Composite downhole tool with ratchet locking mechanism

Information

  • Patent Grant
  • 8579023
  • Patent Number
    8,579,023
  • Date Filed
    Friday, October 29, 2010
    13 years ago
  • Date Issued
    Tuesday, November 12, 2013
    10 years ago
Abstract
A downhole tool or plug includes a mandrel with an element, a slip ring, and a cone pressable between an upper push sleeve assembly and a lower anvil. The upper push sleeve assembly including a lock ring having one or more interior teeth on an interior of the lock ring. A mandrel sleeve is at least partially received within a recess in the mandrel and affixed with respect to the mandrel, and has one or more exterior teeth on an exterior of the mandrel sleeve.
Description
RELATED APPLICATIONS

This is related to U.S. patent application Ser. Nos. 11/800,448 (U.S. Pat. No. 7,735,549); 12/253,319; 12/253,337; 12/353,655 (which claims priority to 61/089,302); and 12/549,652 (which claims priority to 61/230,345); which are hereby incorporated herein by reference in their entirety.


BACKGROUND

1. Field of the Invention


The present invention relates generally to bridge and fracture plugs used in oil and gas wells.


2. Related Art


Just prior to beginning “production,” oil and gas wells are completed using a complex process involving explosive charges and high pressure fluids. Once drilling is complete, a well is lined with steel pipe backed with cement that bridges the gap between the pipe outer diameter and rock face. The steel/cement barrier is then perforated with explosive shaped charges. High pressure fluids and proppants (spherical sand or synthetic ceramic beads) are then pumped down the well, through the perforations and into the rock formation to prepare the rock for the flow of gas and oil into the casing and up the well. This fracturing process is repeated several times in a given well depending on numerous factors including the depth of the well, casing diameter, reservoir pressure, the number of oil or gas bearing layers, etc.


The number of layers to be perforated and fractured can be as few as one or more than thirty. As they prepare to “frac” (i.e. hydraulic fracturing) at each level, well technicians set a “temporary plug” in the bore of the steel casing pipe (just below where they will perforate) that will then allow them to pump “frac fluids” and sand down through the perforations and into the oil and gas bearing layers of rock. Use of the temporary plug prevents contaminating the already-fractured levels below. This process is repeated several times, as the frac operation moves up the well, until all desired zones have been perforated, fractured and the needed amount of proppant has been pumped into the rock. At each level, the temporary plugs are usually left in place, so that they can all be drilled out at the end of the process, in a single operation.


These “temporary plugs” have traditionally been made from cast iron. These cast iron plugs have a threaded center mandrel and a threaded locking ring set inside of a threaded push sleeve. When the plug is set, a setting sleeve pushes against the top of the push sleeve and compresses the stack of slips, cones and rubber elements. The rubber elements expand outward and inward and create a seal between the elements and mandrel and the elements and the inner diameter of the well casing. The lock ring engages the threads in the mandrel and the threads in the push sleeve to prevent backward (i.e. upward) movement once the force from the setting tool is released. This locking action keeps pressure on the elements which preserves the seal and keeps the slips locked to the inner diameter of the casing. This blocks fluid from getting to the lower layers of rock and creates the seal needed to perform hydraulic fracturing in the layers above the plug.


It has been proposed to make plugs from other materials, such as aluminum alloy, which can use a push sleeve, locking ring and threaded mandrel similar to that described above. It has also been proposed to make plugs from composite materials. Some composite plugs can use a push sleeve to retain a locking ring that bites into the composite mandrel directly to keep the elements compressed and the slips locked in place after the setting force is removed. Other composite plugs have a fixed top stop so that the upper structural stop does not translate axially like a push sleeve, but rather stays fixed in place. Once the slips are locked to the casing inner diameter and the elements are compressed, the mandrel appears to be free to slide up and down in the elements (or stroke) until the top stop or anvil contacts the upper or lower slips. The upward movement can be caused when pressure from the oil or gas below exceeds the pressure applied from above. The downward movement acts in the opposite manner. Some elements or packers have directional properties. For example, some elements or packers have a greater upper seal pressure than lower seal pressure. Allowing the mandrel to stroke can change the relative motion and change the directional properties of the seals.


Examples of such plugs include U.S. Pat. Nos. 3,306,366; 3,517,742; 4,708,202; 5,131,468; 5,224,540; 5,701,595; 6,167,963; 6,220,349; 6,354,372; 6,581,681; and US 2004-0036225 and 2005-0189103.


SUMMARY OF THE INVENTION

It has been recognized that it would be advantageous to develop a downhole tool or plug that can take advantage of the easier drill-out characteristics of a composite mandrel as well as resist stroking of the mandrel when set and/or changing the directional properties of the seal, elements or packers.


The invention provides a downhole tool or plug device disposable in a casing of an oil or gas well. The device has a mandrel with an element disposed thereon that is compressible and radially expandable to seal between the mandrel and the casing. A slip ring is disposed thereon and is radially expandable to engage the casing. A cone is adjacent the slip ring to radially displace the slip ring, and the element. The slip ring and the cone are pressable between an upper push sleeve assembly and a lower anvil on the mandrel. The upper push sleeve assembly includes a lock ring that has one or more interior teeth on an interior of the lock ring with an inclined surface inclined with respect to a longitudinal axis of the mandrel and facing towards the anvil, and a blunt surface essentially perpendicular to the longitudinal axis and facing away from the anvil. A mandrel sleeve is at least partially received within a recess in the mandrel and affixed with respect to the mandrel. The mandrel has one or more exterior teeth on an exterior of the mandrel sleeve with an inclined surface inclined with respect to the longitudinal axis of the mandrel and facing towards the upper push sleeve assembly, and a blunt surface essentially perpendicular to the longitudinal axis and facing towards the anvil. The one or more interior teeth of the lock ring are located longitudinally away from the one or more exterior teeth of the mandrel sleeve when unset, and the blunt surface of the one or more interior teeth of the lock ring engaging the blunt surface of the one or more exterior teeth of the mandrel sleeve when set.


In accordance with another aspect, the invention provides a downhole tool or plug device disposable in a casing of an oil or gas well. The device has a mandrel comprising a composite material and carrying an element that is compressible and radially expandable to seal between the mandrel and the casing, a slip ring that is radially expandable to engage the casing, a cone that is adjacent the slip ring to radially displace the slip ring, an upper push sleeve assembly, and a lower anvil affixed to the mandrel. The element, the slip ring and the cone are pressable between the upper push sleeve and the lower anvil during setting. At least one lock tooth is associated with the upper push sleeve. At least one tooth is on an exterior of the mandrel and is formed of a different material than the mandrel. The at least one lock tooth of the upper push sleeve engages the at least one tooth of the mandrel when set to lock the upper push sleeve with respect to the mandrel.


In accordance with another aspect, the invention provides a downhole tool or plug device disposable in a casing of an oil or gas well. The device includes a mandrel with a composite material. An element is carried by the mandrel and is axially displaceable along the mandrel during setting and is compressible and radially expandable to seal between the mandrel and the casing when set. At least one a slip ring is carried by the mandrel and is radially expandable during setting to engage the casing when set. At least one cone is carried by the mandrel and is adjacent the at least one slip ring and is axially displaceable during setting to radially displace the slip ring. A lower anvil is fixed with respect to the mandrel. An upper push sleeve assembly is carried by the mandrel with the element, the at least one slip ring and the at least one cone located between the upper push sleeve and the lower anvil. The upper push sleeve assembly is axially displaceable during setting to press the element, the at least one slip ring and the at least one cone between the upper push sleeve assembly and the lower anvil on the mandrel. A shallow annular recess is formed in the mandrel between the upper push sleeve assembly and the anvil when unset. A deeper annular groove is formed in the shallow annular recess of the mandrel at an end of the shallow annular recess. A mandrel sleeve is disposed in the shallow annular recess with an annular lip at an end thereof projecting inwardly into the deeper annular groove. A plurality of annular teeth is arrayed axially on the exterior of the mandrel sleeve. The upper push sleeve assembly includes a lock ring with a slot and is radially expandable and contractable. A plurality of annular interior teeth is arrayed axially on an interior of the lock ring. The plurality of interior teeth of the lock ring engage the plurality of external teeth of the mandrel sleeve when set. The upper push sleeve assembly includes a collar circumscribing the lock ring.





BRIEF DESCRIPTION OF THE DRAWINGS

Additional features and advantages of the invention will be apparent from the detailed description which follows, taken in conjunction with the accompanying drawings, which together illustrate, by way of example, features of the invention; and, wherein:



FIG. 1
a is a side view of a composite downhole tool in accordance with an embodiment of the present invention shown in an unset configuration;



FIG. 1
b is a cross-sectional side view of the downhole tool of FIG. 1a taken along line 1b-1b in FIG. 1a;



FIG. 1
c is a side perspective view of the downhole tool of FIG. 1a;



FIG. 1
d is an exploded perspective view of the downhole tool of FIG. 1a;



FIG. 2
a is an exploded perspective view of a push sleeve assembly of the downhole tool of FIG. 1a;



FIG. 2
b is an exploded cross-sectional side view of the push sleeve assembly of FIG. 2a;



FIG. 3
a is a cross-sectional side view of a mandrel sleeve of the downhole tool of FIG. 1a;



FIG. 3
b is a perspective view of the mandrel sleeve of FIG. 3a;



FIG. 3
c is a detailed view of the mandrel sleeve of FIG. 3a taken along line 3c-3c of FIG. 3a;



FIG. 4
a is a schematic view of the downhole tool of FIG. 1a shown in a set configuration within a wellbore;



FIG. 4
b is a detailed schematic view of the downhole tool of FIG. 1a shown in the set configuration in the wellbore with teeth of a lock ring engaging the teeth of a mandrel sleeve;



FIG. 5
a is a perspective view of a mandrel sleeve and a lock ring on a mandrel of the downhole tool of FIG. 1a; and



FIG. 5
b is a cross-sectional side view of a mandrel sleeve and a lock ring on a mandrel of the downhole tool of FIG. 1a.





Reference will now be made to the exemplary embodiments illustrated, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended.


DETAILED DESCRIPTION OF EXAMPLE EMBODIMENT(S)
Definitions

The terms “upper” and “lower” are used herein with respect to the orientation of the plug in an upright, vertical orientation, even though the plug can be used in horizontal orientations or wells, where upper is still towards the upper end of the well and lower is still towards the lower end of the well.


The term “plurality of teeth” is used herein to refer to more than one tooth in an axial direction, and is intended to include screw threads with even a single continuous thread.


The terms “casing”, “pipe” and “well” are used interchangeably herein.


The terms “slips” and “slip rings” are used interchangeably herein.


The terms “spool” and “mandrel” are used interchangeably herein.


The terms “downhole tool” and “plug” and “mandrel assembly” are used interchangeably herein.


Specification


As illustrated in FIGS. 1a-5b, a downhole tool or plug or mandrel assembly, indicated generally at 10, in an example implementation in accordance with the invention is shown for use in a casing 14 (FIG. 4a) or pipe of an oil or gas well. The plug 10 includes a ratcheting locking mechanism that can be used with a composite mandrel or spool to maintain the sealing forces needed to assure an adequate seal between the casing and the elements or packers of the plug. The ratchet mechanism includes one more teeth on a lock ring engaging one or more teeth on a mandrel during setting or in a set configuration, where the one or more teeth on the mandrel are of a different material than the mandrel. Thus, the mandrel teeth can be formed of a material that is stronger than the material of the mandrel itself. The one or more teeth of the mandrel can be provided with a mandrel sleeve having the teeth thereon disposed in an annular recess on the mandrel.


The plug 10 can be configured as one of various different type plugs, such as a bridge plug to restrict flow in either direction (up and down), a fracture (“frac”) plug to restrict flow in one direction (typically down), or a soluble insert plug that begins as a bridge plug, but then transitions to a frac plug after a predetermined time or condition in the well. It will be appreciated that the plug can be configured as other types of plugs as well. Various aspects of such plugs are shown in U.S. patent application Ser. Nos. 11/800,448 (U.S. Pat. No. 7,735,549); 12/253,319; 12/253,337; 12/549,652; 12/353,655 (61/089,302); and 12/549,652 (61/230,345); which are herein incorporated by reference.


The plug 10 includes a center mandrel or mandrel 20 that can be made of, or that can include, a composite material, such as a fiber in a resin matrix. The mandrel 20 holds or carries various other components which allow it to be coupled to a setting tool that is lowered into the casing of the well, and which allow it to engage and seal with the casing. Thus, the mandrel has an outer diameter less than an inner diameter of the casing of the well. The mandrel can have a center bore 24 which can allow for the flow from the reservoir below when the plug is configured as a frac plug. In addition, the mandrel can have a seat 28 disposed in the bore 24. The seat can be formed by an internal annular flange in the bore. The upper portion of the bore, at a top of the plug, and the seat can be configured to receive various different components to determine the type of plug and operating characteristics. For example, a fixed bridge plug can be fixed in the upper portion of the bore and can abut to the seat to seal the bore and form the plug as a bridge plug, as shown in FIG. 4a. As another example, a ball or the like can be movably retained in the upper portion of the bore and movable against and away from the seat, forming a one way check valve, to configure the plug as a frac plug.


One or more packers or elements 32 are disposed on and carried by the mandrel. The elements 32 can include one or more compressible rings. Under longitudinal or axial pressure or force, the elements compress longitudinally and expand radially (outward to the casing of the well and inwardly to the mandrel) to fill a space between the mandrel and the casing of the well, thus forming a seal. In addition, one or more backing rings 36, such as upper and lower backing rings, can be disposed at opposite sides of the elements and carried by the mandrel to resist longitudinal or axial extrusion of the elements under pressure. One or more slips or slip rings 40 (such as upper and lower slips or slip rings) are disposed at opposite sides of the elements and carried by the mandrel. The slips 40 can have teeth on the exterior surface, and can expand or fracture radially to engage and grip the casing of the well. One or more cones 44 (such as upper and lower cones) can be carried by the mandrel and associated with each of the one or more slips adjacent the slips to radially displace and fracture the slip rings as a cone and slip ring are pressed together.


Above and below these components are an upper push sleeve assembly 48 and a lower anvil or mule shoe 52 which are structural features designed to resist the hydrostatic, hydrodynamic and compression loads acting on the plug and the elements and their related hardware. Thus, the setting tool presses down on the push sleeve assembly 48, which in turn presses the components against the anvil 52, causing the elements to expand radially and seal, and causing the slips to fracture, slide outward on the cones, and radially bite into the casing to secure the plug in place. As indicated above, components installed in the upper end of the mandrel determine whether the plug will act as a “frac” or “bridge” plug or some other type of plug. The plug can be field configurable, such as by a tool hand “on site” at the well, as a bridge, frac, and/or soluble insert plug. The plug can be shipped direct to the field as described above, with an assembly of elements to seal the casing; backing rings, cones and slips on the mandrel. These components are crushed, pressed or compressed as a setting sleeve acts upon the push sleeve assembly. The elements are forced out to seal the steel casing's inner diameter and the compression load needed to create and maintain the seal is maintained by the slips which lock to the casing's inner diameter. The compression loads acting on the slips are about 25,000 lbs, and must be maintained for weeks or even months at a time.


As described above, the mandrel 20 can be formed of, or can include, a composite material. The mandrel 20 can have a substantial diameter, except for annular recesses as described below, and except for the anvil 52, which can formed with the mandrel resulting in a larger lower diameter, or affixed thereto such as with pins. Similarly, the cones 44 can be formed of, or can include, a composite material. The slips can be formed of metal, such as cast iron. The cast iron material of the slips assists in securing the plug in the well casing, while the composite material of the mandrel and the cones eases the drill out procedure. The plug or mandrel can have a longitudinal axis 56.


The push sleeve assembly 48 has a lock ring 60 and a pair of push sleeves, including inner and outer push sleeves 64 and 68. The lock ring 60 and inner push sleeve 64 can form a pair of locking rings to assist in maintaining the compression force on the elements and slip rings. The inner push sleeve can be a solid annular ring circumscribing the lock ring. The lock ring 60 can have a longitudinal or axial slot splitting the lock ring, similar to a c-ring. The lock ring 60 can circumscribe essentially the entire mandrel except for the slot in one aspect, or a majority of the mandrel in another aspect. In addition, the lock ring can be flexible and resilient, and can be formed of metal, such as ductile iron. Thus, the lock ring can expand and contract radially. Furthermore, the lock ring can have an inner diameter slightly less than an outer diameter of the mandrel. Thus, the lock ring can form an interference fit along the mandrel, but contract, as described below. The inner push sleeve can circumscribe the lock ring and retain the lock ring on the mandrel.


The lock ring 60 has at least one internal tooth on its interior or inner surface that can engage the mandrel, as described below. In one aspect, the lock ring 60 has a plurality of internal teeth or threads 72 (FIG. 2b). The plurality of internal teeth can be axially arrayed. The interior tooth, teeth or thread can have an inclined surface inclined (such as at 45 degrees) with respect to a longitudinal axis of the mandrel and facing towards the anvil, and a blunt surface essentially perpendicular (such as 0-10 degrees) to the longitudinal axis and facing away from the anvil. Thus, the interior of the lock ring can have a buttress thread. The lock ring and the internal teeth or threads can be substantially annular and can substantially circumscribe the mandrel, or can circumscribe a majority of the mandrel to increase the contact or engagement surface area. Similarly, the outer or exterior surface of the lock ring can also be threaded so match with a mating thread on the interior of the inner push sleeve 64. Thus, the lock ring and inner push sleeve can be threaded together by matching buttress threads. A shoulder 80 can be formed on the lower or outer end of the lock ring. The shoulder 80 can be wider or longer than the thread in the axial direction so that the lock ring can only be inserted into the inner push sleeve in one direction to assist in orienting the internal tooth, teeth or thread of the lock ring in the correct orientation during assembly. The inner push sleeve 64 can be formed of metal, such as aluminum. The inner push sleeve can be threaded into connection with the outer push sleeve 68. The outer push sleeve can be formed of composite material and can completely circumscribe and cover the inner push sleeve and lock ring. During setting the inner push sleeve 64 can abut directly to the slip 40 or upper slip.


The mandrel 20 can have or can carry a mandrel sleeve 90 with at least one exterior tooth on its exterior. In one aspect, the mandrel sleeve has a plurality of exterior teeth or threads 94. The plurality of exterior teeth can be axially arrayed. The external tooth, teeth or threads of the mandrel sleeve can mate or match the internal tooth, teeth or threads of the lock ring. The exterior tooth, teeth or threads can have an inclined surface inclined (such as at 45 degrees) with respect to the longitudinal axis of the mandrel and facing towards the upper push sleeve assembly, and a blunt surface essentially perpendicular (such as 0-10 degrees) to the longitudinal axis and facing towards the anvil. The one or more interior teeth 72 of the lock ring 60 can be located longitudinally or axially away from the one or more exterior teeth 94 of the mandrel sleeve 90 when unset; but with the blunt surface of the one or more interior teeth of the lock ring engaging the blunt surface of the one or more exterior teeth of the mandrel sleeve when set. Thus, as indicated above, the internal teeth of the lock ring can slid down the mandrel with an interference fit during setting, but engage the external teeth of the mandrel sleeve when set, to resist axial movement of the lock ring back up the mandrel and keep the elements and other components compressed on the mandrel. The lock ring locking to the mandrel sleeve, and thus the mandrel, reduces or eliminates stroking or movement of the mandrel inside the elements to maintain seal characteristics particularly with respect to elements or packers with directional properties. It is believed that the lock ring and inner push sleeve, or pair of locking rings, can be annular and can thread together, without mating conical surfaces designed to squeeze or compress the lock ring, while providing sufficient engagement.


The mandrel sleeve 90 and/or tooth, teeth or thread can be disposed in a recess of the mandrel. In one aspect, the recess can include a shallow annular recess 98 and a deeper annular groove 102 at one axial end of the shallow recess, for example at the top as shown. The shallow recess and annular groove can be formed by changes in diameter along the length of the mandrel. The mandrel sleeve can be a cylinder 106 that fits in the shallow annular recess. The mandrel sleeve and the exterior teeth can be substantially annular and can substantially circumscribe the mandrel, or can circumscribe a majority of the mandrel to increase the contact or engagement surface area. The sleeve or cylinder can include an annual lip, thrust ring or shoulder 110 at one end of the cylinder that projects. The annular lip can fit in the deeper annular groove. The mandrel sleeve 90 or tooth, teeth or thread can be formed of a material that is different from the material of the mandrel. For example, the mandrel sleeve can be metal, such as cast iron, while the mandrel can include a composite. The mandrel sleeve can provide a harder material for the lock ring to engage. The recess transfers the force from the lock ring, through the mandrel sleeve to the mandrel. The deeper groove and annular lip, thrust ring or shoulder creates a greater surface area to transfer force to the mandrel, and reduce pressure. Locating the deeper groove and annular lip, thrust ring or shoulder at the top of the annular recess and sleeve, respectively, creates compression forces, rather than tension forces. Alternatively, the deeper groove and annular lip can be disposed at the bottom of the annular recess and sleeve, respectively. The mandrel sleeve 90 can be split axially or longitudinally into at least two partial circular segments to facilitate assembly. In addition, the mandrel sleeve can include interior teeth 114 in the opposite direction from the exterior teeth to further grip and transfer force to the mandrel. The outer diameter or dimension of the sleeve defined by exterior teeth 94 of the mandrel sleeve 90 can be flush or slightly recessed with respect to the outer diameter of the mandrel adjacent to the recess. Thus, the elements can slide along the mandrel without undue influence or damage by the teeth. The mandrel sleeve can be approximately 3 inches long to accommodate different plug configurations for different casing diameters.


The inner and outer push sleeves 64 and 68 can be threaded together with external screw threads on the inner push sleeve and mating interior screw threads on the outer push sleeve. Alternatively, inner push sleeve can have on outer conical surface narrowing away from the slips or slip ring because the force applied by the slips or slip ring to the inner push sleeve is applied by the threads or threaded coupling to the lock ring. The outer push sleeve can have a mating or matching interior conical surface. The outer push sleeve 68 can be formed of a composite, such as fiberglass. The inner push sleeve 64 can be placed immediately adjacent the upper slip ring (or the upper cone) such that the upper slip ring (or the upper cone) bear directly against the base of the inner push sleeve. The inner push sleeve takes the considerable load from the slips into the lock ring and on to the mandrel sleeve and thus the mandrel. Thus, the fiberglass portion of the push sleeve or the outer push sleeve can become (after setting) a cosmetic feature only.


During setting, a setting tool can pull up on the mandrel while holding (or pressing down) on the upper push sleeve assembly. Thus, the element(s), slips, cones, etc. are pressed between the upper push sleeve assembly and the anvil. In addition, the upper push sleeve assembly, and other of the components, displace or translate axially towards the anvil. As described above, the lock ring and interior teeth thereof can slide down the mandrel until the lock ring reaches the mandrel sleeve and exterior teeth thereof. The lock ring can contract about the mandrel sleeve such that the interior teeth engage the exterior teeth. The interior teeth can ratchet down the exterior teeth until the tool or plug is set. The lock ring can expand to allow the interior teeth to pass over exterior teeth with the inclined surfaces of both interior and exterior teeth forcing the lock ring to expand. It will be appreciated that movement of the lock ring in the opposite direction (upward) is resisted by the blunt surfaces of both the interior and exterior teeth abutting one another, and with the lock ring contracted about the mandrel sleeve. Force against the inner push sleeve is transferred to the lock ring, through the interior teeth of the lock ring to the exterior teeth of the mandrel sleeve, and from the mandrel sleeve to the mandrel by the interior teeth of the mandrel sleeve and/or the shoulder. Thus, teeth of the lock ring do not need to directly engage the mandrel, and the lock ring and inner push sleeve do not need to be configured, such as with wedge or conical mating surfaces, to squeeze the interior teeth of the lock ring into direct engagement with the mandrel.


While the forgoing examples are illustrative of the principles of the present invention in one or more particular applications, it will be apparent to those of ordinary skill in the art that numerous modifications in form, usage and details of implementation can be made without the exercise of inventive faculty, and without departing from the principles and concepts of the invention. Accordingly, it is not intended that the invention be limited, except as by the claims set forth below.

Claims
  • 1. A downhole tool device disposable in a casing of an oil or gas well, comprising: a) a mandrel with an element disposed thereon compressible and radially expandable to seal between the mandrel and the casing, and with a slip ring disposed thereon radially expandable to engage the casing, and with a cone adjacent the slip ring to radially displace the slip ring, and the element, the slip ring and the cone being pressable between an upper push sleeve assembly and a lower anvil on the mandrel;b) the upper push sleeve assembly including a lock ring having one or more interior teeth on an interior of the lock ring with an inclined surface inclined with respect to a longitudinal axis of the mandrel and facing towards the anvil, and a blunt surface essentially perpendicular to the longitudinal axis and facing away from the anvil;c) a recess formed in the mandrel and comprising a shallow annular recess in the mandrel and a deeper annular groove at one end of the shallow annular recess;d) a mandrel sleeve at least partially received within the recess in the mandrel and affixed with respect to the mandrel, and having one or more exterior teeth on an exterior of the mandrel sleeve with an inclined surface inclined with respect to the longitudinal axis of the mandrel and facing towards the upper push sleeve assembly, and a blunt surface essentially perpendicular to the longitudinal axis and facing towards the anvil, and having one or more interior teeth on an interior of the mandrel sleeve that grip the mandrel;e) the mandrel sleeve comprising a cylinder disposed in the shallow annular recess of the mandrel and an interior projecting annular lip projecting into the deeper annular groove; andd) the one or more interior teeth of the lock ring being located longitudinally away from the one or more exterior teeth of the mandrel sleeve when unset, and the blunt surface of the one or more interior teeth of the lock ring engaging the blunt surface of the one or more exterior teeth of the mandrel sleeve when set.
  • 2. A device in accordance with claim 1, wherein the mandrel sleeve is longitudinally split into at least two partial segments.
  • 3. A device in accordance with claim 1, wherein the recess in the mandrel comprises: an annular shallow recess and an annular deep groove disposed at an end of the shallow recess; and wherein the mandrel sleeve comprises: a cylinder disposed in the annular shallow recess of the mandrel; andan annular lip at an end of the cylinder projecting inwardly into the annular deep groove of the mandrel; andthe cylinder and annular lip being longitudinally split into at least two partial segments.
  • 4. A device in accordance with claim 1, wherein both the mandrel sleeve and the lock ring circumscribe a majority of the mandrel; and wherein the one or more interior teeth of the lock ring and the one or more exterior teeth of the mandrel sleeve circumscribe a majority of the mandrel.
  • 5. A device in accordance with claim 1, wherein the one or more interior teeth of the lock ring and the one or more exterior teeth of the mandrel sleeve are substantially annular.
  • 6. A device in accordance with claim 1, wherein the mandrel includes a composite material; and wherein the mandrel sleeve and the lock ring are formed of metal.
  • 7. A device in accordance with claim 1, wherein an outer dimension of the mandrel sleeve defined by the one or more teeth is flush or recessed with a diameter of the mandrel adjacent the recess in the mandrel.
  • 8. A device in accordance with claim 1, wherein the lock ring has a slot and can expand to fit the mandrel and can contract to engage the mandrel sleeve; and wherein the push sleeve assembly further includes a solid annular ring circumscribing the lock ring.
  • 9. A downhole tool device disposable in a casing of an oil or gas well, comprising: a) a mandrel comprising a composite material and carrying an element compressible and radially expandable to seal between the mandrel and the casing, a slip ring radially expandable to engage the casing, a cone adjacent the slip ring to radially displace the slip ring, and an upper push sleeve assembly, and having a lower anvil affixed to the mandrel, with the element, the slip ring and the cone being pressable between the upper push sleeve and the lower anvil during setting;b) at least one lock tooth associated with the upper push sleeve;c) at least one tooth on an exterior of the mandrel formed of a different material than the mandrel; andd) the at least one lock tooth of the upper push sleeve engaging the at least one tooth of the mandrel when set to lock the upper push sleeve with respect to the mandrel;e) a recess formed in the mandrel and comprising a shallow annular recess in the mandrel and a deeper annular groove at one end of the shallow annular recess;f) a mandrel sleeve at least partially received within the recess in the mandrel and affixed with respect to the mandrel, the mandrel sleeve having one or more interior teeth on an interior of the mandrel sleeve that grip the mandrel;g) a plurality of exterior teeth axially arrayed on an exterior of the mandrel sleeve;h) a lock ring associated with the upper push sleeve and axially displaceable during setting from a position away from the mandrel sleeve to a position towards the mandrel sleeve when set;i) a plurality of interior teeth on an interior of the lock ring which engage the plurality of exterior teeth of the mandrel sleeve when set;j) the mandrel sleeve comprising a cylinder disposed in the shallow annular recess of the mandrel and an interior projecting annular lip projecting into the deeper annular groove; andk) the cylinder and annular lip being longitudinally split into at least two partial segments.
  • 10. A device in accordance with claim 9, wherein both the mandrel sleeve and the lock ring circumscribe a majority of the mandrel; and wherein the plurality of interior teeth of the lock ring and the plurality of exterior teeth of the mandrel sleeve circumscribe a majority of the mandrel.
  • 11. A device in accordance with claim 9, wherein the plurality of interior teeth of the lock ring and the plurality of exterior teeth of the mandrel sleeve are substantially annular.
  • 12. A device in accordance with claim 9, wherein an outer dimension of the mandrel sleeve defined by the plurality of exterior teeth is flush or recessed with a diameter of the mandrel adjacent the recess in the mandrel.
  • 13. A device in accordance with claim 9, wherein the lock ring has a slot and can expand to fit the mandrel and can contract to engage the mandrel sleeve; and wherein the push sleeve assembly further includes a solid annular ring circumscribing the lock ring.
  • 14. A downhole tool device disposable in a casing of an oil or gas well, comprising: a) a mandrel including a composite material;b) an element carried by the mandrel and axially displaceable along the mandrel during setting and compressible and radially expandable to seal between the mandrel and the casing when set;c) at least one a slip ring carried by the mandrel and radially expandable during setting to engage the casing when set;d) at least one cone carried by the mandrel and adjacent the at least one slip ring and axially displaceable during setting to radially displace the slip ring;e) a lower anvil fixed with respect to the mandrel;f) an upper push sleeve assembly carried by the mandrel with the element, the at least one slip ring and the at least one cone located between the upper push sleeve and the lower anvil, the upper push sleeve assembly being axially displaceable during setting to press the element, the at least one slip ring and the at least one cone between the upper push sleeve assembly and the lower anvil on the mandrel;g) a shallow annular recess formed in the mandrel between the upper push sleeve assembly and the anvil when unset;h) a deeper annular groove formed in the shallow annular recess of the mandrel at an end of the shallow annular recess;i) a mandrel sleeve disposed in the shallow annular recess with an annular lip at an end thereof projecting inwardly into the deeper annular groove, the mandrel sleeve having one or more interior teeth on an interior of the mandrel sleeve that grip the mandrel;j) a plurality of annular teeth arrayed axially on the exterior of the mandrel sleeve;k) the upper push sleeve assembly including a lock ring having a slot and being radially expandable and contractable;l) a plurality of annular interior teeth arrayed axially on an interior of the lock ring, the plurality of interior teeth of the lock ring engage the plurality of external teeth of the mandrel sleeve when set; andm) the upper push sleeve assembly including a collar circumscribing the lock ring.
  • 15. A device in accordance with claim 14, wherein the plurality of interior teeth of the lock ring have an inclined surface inclined with respect to a longitudinal axis of the mandrel and facing towards the anvil, and a blunt surface essentially perpendicular to the longitudinal axis and facing away from the anvil; andthe plurality of exterior teeth of the mandrel sleeve have an inclined surface inclined with respect to the longitudinal axis of the mandrel and facing towards the upper push sleeve assembly, and a blunt surface essentially perpendicular to the longitudinal axis and facing towards the anvil; andthe plurality of interior teeth of the lock ring being located longitudinally away from the plurality of exterior teeth of the mandrel sleeve when unset, and the blunt surface of the plurality of internal teeth of the lock ring engaging the blunt surface of the plurality of external teeth of the mandrel sleeve when set.
US Referenced Citations (210)
Number Name Date Kind
1684266 Fisher et al. Sep 1928 A
2043225 Armentrout et al. Jun 1936 A
2160804 Hall et al. May 1939 A
2205119 Hall et al. Jun 1940 A
2230712 Bendeler et al. Feb 1941 A
2249172 Quintrell Jul 1941 A
2338326 Green Jan 1944 A
2577068 Baker Dec 1951 A
2589506 Morrisett Mar 1952 A
2672199 McKenna Mar 1954 A
2725941 Henshaw Dec 1955 A
2785758 Baker Mar 1957 A
3021902 Keithahn Feb 1962 A
3136365 Carter et al. Jun 1964 A
3148731 Holden Sep 1964 A
3163225 Perkins Dec 1964 A
3211232 Grimmer Oct 1965 A
3298440 Current Jan 1967 A
3306366 Muse Feb 1967 A
3314480 Scott Apr 1967 A
3420304 Kilgore Jan 1969 A
3497003 Berryman et al. Feb 1970 A
3506067 Lebourg Apr 1970 A
3517742 Williams Jun 1970 A
3570595 Berryman Mar 1971 A
3831677 Mullins Aug 1974 A
3976133 Allen Aug 1976 A
4099563 Hutchison et al. Jul 1978 A
4151875 Sullaway May 1979 A
4285398 Zandmer et al. Aug 1981 A
4289200 Fisher, Jr. Sep 1981 A
4312406 McLaurin et al. Jan 1982 A
4359090 Luke Nov 1982 A
4397351 Harris Aug 1983 A
4432418 Mayland Feb 1984 A
4488595 Akkerman Dec 1984 A
4524825 Fore Jun 1985 A
4532989 Barker Aug 1985 A
4542788 Semar Sep 1985 A
4553596 Graham et al. Nov 1985 A
4664188 Zunkel et al. May 1987 A
4665977 Mullins May 1987 A
4708202 Sukup et al. Nov 1987 A
4730835 Wilcox et al. Mar 1988 A
4739829 Brunner Apr 1988 A
4745972 Bell et al. May 1988 A
4784226 Wyatt Nov 1988 A
4813481 Sproul et al. Mar 1989 A
4834184 Streich et al. May 1989 A
4858687 Watson et al. Aug 1989 A
4926938 Lindsey, Jr. May 1990 A
4984636 Bailey et al. Jan 1991 A
5086839 Setterberg, Jr. et al. Feb 1992 A
5095978 Akkerman et al. Mar 1992 A
5131468 Lane et al. Jul 1992 A
5188182 Echols, III et al. Feb 1993 A
5224540 Streich et al. Jul 1993 A
5253709 Kendrick et al. Oct 1993 A
5271468 Streich et al. Dec 1993 A
5333684 Walter et al. Aug 1994 A
5340626 Head Aug 1994 A
5390737 Jacobi et al. Feb 1995 A
5392856 Broussard, Jr. et al. Feb 1995 A
5404956 Bohlen et al. Apr 1995 A
5413172 Laurel May 1995 A
5422183 Sinclair et al. Jun 1995 A
5441111 Whiteford Aug 1995 A
5479986 Gano et al. Jan 1996 A
5540279 Branch et al. Jul 1996 A
5542473 Pringle et al. Aug 1996 A
5553667 Budde et al. Sep 1996 A
5597784 Sinclair et al. Jan 1997 A
5607017 Owens et al. Mar 1997 A
5613560 Jelinski et al. Mar 1997 A
5678635 Dunlap et al. Oct 1997 A
5701959 Hushbeck et al. Dec 1997 A
5749419 Coronado et al. May 1998 A
5765641 Shy et al. Jun 1998 A
5787979 Giroux et al. Aug 1998 A
5813457 Giroux et al. Sep 1998 A
5819846 Bolt, Jr. Oct 1998 A
5837656 Sinclair et al. Nov 1998 A
5839515 Yuan et al. Nov 1998 A
5904207 Rubbo et al. May 1999 A
5924696 Frazier Jul 1999 A
5941309 Appleton Aug 1999 A
5984007 Yuan et al. Nov 1999 A
5990051 Ischy et al. Nov 1999 A
6009944 Gudmestad Jan 2000 A
6026903 Shy et al. Feb 2000 A
6056053 Giroux et al. May 2000 A
6076600 Vick, Jr. et al. Jun 2000 A
6082451 Giroux et al. Jul 2000 A
6131663 Henley et al. Oct 2000 A
6145593 Hennig Nov 2000 A
6167957 Frazier Jan 2001 B1
6167963 McMahan et al. Jan 2001 B1
6189618 Beeman et al. Feb 2001 B1
6220349 Vargus et al. Apr 2001 B1
6220350 Brothers et al. Apr 2001 B1
6244642 Serafin et al. Jun 2001 B1
6279656 Sinclair et al. Aug 2001 B1
6318461 Carisella Nov 2001 B1
6318729 Pitts, Jr. et al. Nov 2001 B1
6354372 Carisella et al. Mar 2002 B1
6394180 Berscheidt et al. May 2002 B1
6412388 Frazier Jul 2002 B1
6431274 Nowlin et al. Aug 2002 B1
6481496 Jackson et al. Nov 2002 B1
6491108 Slup et al. Dec 2002 B1
6491116 Berscheidt et al. Dec 2002 B2
6540033 Sullivan et al. Apr 2003 B1
6578633 Slup et al. Jun 2003 B2
6581681 Zimmerman et al. Jun 2003 B1
6598672 Bell et al. Jul 2003 B2
6598679 Robertson Jul 2003 B2
6599863 Palmer et al. Jul 2003 B1
6651738 Solfronk et al. Nov 2003 B1
6651743 Szarka Nov 2003 B2
6655459 Mackay Dec 2003 B2
6666275 Neal et al. Dec 2003 B2
6695050 Winslow et al. Feb 2004 B2
6695051 Smith et al. Feb 2004 B2
6708768 Slup et al. Mar 2004 B2
6708770 Slup et al. Mar 2004 B2
6712153 Turley et al. Mar 2004 B2
6732822 Slack et al. May 2004 B2
6752209 Mondelli et al. Jun 2004 B2
6769491 Zimmerman et al. Aug 2004 B2
6793022 Vick et al. Sep 2004 B2
6796376 Frazier Sep 2004 B2
6799638 Butterfield, Jr. Oct 2004 B2
6827150 Luke Dec 2004 B2
6976534 Sutton et al. Dec 2005 B2
6986390 Doane et al. Jan 2006 B2
7017672 Owen, Sr. Mar 2006 B2
7036602 Turley et al. May 2006 B2
7044230 Starr et al. May 2006 B2
7049272 Sinclair et al. May 2006 B2
7093664 Todd et al. Aug 2006 B2
7124831 Turley et al. Oct 2006 B2
7163066 Lehr Jan 2007 B2
7168494 Starr et al. Jan 2007 B2
7210533 Starr et a May 2007 B2
7255178 Slup et al. Aug 2007 B2
7258165 Williams Aug 2007 B1
7273099 East, Jr. et al. Sep 2007 B2
7287596 Frazier et al. Oct 2007 B2
7322413 Rogers et al. Jan 2008 B2
7337852 Manke et al. Mar 2008 B2
7350582 McKeachnie et al. Apr 2008 B2
7353879 Todd et al. Apr 2008 B2
7373973 Smith et al. May 2008 B2
7380600 Willberg et al. Jun 2008 B2
7395856 Murray Jul 2008 B2
7452161 Freyer et al. Nov 2008 B2
7455118 Roberts et al. Nov 2008 B2
7461699 Richard et al. Dec 2008 B2
7464764 Xu Dec 2008 B2
7475736 Lehr et al. Jan 2009 B2
7510018 Williamson et al. Mar 2009 B2
7735549 Nish et al. Jun 2010 B1
7743836 Cook et al. Jun 2010 B2
7789135 Turley et al. Sep 2010 B2
7900696 Nish et al. Mar 2011 B1
7980300 Roberts et al. Jul 2011 B2
8403036 Neer et al. Mar 2013 B2
20020070503 Zimmerman et al. Jun 2002 A1
20020162662 Passamaneck et al. Nov 2002 A1
20030155112 Tiernan et al. Aug 2003 A1
20030188862 Streich et al. Oct 2003 A1
20030226660 Winslow et al. Dec 2003 A1
20040003928 Frazier Jan 2004 A1
20040036225 Ritter et al. Feb 2004 A1
20040045723 Slup et al. Mar 2004 A1
20040177952 Turley et al. Sep 2004 A1
20050077053 Walker et al. Apr 2005 A1
20050161224 Starr et al. Jul 2005 A1
20050189103 Roberts et al. Sep 2005 A1
20050205264 Starr et al. Sep 2005 A1
20060124307 Turley et al. Jun 2006 A1
20060131031 McKeachnie et al. Jun 2006 A1
20060278405 Turley et al. Dec 2006 A1
20070039160 Turley et al. Feb 2007 A1
20070074873 McKeachnie et al. Apr 2007 A1
20070102165 Slup et al. May 2007 A1
20070119600 Slup et al. May 2007 A1
20070284097 Swor et al. Dec 2007 A1
20070284114 Swor et al. Dec 2007 A1
20080047717 Frazier et al. Feb 2008 A1
20080060821 Smith et al. Mar 2008 A1
20080073074 Frazier Mar 2008 A1
20080073081 Frazier et al. Mar 2008 A1
20080073086 Cook et al. Mar 2008 A1
20080202764 Clayton et al. Aug 2008 A1
20080257549 Swor et al. Oct 2008 A1
20090000792 Turley et al. Jan 2009 A1
20090038790 Barlow Feb 2009 A1
20090044957 Clayton et al. Feb 2009 A1
20090065194 Frazier Mar 2009 A1
20090065216 Frazier Mar 2009 A1
20090078647 Frazier et al. Mar 2009 A1
20090139720 Frazier Jun 2009 A1
20090159274 Frazier Jun 2009 A1
20090178808 Williamson et al. Jul 2009 A1
20100024703 Zampiello et al. Feb 2010 A1
20100155050 Frazier Jun 2010 A1
20100276159 Mailand et al. Nov 2010 A1
20100282004 Nance et al. Nov 2010 A1
20110079383 Porter et al. Apr 2011 A1
Non-Patent Literature Citations (20)
Entry
U.S. Appl. No. 13/362,185, filed Jan. 31, 2012; Randall W. Nish; office action issued May 2, 2012.
U.S. Appl. No. 12/549,652, filed Aug. 28, 2009; Jason Jon Vogel; office action issued Apr. 18, 2012.
U.S. Appl. No. 12/549,652, filed Aug. 28, 2009; Jason Jon Vogel; notice of allowance issued May 23, 2012.
U.S. Appl. No. 13/362,185, filed Jan. 31, 2012; Randall W. Nish; office action dated Aug. 29, 2012.
U.S. Appl. No. 12/353,655, filed Jan. 14, 2009; Randall Nish; Notice of Allowance issued Nov. 2, 2011.
U.S. Appl. No. 12/549,652, filed Aug. 28, 2009; Jason Vogel; Office Action issued Nov. 9, 2011.
Baker Hughes Baker Oil Tools Remedial Systems Technical Unit QUIK Drill Composite Bridge Plug and Wireline Adapter Kit Product Family Nos. H40129 and H43848, Feb. 28, 2002, pp. 1-12.
Weatherford FracGuard Composite Plugs, 2004, 7 pages.
BJ Python Composite Bridge Plug, Product Information Sep. 20, 2001, 1 page.
Halliburton FAS Drill Squeeze Packers, Drillable Tools, 1999, 6 page.
Weatherford Completion Systems FracGuard Series Composite Frac Plug 2001, Brochure No. 432.00 & 433.00; 2 pages.
BioBalls MR, Soluble Ball Sealers, www.santrol.com, Applicant believes that the Bioballs were offered for sale prior to the filing date of applicant's application.
Nish, et al., U.S. Appl. No. 12/253,319, filed Oct. 17, 1908.
Nish, et al., U.S. Appl. No. 12/253,337, filed Oct. 17, 1908.
Nish, et al., U.S. Appl. No. 12/353,655, filed Jan. 14, 1909.
Vogel, et al. U.S. Appl. No. 12/549,652, filed Aug. 28, 2009.
Composite Plugs, Magnum Oil Tools International; 19 pages.
U.S. Appl. No. 13/176,107, filed Jul. 5, 2011; Randall Nish.
U.S. Appl. No. 12/253,337, filed Oct. 17, 2008; Randall W. Nish; office action dated May 2, 2013.
U.S. Appl. No. 13/176,107; filed Jul. 5, 2011; Nish; office action dated Sep. 11, 2013.