Pultrusion is a continuous process for the manufacturing of composite materials with a constant cross-section, and is a commonly used method in the production of composite fibers. A typical pultrusion process flow diagram in which the steps are practiced horizontally is represented by
Some known pultrusion processes include those described in the following U.S. Patents, including U.S. Pat. No. 3,895,896; in which articles are made by folding ribbons of fiber mat while dry, over and around one or more mandrels having an exterior configuration which delineates a hollow cavity, or cavities, extending longitudinally through the article. U.S. Pat. No. 4,194,873, describes a fiber reinforced pultruded rod-like reinforcing element that includes at least one groove and/or protrusion along its length, with the continuous reinforcing fibers in the protrusion or surrounding the groove generally conforming to the pattern of the outer surface of the rod in a helical pattern. U.S. Pat. No. 4,289,465 and divisional patent U.S. Pat. No. 4,296,060, describe processes in which twisted pultruded fiber reinforced rods are formed. In forming the rods, fibers are coated with a resin, drawn through a shaping die and then after at least partially curing, the rod is simultaneously twisted and pulled through a coater by opposed pulling surfaces that rotate as they pull to twist the rod. U.S. Pat. No. 4,938,823 describes a method for the manufacture of fiber reinforced plastic articles including the steps of pultruding a first profile through a die and applying a thermoplastic resin to the first profile to form a second profile bonded integrally to the first profile. U.S. Pat. No. 4,752,513 describes resin reinforcing composite mats of continuous strands for use in pultrusion processes. The pultruded parts are characterized by having a reinforcement of mats and rovings with the reinforcing mats and rovings being distributed throughout the parts. U.S. Pat. No. 6,800,164 describes composite reinforcing rods formed by using a mandrel or plastic tubing core to form a hollow shape of the composite materials to get an externally threaded composite tubing. U.S. Pat. No. 6,893,524 describes a method including wetting fibers with a resin capable of being cured by at least two different cure treatments, and at least partially curing the resin by subjecting the resin to a first curing treatment and at least partially curing the resin by subjecting the resin to a second curing treatment. A plurality of fibers are located adjacent to each other so that a plurality of valleys are formed between the plurality of fibers along an outer side of the reinforcement. The resin is cured to retain the valleys in the outer side of the reinforcement. U.S. Pat. No. 8,123,887 describes a continuous method for making oriented fiber composites for use in thin materials. Each of U.S. Pat. Nos. 3,895,896, 4,194,873, 4,289,465, 4,296,060, 4,938,823, 4,752,513, 6,800,164, 6,893,524, and 8,123,887 discussed above is incorporated herein by reference in its entirety.
None of these references address the problems discovered by the present inventors and addressed in this disclosure. Tensile testing of composite fibers from different manufacturers revealed that breaking loads for fibers, even those within the same batch, may vary by more than a factor of 2 as shown in
A careful study of each stage of the pultrusion process revealed the occurrence of a large number of gas microbubbles arising at the stage of impregnation of the fiber strands with resin. Fiber strands are composed of thousands of filaments coated with sizing film. Sizing film is well known term in the art and can be described as a sprayed film that is applied to filaments as they are formed leaving a die, for example. Sizing typically includes a film forming agent such as a silane and a coupling agent, although many more complex chemistries can be used for certain products. The purpose of the sizing is to protect and lubricate the fibers and to hold the fibers together. Images of filaments taken by a Scanning Electron Microscope show that the sizing film for conventionally produced fibers is not flawless, the filaments' surfaces are uneven and heterogeneous. Molecules of gases are very easily entrained by these surface irregularities and are present within the bundle of strands when added to a resin bath. As the fiber bundles are submerged in the resin the gas molecules remain trapped inside the bundle. None of the further actions that are typical of pultrusion processes such as heating, squeezing, curing, etc. can remove these gas bubbles from the fibers. The viscosity of the resin is so high that the gas bubbles remain in the pultruded member in its finished form. These trapped gas bubbles result in a weakening of the mechanical strength of the pultruded member.
Therefore, there remains a need for systems and methods that allow continuous production of uniform composite fibers without irregularities in the form of trapped gas bubbles or microbubbles.
The present disclosure is related to the field of composite fibers for structural reinforcement of various construction or industrial materials such as concretes, mortars, soil stabilizing polymers, geo-polymers, asphalts etc. Currently composite fibers made of mineral or glass fibers (especially fiberglass and basalt fibers) and thermoset resins have gained more and more popularity in the construction market. These fibers are relatively cheap, have good mechanical properties, are non-corrosive, are lighter than steel, can have longer lifetimes and are easier to cut and to apply. Despite the fact that such composite fibers easily compete with commonly used polypropylene fibers, they still cannot completely substitute for steel fibers due to their weaker structural properties. The problem is that composite fibers, even fibers from the same processing batch, exhibit highly variable mechanical properties that negatively impact the structural characteristics of reinforced concrete or other material containing those fibers. Scanning Electron Microscopic examination of the shape, size, texture and phase distribution of the composite fibers tested by the inventors revealed a large number of unevenly distributed gas microbubbles between the filaments inside a set resin as shown in
The present disclosure can be described, therefore, in certain embodiments as methods of producing composite fibers that are suitable to be cut into short lengths and blended into materials such as concrete, for example, as structural reinforcement. The fibers can be inorganic and/or composed of various materials such as, but not limited to igneous rock such as mixtures of any of feldspars, quartz, feldspathoids, olivines, pyroxenes, amphiboles, and micas, or combinations thereof, and in certain embodiments the fibers can be composed of any of basalt, carbon fibers, aramid, para-aramid or meta-aramid fibers such as used in Kevlar®, Nomex® and related products, or glass fibers, or combinations of any thereof In certain embodiments the fibers are igneous rock melt comprising basalt in which the fibers are produced as described in co-pending U.S. Provisional Application Ser. No. 62/350,832, filed Jun. 16, 2016, which is incorporated herein in its entirety by reference for all purposes.
In certain embodiments the methods include feeding fiber strands vertically down through a texturizer, effective to separate individual filaments of the strand, and to inhibit the fibers sticking together, wherein the texturized fibers are unstrained. The unstrained texturized fibers are then fed vertically down through a resin impregnation device, wherein the device functions as a resin impregnation, degassing and tensioning device. Many resin types may be used in pultrusion including polyester, polyurethane, vinyl-ester and epoxy. Resin provides resistance to the environment, (i.e., corrosion resistance, UV resistance, impact resistance, etc.) and the glass or composite provides strength.
In certain embodiments the resin is injected into the device at a viscosity of 5 mPa*S or less, for example, or about 1, 2, 3, 4, or 5 mPa*S, and the plurality of fibers is rotated effective to twist all the fibers into a single bundle where the twisting point is below the level of resin in the device, allowing at least a portion of any trapped gases to rise to the surface of the resin. The bundle can be rotated in the device effective to achieve a configuration of from about 1 to about 50 plies per inch, or from about 3 to about 35 plies per inch, or from about 5 to about 25 plies per inch, and squeezed with squeezing rollers inside the device effective to further release any trapped gas and allow the released gas to rise to the surface of the resin. In certain embodiments the bundled fibers are pulled from the bottom of the device through tensioning rollers, and pulled into a first curing station to obtain a partially cured bundle. The bundles can then be pulled through shaping grips that pull the bundle from the first curing station, impart a shape to the bundle and push the bundle without tension out of the shaping grips. It is understood that while the shaping grips as described herein serve three functions, alternate embodiments could include two or even three devices that each provide a single function or two of the functions described for the shaping grips. The bundle can then be pushed from the shaping grips through a second curing station without tensioning the bundle.
It is a further embodiment of the disclosure that the bundle is pushed from the second curing station into a cutter and the bundle is cut into fragments of a specified length. A specified length can be any length appropriate for the intended use of the fibers. Appropriate lengths will vary depending on the intended use, but for concrete reinforcement, for example, the bundled fibers can be cut to lengths of from about 1 inch to about 5 inches, or from about 2 inches to about 4 inches, of about 1, about 2, about 3, about 4 or about 5 inches. The use of the term about is meant to convey that the length of cut of the bundled fibers can vary within a range of 10-20%, for example, or 10% in certain embodiments while still achieving the desired structural reinforcement properties.
In certain embodiments the resin is supplied to the impregnation device at a required viscosity by passing the resin through a viscosity stabilizer that is directly connected to a resin metering mixing device and fed into the resin impregnation device. The resin can be any suitable resin known in the art, and can be a thermoset resin or a thermoplastic resin for example. In certain embodiments the resin is a polyester, polyurethane, vinyl-ester or epoxy resin. In certain embodiments the bundle can be pulled into the first curing station and partially cured to achieve a viscosity of about 106 Pa*S. It is a further aspect of the disclosure that the shaping grips imprint or impart a shape to the bundle and that the shape can be a wave pattern and can be an S curve wave pattern, or a square wave pattern. The pattern can also be an angular wave or other patterns that would occur to those in the art.
It is an aspect of the disclosure that the composite fibers produced according to the disclosure preferably include basalt fibers, or are substantially all basalt fibers and exhibit an intrabatch tensile strength with a variation of less than 30%, or 20% or less, or 10% or less, or 5% or less, or no more than 2%, 3% or 4%, and can exhibit an average tensile strength of about 419 ksi, in certain embodiments. It is understood of course, that the exemplary tensile strength is representative of a material that is useful for concrete reinforcement, but tensile strength will depend on many factors, primary of which is the composition of the starting material for the fibers themselves in addition to any of the steps in the pultruding process. The tensile strength can thus be adjusted according to the intended use of the fibers.
In certain embodiments the fragments are cut to a length for use in reinforcing concretes, mortars, soil stabilizing polymers, geo-polymers, or asphalts.
Certain aspects of the disclosure also include composite fibers made by the disclosed process, where those fibers are cut to a specified length for reinforcement in various materials, including but not limited to concrete, mortar, soil stabilizing polymer, geo-polymer, or asphalt and can further include such materials that are reinforced with the disclosed composite fibers.
Process flow diagrams for the practice of embodiments of the disclosure are shown in
At the next stage, shown as level B in
During this process any previously trapped gases naturally surface. All the “Roving Spool-Texturizer” pairs are rotated around an axis Y twisting all the strands into a single bundle. The twisting point is below the resin level inside the device. Rotation can be chosen to provide 5 to 25 plies per inch. This arrangement improves the structural strength of the final product and improves gas removal from the “fiber-resin” bond.
After complete saturation, gas removal and twisting, the bundle is pulled through tension rollers that remove excess resin before the bundle goes to a curing station. These rollers function as a tension buffer between unstrained fiber inside the “resin impregnation-gas removal device” and the pulling device. In certain embodiments rollers downstream of the resin impregnation device can provide some pulling force in addition to the force provided by the shaping grips adapted so the bundle is under less stress. At the level shown as “B” of
The bundle is subsequently pulled through curing station 1. It is understood that the curing stations are described herein primarily as heat curing stations, which are appropriate for thermoset resins such as polyurethanes, for example. It is understood, however, that in certain embodiments thermoset resins can be used and would require cooling curing stations. At the point shown as “D” in
Apparatus
An embodiment of an apparatus for making composite structural reinforcement fibers is presented in
In
Results
Tensile testing of composite fibers made in accordance with the present disclosure showed that a hundred samples from the same batch had an average tensile strength of around 419.18 ksi with a variation of about 5% above and below the average line as shown in
The average residual strength of a concrete slab (standard 4500 psi concrete) reinforced with fibers produced by the disclosed process (mix ratio of 12 pounds of fiber per 1 cubic meter of concrete) is 3,176 psi, which is about 50% better than conventionally produced fibers. The average flexural strength of the same type of slab without fiber reinforcement is 2,740 psi.
All of the apparatus, components and methods disclosed and claimed herein can be made and used without undue experimentation in light of the present disclosure. While the apparatus, components and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the construction or components described herein without departing from the concept, spirit and scope of the invention. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2730455 | Swann | Jan 1956 | A |
3235429 | Boggs | Feb 1966 | A |
3437537 | Takada | Apr 1969 | A |
3895896 | White et al. | Jul 1975 | A |
4194873 | Killmeyer | Mar 1980 | A |
4289465 | Killmeyer et al. | Sep 1981 | A |
4296060 | Killmeyer et al. | Oct 1981 | A |
4565153 | Corley | Jan 1986 | A |
4624102 | Bell, Jr. | Nov 1986 | A |
4720295 | Bronshtein | Jan 1988 | A |
4752513 | Rau et al. | Jun 1988 | A |
4938823 | Balazek et al. | Jul 1990 | A |
5176775 | Montsinger | Jan 1993 | A |
5447793 | Montsinger | Sep 1995 | A |
5468327 | Pawlowicz | Nov 1995 | A |
5725954 | Montsinger | Mar 1998 | A |
5891284 | Woodside | Apr 1999 | A |
6647747 | Brik | Nov 2003 | B1 |
6800164 | Brandstrom | Oct 2004 | B2 |
6893524 | Green | May 2005 | B2 |
7045210 | Bleibler | May 2006 | B2 |
7530240 | Kibol | May 2009 | B2 |
8037719 | Kamiya et al. | Oct 2011 | B2 |
8042362 | Kibol et al. | Oct 2011 | B2 |
8043982 | Telander | Oct 2011 | B2 |
8123887 | Green | Feb 2012 | B2 |
8147635 | Tashiro | Apr 2012 | B2 |
8414807 | Kibol et al. | Apr 2013 | B2 |
8709586 | Yano | Apr 2014 | B2 |
8806900 | Brik | Aug 2014 | B2 |
8910690 | Tashiro et al. | Dec 2014 | B2 |
9211654 | Tashiro | Dec 2015 | B2 |
9688030 | Kiilunen | Jun 2017 | B2 |
20050103058 | Gogoladze et al. | May 2005 | A1 |
20050223752 | Kibol | Oct 2005 | A1 |
20060218972 | Brik | Oct 2006 | A1 |
20060278176 | Chigirnskaya et al. | Dec 2006 | A1 |
20070000721 | Kamiya et al. | Jan 2007 | A1 |
20080179779 | Kibol et al. | Jul 2008 | A1 |
20120104306 | Kamiya et al. | May 2012 | A1 |
20130239503 | Miller | Sep 2013 | A1 |
20140366347 | Miura | Dec 2014 | A1 |
20150204075 | Tsukamoto | Jul 2015 | A1 |
20160089820 | Schinkinger | Mar 2016 | A1 |
20160184777 | Cote | Jun 2016 | A1 |
20170145627 | Sakurai | May 2017 | A1 |
20170342654 | Okamura | Nov 2017 | A1 |
20180311915 | Mukherji | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
202543025 | Nov 2012 | CN |
202808558 | Mar 2013 | CN |
103043897 | Apr 2013 | CN |
202849233 | Apr 2013 | CN |
203033871 | Jul 2013 | CN |
203256109 | Oct 2013 | CN |
203397236 | Jan 2014 | CN |
203429057 | Feb 2014 | CN |
203960029 | Nov 2014 | CN |
104211296 | Dec 2014 | CN |
104291551 | Jan 2015 | CN |
204079775 | Jan 2015 | CN |
204097308 | Jan 2015 | CN |
204097326 | Jan 2015 | CN |
204097327 | Jan 2015 | CN |
88150 | Mar 2014 | UA |
Entry |
---|
U.S. Appl. No. 62/350,832, filed May 22, 2001, Kepplinger et al. |
Lowenstein, “Manufacturing Technology of Continuous Glass Fibers,” Elsevier Science Publishers B.V. 1983 ( chp. 4). |
International Search Report and Written Opinion, PCT/US2017/037718, dated Aug. 23, 2017. |
International Search Report, PCT/US2018/016221, dated Mar. 6, 2018. |
Number | Date | Country | |
---|---|---|---|
20180222132 A1 | Aug 2018 | US |