The present invention relates to a composite engineered floor board having an oriented strand board (OSB) stabilizing base.
Engineered wood floors are generally comprised of a thin quality top wood layer which is glued to a substrate layer generally known as a core. The substrate layer is fabricated from an inferior wood product and it has its grain generally oriented transverse to the longitudinal axis of the top wood layer to prevent cupping or crowning and longitudinal distortion in the top wood layer. However, because the core material is fabricated from unstable wood material it is also subject to expansion and retraction and distortion. Such displacement in the core material is generally transmitted to the top surface of the thin top wood layer and produces distortions therein which are visible to the eye, particularly when viewed under light, and this is known as telegraphy. Telegraphy is due to distortion of the core material or the spacing dimensions between slats when the core material is fabricated from a plurality of slats which are disposed in side-by-side relationship. Because the slats are also fabricated from inferior wood material each slat may react differently from the other slats depending on the quality of the wood material of the slats. For example, one slat may be have a knot therein and this causes distortion of the slats as well as displacement thereof making the spaces between the slats irregular. It is therefore desirable to stabilize the wood core material to prevent this distortion.
In order to alleviate the effect of telegraphy in the top wood layer, the top wood layer is maintained fairly thick. It is desirable to have a thin top wood layer to thereby reduce the costs of these engineered floor boards. It is also known to glue the top wood layers directly on plywood material, such as European birch Plywood having a thickness of 15 to 16 mm to provide stability of the top wood layer. However, such core material is expensive and still provides distortion as the plywood sheet has defects depending on the quality of its laminated wood sheets.
Engineered floor boards currently manufactured are comprised of a quality top wood layer which is glued to a substrate which is comprised of slats of inferior wood material which are glued under the top wood layer and which extend transverse to the longitudinal axis of the top wood layer to prevent cupping and crowning of the top wood layer while providing excellent flexibility along the longitudinal axis of the floor board. Theses floor boards are usually secured to a prepared sub floor which may be formed of concrete or plywood material and when secured thereto by nails or glue the sub floor provides stability of the slats. However, there is often a long time laps between the fabrication of the engineered floor boards and their use i.e. their securement to a prepared sub floor. During that time period, the floor boards are shipped under different climatic conditions and also stored under different climatic conditions and the substrate is subjected to expansion and retraction often resulting in distortion of the floor boards and when finally ready to be installed a deformation is already present in the top wood layer. It is therefore desirable to stabilize the core layer during the manufacturing process. It is also desirable to stabilize the core layer with a base material which has the required properties to prevent the distortion as above-mentioned. Further, it is desirable that the base layer be fabricated as thins as possible wherein the engineered floor board can be fabricated as thin as possible and preferably in the range of from 10 mm to 25 mm and permit the reduction in the thickness of the top wood layer which uses a more expensive wood material. It is also desirable that the core and base materials have a strength to support the formation of a tongue and groove profile or a lap joint profile.
To reduce cost in the manufacturing process it is also desirable to glue a single core stabilizing wood base layer under the core layer whereby the top wood layer and base layer can be glued to the core layer simultaneously. This would permit minimum modifications to existing floor board assembly lines. The base layer should also have fiber oriented characteristics to counteract stress in the core layer caused by expansion and retraction.
It is therefore a feature of the present invention to provide an engineered floor board or a wood panel for the construction of same and which substantially overcomes the above-mentioned disadvantages of the prior art and provides the above desired needs.
According to the above feature, from a broad aspect, the present invention provides an engineered floor board comprised of a thin top wood layer having a longitudinal axis. The top wood layer is fabricated from a quality wood piece. The top wood layer is glued to a core layer wood product having a flexion strength axis disposed transversely to the longitudinal axis of the top wood layer. The core layer resists to distortion of the floor board. A base wood layer is glued to a bottom surface of the core layer. The base wood layer is fabricated from oriented strand board (OSB) composed of wood strands generally oriented in at least two layers with a top one of the layers having its strands oriented along the longitudinal axis of the top wood layer to substantially prevent displacement and deformation of the core layer to prevent telegraphy in a top surface of the top wood layer caused by deformation in the core layer.
According to a further broad aspect of the present invention, there is provided a wood panel for the fabrication of engineered floor boards. The panel comprises a top sheet fabricated from a quality wood material. The top sheet is glued to a core wood sheet having a flexion strength and is disposed transversely to a longitudinal axis of the top sheet. The core wood sheet resists to distortion of the wood panel. A base wood sheet is glued to a bottom surface of the core wood sheet. The base wood sheet is fabricated from oriented strand board (OSB) composed of wood strands generally oriented in at least two layers with a top one of the layers having its wood strands oriented along the longitudinal axis of the top sheet to substantially prevent displacement and deformation of the core sheet to prevent telegraphy in a top surface of the top sheet caused by deformation in the core sheet.
The preferred embodiment of the present invention will now be described with reference to the accompanying drawings, in which:
Referring to the drawings and more particularly to
The top wood layer 11 is glued to a core layer 14 which is shown in
As shown in
It is desirable that these engineered wood floor boards be fabricated as thin as possible and preferably have a thickness in the range of between 10 to 25 mm. It is also preferable that the base OSB layer has an internal bond strength of at least 50 to 60 p.s.i. to resist to displacement and deformation of the rectangular wood slats 15 usually caused by expansion and retraction of the wood slats. Also preferable is that the OSB layer is comprised of at least two, herein three wood strand layers, oriented along transverse axis to one another. Because the floor board can be fabricated with a thickness of 10 mm as opposed to 25 mm, it is easier to install with nails or brads, glue or floating with glue in the grooves only.
The OSB base layer 18, which is herein described, is formed of a top layer 19, an intermediate layer 20, and a bottom layer 21 which have layer thicknesses which provide excellent planar stability of the base layer. For example, the thickness ratios of the base layers may comprise ratios of 30% top layer, 40% intermediate layer and 30% bottom layer. Alternatively, the thickness ratios may comprise a top layer of 40%, an intermediate layer of 20% and a bottom layer of 40%. Still further, the thickness ratios may comprise a top layer of 20%, an intermediate layer of 60% and a bottom layer of 20%. All of these ratios provide excellent planar stability of the OSB base layer 18 suitable for the fabrication of the engineered floor board 10 of the present invention. The OSB base layer 18 within the above described parameters provides excellent counter balance to the hard wood top layer 11 and therefore a wood floor board which is very stable transversely and longitudinally and less susceptible to longitudinal distortion (banana effect).
The engineered floor board 10 of the present invention is composed of the combination of the following layer thicknesses. The top layer is preferably in the range of 2 to 6 mm, the core layer in the range of 4 to 12 mm and the base wood layer in the range of 6 to 12 mm. Important to note that this thin base wood layer provides at least two, herein three layers of differently oriented strand fibers and such thin sheet root being realizable in three distinct sheets glued together.
As illustrated in
It is pointed out that the OSB base layer provides two or more layers of differently oriented strand layers in a single board and thereby providing a multi-layer engineered floor board in a single manufacturing lamination step. By applying glue on opposed surfaces of the core layer, the top and bottom layers can be press secured thereto in a single lamination step with pressure applied across the assembly. If the base was formed from two or more sheets of boards this would not be possible in a single step, it would also be more costly. Further, this assembly can be effected along existing engineered board manufacturing assembly lines.
It is within the ambit of the present invention to cover any obvious modifications of the examples described herein provided such modifications fall within the scope of the appended claims.