Living tissue has inherent electrical nature that includes the creation of voltage, current, capacitance and impedance. The external application of electrical energy to any biological tissue may have therapeutic effects if the delivery method is safe and at an appropriate physiological level. In a human body, electrical charges around a cell may open voltage dependent gates, allowing cellular cytoplasm to contact the extracellular environment. The infinite combinations of voltage, current, capacitance and impedance are employed within living tissue as a foundation of life. However, an understanding of the nature of living state electrical energy is elusive since measurement of energy in the nano and pico volts/ampere range has been confined to a relatively small area of physics. Muscles are activated by electrical action potentials contained within an insulated nerve bundle. External stimuli is converted into electrical impulses stored in the brain and sent down the nerve bundles. In a cellular matrix, the extracellular fluid acts as a conductor and functions independently of the muscle action signals. Afferent and efferent nerves send signals back and forth to the brain in a similar manner, through insulated nerves.
The recent development of smart fabrics that can provide an electrical field over the skin for stimulus, to measure impedance, warm the user and/or provide feedback about the users' health represent novel devices specifically aimed at a physiologic function. By way of example, our earlier U.S. Pat. Nos. 9,192,761 and 9,707,172, the contents of which are incorporated herein by reference, describe methods and devices for treating various conditions including hyperhidrosis and other conditions such as neuropathic pain including peripheral artery disease and neuropathy; surgical rehabilitation and surgical convalescence including joint surgery rehabilitation and soft tissue healing; and physical therapy including muscle and tendon healing and stroke rehabilitation, by applying onto a skin surface of a patient in need of said treatment, a device comprising a fabric or substrate containing elemental zinc particles arranged so that the fabric or substrate forms a plurality of half-cells of an air-zinc battery, whereby to produce an ion exchange with the skin of the patient. Zinc or zinc salt against the skin will result in secondary reactions to form zinc complexes beneficial to the host. The ability to deliver topical zinc to the surface of the skin can have beneficial effects provided the topical zinc is in the correct quantity.
Additionally, the therapeutic value of metals and metal salts such as zinc, zinc oxide and zinc salt in cosmetic and medicinal ointments and creams, i.e., for treating a variety of skin conditions is well documented in the art. However, one of the limitations of creams or ointments is that they require a carrier gel or petrolatum, and these carriers create barriers on the skin, potentially trapping microbes beneath the barriers. Confirmatory studies are required to assure that these creams and ointments are effective in preventing colonization of bacterial strains and resultant biofilms forms of the bacteria, significantly increasing the challenge of any antimicrobial to function.
It has been postulated that many of the same benefits of direct application to the skin of creams or ointments containing zinc may be achieved by bringing a fabric having elemental zinc particles printed thereon, in contact with the skin of the patient, i.e., as described in our aforesaid '761 and '172 patents. However, fabric coated with elemental zinc particles as described above formed by printing zinc particles on the surface of the fabric have limited washability and abrasion resistance. Also, in the case of thermoplastics, once we exceed about 30% solids in the melt, the strength of the fiber drops considerably. There are many thermosetting and thermoplastic polymers as well as other “binders” such as printer's ink, silicone, natural collagen or cellulose binders that could be used to suspend the metal powder (or salt thereof) or combination of metals within the fiber, thread or yarn. However, prior to the present invention, no one has successfully produced metal-filled fabrics having good washability and abrasion resistance.
It is therefore an object of the present invention to provide a method for producing metal-filled fabrics, i.e., fabrics having elemental zinc particles or other elemental metal particles, as well as oxides and salts of such metals or combinations of metals with other chemicals carried in or on a fabric, to fabrics so produced, and to methods for treating various conditions using the so produced fabrics.
In one aspect the present invention provides method for producing metal particle filled fibers and to metal particle filled fibers produced thereby.
In another and preferred aspect, the metal particles include zinc particles, zinc oxide particles, or zinc salt particles.
In another and preferred aspect, the metal particles have a particle sized range of 1 micron-200 microns, more preferably 2-100 microns, even more preferably 2-10 microns. The metal particles preferably have an average particle size of less than about 10 microns, more preferably less than about 6 microns, even more preferably less than about 5 microns. The reason for these limitations are purely practical since the fiber spinnarettes will plug up if the particles are too large or if they clump together. In addition, if there is too much filler compared to polymer, the fiber will weaken. We could add the reinforcing carbon fiber nanotubes to increase the polymer tensile strength but doing so takes up space in the polymer that we would prefer to fill with the metal.
In still another aspect, the metal particles preferably comprise about 50 and 50%, by volume, of the fiber, more preferably about 40-60 volume % of the fiber, even more preferably between about 20-30 volume % of the fiber.
In yet another aspect of the invention, the metal particles are dispersed as micro pellets within the fiber material.
In yet another aspect, the metal particle filled fiber material is formed by dispersing metal particles throughout the fiber during fiber formation.
In yet another aspect of the invention, the metal particle containing fiber is formed by mixing the metal particles with a thermosetting setting plastic material such as a polyester resin or a vinyl ester resin and forming the mixture as elongate fibers or threads as it sets. Alternatively, the metal particles can be dusted onto the setting fibers or threads.
In yet another aspect of the invention, the metal particle containing fiber is formed by spinning, drawing or extruding a heated thermoplastic material such as a polyolefin such as polyethylene or polypropylene, a polyamide such as nylon, or an acrylic, containing the metal particles.
The amount of metal available per fiber can be manipulated to increase/decrease concentration and spacing of reservoirs of the metal within the fiber. Metal availability also may be controlled by particle size or particle size distribution. Very fine particles may become coated with binder more than larger particles. However, the binder can be manipulated to expose more of the particle to the contact area. By controlling the particle size, performance of the fiber will differ.
The amount of metal available per thread or yarn also can be manipulated to increase/decrease concentration and spacing of reservoirs of the metal within the thread or yarn. This may be done at the fiber level by adjusting the amount of metal held within the fiber and how the metal is attached to the fiber. We can fill the fiber with a large amount or a small amount of metal, or we can co-extrude metal filled fiber over another fiber so the only part of the fiber loaded with metal is the outer wrap. We also can manipulate the extrusion to create pockets of high and low metal concentrations, or no metal at all.
In the case of a monofilament we can “bump extrude” the filament with metal to produce thicker portions metal filled filament and thinner portions created by the frequency of the “bumps”.
By controlling the amount and particle size of metals in the fiber and how the metal is bound to the fiber, we can adjust slow or fast release of ions. We also can increase or decrease the reservoir capacity within the fiber and subsequently the capacity of the battery created when combined with oxygen.
Further features and advantages of the present invention will be seen from the following detailed description, taken in conjunction with the accompanying drawings, wherein like numerals depict like parts, and wherein:
In the following description, the term “metal particles” may include elemental metal particles of metals capable of forming metal-air electrochemical cells, and oxides and salts thereof. Preferred are zinc metal particles and oxides and salts thereof, although other metals and oxides and salts thereof may be used including aluminum, iron, copper, or magnesium.
The term “fibers” may comprise both natural and synthetic fibers, filaments and threads, although synthetic fibers are preferred, in particular, fibers formed of thermoplastic or thermosetting plastic materials.
As used herein “metal filled fibers” means fibers, having metal particles carried on or within the fibers, and in which the metal particles are at least in part exposed to air.
The present invention provides a method forming metal particle filled fibers suitable for weaving or knitting into cloth for use in treating hyperhidrosis or neuropathy, or other conditions according to our prior '761 and '172 patents, incorporated herein by reference, and other conditions as above discussed. More particularly, the present invention provides a method for producing metal particle containing fibers that are capable of standing up to washing (at least 20 washes) abrasion resistance, and have the ability to release ions when in contact with a patient's skin.
Referring to
Referring to
Referring to
The underbra insert fabric 110, as illustrated in the embodiment of
Preferably, but not necessarily, the fabric 110 comprises a woven textile, a non-woven textile, a fibrous mesh, a non-fibrous mesh, a textile mesh, or the like. In one embodiment, the fabric may comprise a polymeric film or a polymeric coating. In an embodiment, the fabric may be interwoven with elastic fibers, elastic bands, or metallic fibers. In certain embodiments, the fabric is electrically conductive or electrically non-conductive.
In certain embodiments, fabric 110 is permeable to ambient air. In certain embodiments, the plurality of individual metal deposition areas 120 comprise elemental zinc particles.
In one embodiment, the device includes a fastener configured to attach the device or the underbra insert 100 to the skin surface or to the surface of a cloth article. For example, referring again to
In an embodiment, the surface of the fabric 110 including the plurality of metal deposition areas 120 further comprises an adhesive for attachment of the fabric to the skin surface. In an embodiment, the fabric of the device is flexible and/or conformable to the skin surface. In certain embodiments, the fabric of the device is compressive to the skin surface, for example and without limitation, a sock, a glove, a headband, or an elastic bandage or wrap.
In an embodiment, the fabric of the device comprises a cloth article. For example, the fabric includes at least one member selected from the group consisting of a sock, a glove, a scarf, a headband, a cap, a hat, a face mask, a respirator, a t-shirt, a bra, an underarm or underbra insert, pants, sleeves, underwear (undergarment clothing in contact with the skin), or compression clothing such as ankle, arm or knee sleeves, shorts and shirts, or sheets and pillowcases, towels and drapes.
In certain embodiments, zinc is utilized as a powdered elemental crystal. In certain embodiments, the zinc utilized has a purity of about 99.99 percent however, zinc is available in other purities and particle sizes as defined by the user. In certain embodiments, the zinc comprises a −325 mesh size. As those skilled in the art will appreciate, particles passing through a −325 mesh are considered the “fines.”
In certain embodiments, the zinc particles are very uniform in size. In certain embodiments, the zinc particle size distribution is between about 4 microns to about 10 microns in diameter. These individual particle crystals approach the visible range and are easily seen as shiny crystals on the surface.
In certain embodiments, Applicants' socks comprise a woven fabric. In certain embodiments, Applicants' cloth articles are formed of a non-woven fabric. In certain embodiments, Applicants' cloth articles are formed of a braided fabric. In certain embodiments, Applicants' cloth articles comprise a polymeric fabric. In certain embodiments, Applicants' cloth articles are permeable to ambient oxygen.
The present invention is unique in that the zinc pattern grid creates a matrix of individual half-cells (anodes) for ion exchange with the skin. One-half cell of electrochemical reaction is the zinc impregnated fabric (the anode), and the other is the skin of the human or animal, supplying moisture and oxygen (the cathode) completing the circuit for microcurrent production. Alternatively, the oxygen may be supplied, in part, from ambient air.
The chemistry of Zinc-air batteries is instructive. Such batteries are powered by oxidizing zinc with oxygen from the air. During discharge, zinc particles form a porous anode, which is saturated with an electrolyte, namely sweat. Oxygen from the air reacts at the cathode and forms hydroxyl ions which migrate into the zinc paste and form zinc hydroxide Zn(OH)2, releasing electrons to travel to the cathode.
The chemical equations for the zinc-air battery formed using Applicants' zinc-coated socks and ambient oxygen include:
Anode: Zn+4OH−→Zn(OH)42−+2e−(E0=−1.25 V)
Fluid: Zn(OH)42−→ZnO+H2O+2OH−
Cathode: ½O2+H2O+2e−→2OH−(E0=0.34 V)
Overall, the zinc oxygen redox chemistry recited immediately hereinabove comprises an overall standard electrode potential of about 1.59 Volts.
There is a certain amount of gas exchange at the skin surface with a partial pressure of oxygen. The oxygen at the skin surface is a product of ambient oxygen in addition to oxygen diffusion from capillary blood flow. In certain embodiments, the zinc in contact with a patient's skin resulting from wearing, for example, our zinc-containing socks, in combination with sweat and transcutaneous oxygen complete the galvanic circuit described hereinabove.
The chemistry utilized by Applicants' zinc-coated cloth articles socks differs from a more conventional galvanic cell. A galvanic cell, or voltaic cell is an electrochemical cell that derives electrical energy from spontaneous redox reactions taking place within the cell. It generally consists of two different metals connected by a salt bridge, or individual half-cells separated by a porous membrane. In contrast, the chemistry of Applicants' zinc-air battery does not require use of a second metal. Applicants' method to treat hyperhidrosis utilizes elemental zinc particles disposed onto a fabric, where the elemental zinc particles are in contact with the skin. In certain embodiments, other than elemental zinc metal and zinc oxides formed therefrom, no other or additional metals or metal oxides are needed or are utilized in Applicants' method and device.
In certain embodiments, a method for treating hyperhidrosis includes disposing onto a skin surface a device including a fabric having elemental zinc particles disposed thereon. The fabric is configured to contact the skin and to generate an electric current and metal ions when oxidized by ambient oxygen. The generation of such an electric current results in reducing the amount of sweat disposed on the skin surface thereby providing a treatment for hyperhidrosis.
In certain embodiments, Applicants' method for treating hyperhidrosis includes generating an electric current on the skin surface resulting in a reduction of an amount of sweat released by the skin. For example, in a non-limiting embodiment, the method includes contacting a skin surface with elemental zinc particles disposed on at least a portion of the fabric or flexible substrate.
The method described herein may include any of the fabric and metal materials previously described with respect to the exemplary device described herein,
Various changes may be made in the above invention without departing from the spirit and scope. For example, the fibers may be co-extruded to have a center or core of the same or dissimilar polymer with the metal filled polymer on the outside of the fiber. Or, the metal filled polymer may be intermittently dispersed into discrete reservoirs within the fiber during fiber formation. And, we can overcome prior art limitations of fiber manufacturing with the addition of carbon fiber nanotubes (hollow-tubes) that can provide increased tensile strength as well as the antimicrobial nature of the hollow tubes. In addition we can add prior to fiber manufacturing additives such as carbon fiber nanotubes carrying drugs to target specific cells within the host. These fibers, once spun into threads or yarns and manufactured in to a fabric will contact the target tissue closely. Also, the amount of metal particles in the fibers may be adjusted to adjust the capacity or voltage of the air battery in the thread or yarn.
This application is a continuation-in-part of U.S. patent application Ser. No. 15/823,076, filed Nov. 27, 2017, the contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 15823076 | Nov 2017 | US |
Child | 16952938 | US |