennametal site, http://www.kennametal.com/en-US/promotions/Beyond—Blast.jhtml (7 pages) accessed on Oct. 14, 2010. |
Childs et al., “Metal Machining”, 2000, Elsevier, p. 111. |
Brookes, Kenneth J. A., “World Directory and Handbook of Hardmetals and Hard Materials”, International Carbide Data, U.K. 1996, Sixth Edition, p. 42. |
Firth Sterling grade chart, Allegheny Technologies, attached to Declaration of Prakash Mirchandani, Ph.D as filed in U.S. Appl. No. 11/737,993 on Sep. 9, 2009. |
Metals Handbook Desk Edition, definition of ‘wear’, 2nd Ed., J.R. Davis, Editor, ASM International 1998, p. 62. |
McGraw-Hill Dictionary of Scientific and Technical Terms, 5th Edition, Sybil P. Parker, Editor in Chief, 1993, pp. 799, 800, 1993, and 2047. |
ProKon Version 8.6, The Calculation Companion, Properties for W, Ti, Mo, Co, Ni, and FE, Copyright 1997-1998, 6 pages. |
TIBTECH Innovations, “Properties table of stainless steel, metals and other conductive materials”, printed from http://www.tibtech.com/conductivity.php on Aug. 19, 2011, 1 page. |
“Material: Tungsten Carbide (WC), bulk”, MEMSnet, printed from http://memsnet.org/material/tungstencarbidewcbulk/ on Aug. 19, 2001, 1 page. |
Williams, Wendell S., “The Thermal Conductivity of Metallic Ceramics”, JOM, Jun. 1998, pp. 2-66. |
Brookes, Kenneth J. A., “World Directory and Handbook of Hardmetals and Hard Materials”, International Carbide Data, U.K. 1996, Sixth Edition, pp. D182-0184. |
Thermal Conductivity of Metals, The Engineering ToolBox, printed from http://www.engineeringtoolbox.com/thermal-conductivity-metals-d—858.html on Oct. 27, 2011, 3 pages. |
The Thermal Conductivity of Some Common Materials and Gases, The Engineering Toolbox, printed from http://www.engineeringtoolbox.com/thermal-conductivity-d—429.html on Dec. 15, 2011, 4 pages. |
ASTM G65-04, Standard Test Method for Measuring Abrasion Using the Dry Sand, Nov. 1, 2004, printed from http://infostore.salglobal.com. |
Tool and Manufacturing Engineers Handbook, Fourth Edition, vol. 1, Machining, Society of Manufacturing Engineers, Chapter 12, vol. 1, 1983, pp. 12-110-12-114. |
Beard, T. “The INS and OUTS of Thread Milling; Emphasis: Hole Making, Interview”, Modern Machine Shop, Gardner Publications, Inc. 1991, vol. 64, No. 1, 5 pages. |
Koelsch, J., “Thread Milling Takes On Tapping”, Manufacturing Engineering, 1995, vol. 115, No. 4, 6 pages. |
Johnson, M. “Tapping”, Traditional Machining Processes, 1997, pp. 255-265. |
“Thread Milling”, Traditional Machining Processes, 1997, pp. 268-269. |
Scientific Cutting Tools, “The Cutting Edge”, 1998, printed on Feb. 1, 2000, 15 pages. |
Helical Carbide Thread Mills, Schmarje Tool Company, 1998, 2 pages. |
Pyrotek, Zyp Zircwash, www.pyrotek.info. Feb. 2003, 1 page. |
Sims et al., “Casting Engineering”, Superalloys II, Aug. 1987, pp. 420-426. |
Sikkenga, “Cobalt and Cobalt Alloy Castings”, vol. 15, ASM Handbook, ASM International, 2008, pp. 1114-1118. |
Starck, H.C., Surface Technology, Powders for PTA-Welding, Lasercladding and other Wear Protective Welding Apptications, Jan. 2011, 4 pages. |
Libenson, 2002, pp. 60-61, (English translation unavailable). |
Number | Date | Country | |
---|---|---|---|
20090041612 A1 | Feb 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11206368 | Aug 2005 | US |
Child | 12179999 | US |