The present specification generally relates to the field of detection of radioactive materials, specifically to systems and techniques for detecting neutrons and gamma rays and more specifically to a neutron and gamma-ray based detection system and method that is cost-effective, compact, and fabricated from readily available materials.
Physical shipment of materials, including the shipment of mail, merchandise, raw materials, and other goods, is an integral part of any economy. Typically, the materials are shipped in a type of shipping containment or cargo box. Such containments or boxes include semi-trailers, large trucks, and rail cars as well as inter-modal containers that can be carried on container ships or cargo planes. However, such shipping or cargo containers can be used for illegal transportation of contraband such as nuclear and radioactive materials. Detection of these threats require a rapid, safe and accurate inspection system for determining the presence of hidden nuclear materials, especially at state and national borders, along with transit points such as airports and shipping ports.
Currently, both passive and active detection techniques are employed for the detection of concealed nuclear materials. Passive detection techniques are based on the principle that nuclear and radiological threats emit gamma, and in some cases neutron, radiation that can be detected. Although passive detection systems can be easily deployed, they suffer from a number of drawbacks, including high rates of false positives and misdetections caused by unavoidable factors such as depression of the natural background by the vehicle being scanned and its contents, variation in natural background spectrum due to benign cargo such as clay tiles, fertilizers, etc., and the presence of radio therapeutic isotopes in the cargo with gamma lines at or near threat lines. Further, many gamma sources are self-shielded and/or can readily be externally shielded, which makes them difficult to detect, since the radiation is absorbed in the shielding. Also, in general, gamma detectors make poor neutron detectors and good neutron detectors tend to be poor gamma detectors.
Other detection techniques employ uncharged particles, such as neutrons and photons (gamma rays) to irradiate suspicious containers. Uncharged particles have the potential to penetrate relatively large dense objects to identify particular elements of interest; thus, some detection devices utilize the absorption and/or scattering patterns of neutrons or photons as they interact with certain elements present in the object being inspected. Examples of such devices can be found in U.S. Pat. Nos. 5,006,299 and 5,114,662, which utilize thermal neutron analysis (TNA) techniques for scanning luggage for explosives, and in U.S. Pat. No. 5,076,993 which describes a contraband detection system based on pulsed fast neutron analysis (PFNA). All the aforementioned patents are incorporated herein by reference.
Active detection techniques, such as Differential Dieaway Analysis (DDA) and measurements of delayed gamma-ray and neutrons following either neutron- or photon-induced fission, can be used to detect the presence of fissile materials. The radiation is measured with neutron and gamma-ray detectors, preferentially insensitive to each other's radiation. Detection of delayed neutrons is an unequivocal method to detect fissile materials even in the presence of shielding mechanism(s) to hide the nuclear materials and notwithstanding the low background compared to delayed gamma rays. Because the number of delayed neutrons is two orders of magnitude lower than the number of delayed gamma rays, efficient and large area detectors are required for best sensitivity in neutron detection.
Each of the detector systems described above is not without drawbacks. In particular, these devices generally utilize accelerators that produce high energy neutrons with a broad spectrum of energies. The absorption/scattering of neutrons traveling at specific energies is difficult to detect given the large number of neutrons that pass through the object without interaction. Thus, the “fingerprint” generated from the device is extremely small, difficult to analyze, and often leads to significant numbers of false positive or false negative test results.
In addition, known prior art detection systems have limitations in their design and method that prohibit them from achieving low radiation doses, which poses a risk to the personnel involved in inspection as well as to the environment, or prevent the generation of high image quality, which are prerequisites for commercial acceptance.
While the use of both passive and active detection techniques is desirable, what is needed is a neutron and gamma-ray based detection system and method that is cost-effective, compact, and wherein the neutron detector is fabricated from readily available materials.
The most commonly used neutron detector is a He-3 gas proportional chamber. Here, He-3 interacts with a neutron to produce a He-4 ion. This ion is accelerated in the electric field of the detector to the point that it becomes sufficiently energetic to cause ionisation of other gas atoms. If carefully controlled, an avalanche breakdown of the gas can be generated, which results in a measurable current pulse at the output of the detector. By pressurizing the gas, the probability of a passing thermal neutron interacting in the gas can be increased to a reasonable level. However, He-3 is a relative scarce material and it does not occur naturally. This makes the availability and future supply of such detectors somewhat uncertain. Further, a special permit is required to transport pressurized He-3 tubes, which can be cumbersome and potentially problematic.
The most common globally deployed passive radioactive material detectors employ a neutron moderator 105 in an upper portion, having a plurality of He-3 detector tubes 116 embedded therein covered by a lead shield 108 and a lower portion comprising a plastic scintillator and moderator 110 with a PMT (Photo Multiplier Tube) 115 embedded therein, as shown in
Several alternative detectors to replace He-3 detectors have been identified. However, many of these detectors are also sensitive to gamma rays, which is not acceptable in applications where neutrons must be discriminated from gamma rays.
Therefore, what is needed is a neutron and gamma-ray based detection system and method that is cost-effective, compact, and wherein the neutron detector is fabricated from readily available materials. In addition, what is needed is a cost-effective and compact detection system in which neutron and gamma-ray detectors are separate.
The present specification describes, in one embodiment, a thinly-coated 10B flat-panel ionization chamber neutron detector, which can be deployed as a direct drop-in replacement for current Radiation Portal Monitor (RPM)3He detectors.
In one embodiment, the detector of the present specification comprises an argon gas cell sandwiched between boron-coated anode and cathode electrode plates.
In one embodiment, multiple cells are stacked together to increase the intrinsic efficiency of the detector. In one embodiment, the detector is multi-layered and includes greater than 20 layers.
In one embodiment, multiple detector unit cells are “tiled” to achieve areas of us to 1 square meter. In one embodiment, large detector units are folded for ease of transportation.
In one embodiment, parallel plate geometry is employed, which allows for integration of neutron moderating sheets, such as polyethylene, on the back of the electrode plates to thermalize the neutrons and then detect them with high efficiency. Optionally, the moderator can be replaced with plastic scintillator sheets that can be viewed with a large area photomultiplier tube to detect gamma-rays in addition to neutrons, as is the case with existing RPMs.
The present specification further describes a large-area detector that is simple in its construction and manufacture, easily scalable with respect to the unit cell detector, easily adaptable to a variety of applications, and low cost.
In one embodiment, the present specification is directed towards a neutron unit cell detector, comprising: a first and a second layer, comprising a polyethylene, for moderating a fast neutron; a third and a fourth layer comprising B-10, for capturing a moderated fast neutron, wherein the third and fourth layers are positioned between the first and second layers; and a gas cell layer positioned between the third and fourth layers, which, when a neutron is captured, emit charged particles that ionize the gas in the gas cell layer creating free electron and ion pairs.
In one embodiment, the neutron detector comprises a plurality of unit cell detectors, which are stacked, thereby increasing detector efficiency.
In another embodiment, the present specification is directed towards a gamma-neutron unit cell detector, comprising: a first and a second layer comprising gamma sensitive plastic scintillators for moderating a fast neutron and detecting gamma rays; a third and a fourth layer comprising B-10 for capturing a moderated fast neutron, wherein the third and fourth layers are positioned between the first and second layers; and a gas cell layer positioned between the third and fourth layers, which, when a neutron is captured, emit charged particles that ionize the gas in the gas cell layer creating free electron and ion pairs.
In one embodiment, the gamma-neutron detector comprises a plurality of unit cell detectors, which are stacked, thereby increasing detector efficiency.
In one embodiment, the plastic scintillator comprises at least one of an organic solid scintillator, an inorganic solid scintillator, or a liquid scintillator positioned between glass layers.
In another embodiment, the present specification is directed towards a method for manufacturing a scalable, low-cost, large-area boron substrate for use in a detector comprising: employing a thin copper foil sheet as a metallic base; attaching the copper foil to a rigid layer to form a composite base for providing large areal structural strength; etching a tile pattern and individual electrical lines into the composite base by immersing the composite base in a ferric-chloride solution; mounting the composite base onto a drum for vacuum deposition; and depositing boron onto a surface of the copper foil to form the said boron substrate, wherein a mask is used to block the deposition of boron onto the electrical lines. In one embodiment, the thickness of the copper foil ranges from 50 to 100 μm. In one embodiment, the rigid layer comprises Kapton.
In one embodiment, the method of manufacturing the large area boron substrate optionally comprises the step of fabricating a fast neutron detector by laminating the boron substrate onto a sheet of polyethylene.
The aforementioned and other embodiments of the present shall be described in greater depth in the drawings and detailed description provided below.
These and other features and advantages of the present invention will be appreciated, as they become better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
The present specification discloses systems and methods for detecting radiological threats using a composite gamma-neutron detector which can be configured to have a high sensitivity for both gamma and neutron detection, with a sufficient separation of the gamma and neutron signatures. The system of the present invention allows for maximum threat detection with minimum false alarms, and thus increased throughput.
Further, the present specification is directed towards a composite gamma-neutron detection system and method that is cost-effective, compact, and wherein the neutron detector is fabricated from readily available materials.
The present specification is directed towards multiple embodiments. The following disclosure is provided in order to enable a person having ordinary skill in the art to practice the invention. Language used in this specification should not be interpreted as a general disavowal of any one specific embodiment or used to limit the claims beyond the meaning of the terms used therein. The general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the invention. Also, the terminology and phraseology used is for the purpose of describing exemplary embodiments and should not be considered limiting. Thus, the present invention is to be accorded the widest scope encompassing numerous alternatives, modifications and equivalents consistent with the principles and features disclosed. For purpose of clarity, details relating to technical material that is known in the technical fields related to the invention have not been described in detail so as not to unnecessarily obscure the present invention.
Several nuclei have a high cross-section for detection of thermal neutrons. These nuclei include He, Gd, Cd and two particularly high cross-section nuclei: Li-6 and B-10. In each case, after the interaction of a high cross-section nucleus with a thermal neutron, the result is an energetic ion and a secondary energetic charged particle.
For example, the interaction of a neutron with a B-10 nucleus can be characterized by the following equation:
n+B-10→Li-7+He-4 (945 barns, Q=4.79 MeV) Equation 1:
Here, the cross section and the Q value, which is the energy released by the reaction, are shown in parenthesis.
Similarly, the interaction of a neutron with a Li-6 nucleus is characterized by the following equation:
n+Li-6→H-3+He-4 (3840 barn, Q=2.79 MeV) Equation 2:
It is known that charged particles and heavy ions have a short range in condensed matter, generally travelling only a few microns from the point of interaction. Therefore, there is a high rate of energy deposition around the point of interaction. In the present invention, molecules containing nuclei with a high neutron cross section are mixed with molecules that provide a scintillation response when excited by the deposition of energy. Thus, neutron interaction with Li-6 or B-10, for example, results in the emission of a flash of light when intermixed with a scintillation material. If this light is transported via a medium to a photodetector, it is then possible to convert the optical signal to an electronic signal, where that electronic signal is representative of the amount of energy deposited during the neutron interaction.
Further, materials such as Cd, Gd and other materials having a high thermal capture cross section with no emission of heavy particles produce low energy internal conversion electrons, Auger electrons, X-rays, and gamma rays ranging in energy from a few keV to several MeV emitted at substantially the same time. Therefore, a layer of these materials, either when mixed in a scintillator base or when manufactured in a scintillator, such as Gadolinium Oxysulfide (GOS) or Cadmium Tungstate (CWO) will produce light (probably less than heavier particles). GOS typically comes with two activators, resulting in slow (on the order of 1 ms) and fast (on the order of 5 μs) decays. CWO has a relatively fast decay constant. Depending on the overall energy, a significant portion of the energy will be deposited in the layer, while some of the electrons will deposit the energy in the surrounding scintillator. In addition, the copious X-rays and gamma rays produced following thermal capture will interact in the surrounding scintillator. Thus, neutron interactions will result in events with both slow and fast decay constants. In many cases, neutron signals will consist of a signal with both slow and fast components (referred to as “coincidence”) due to electron interlacing in the layer and gamma rays interacting in the surrounding scintillator.
The scintillation response of the material that surrounds the Li-6 or B-10 nuclei can be tuned such that this light can be transported through a second scintillator, such as a plastic scintillator in one embodiment, with a characteristic which is selected to respond to gamma radiation only. In another embodiment, the material that surrounds the Li-6 or B-10 is not a scintillator, but a transparent non-scintillating plastic resulting in a detector that is only sensitive to neutrons.
Thus, the plastic scintillator is both neutron and gamma sensitive. When a neutron is thermalized and subsequently captured by the H in the detector, a 2.22 MeV gamma ray is also emitted and often detected. In this manner, the present invention achieves a composite gamma-neutron detector capable of detecting neutrons as well as gamma radiation with high sensitivity. Further, the composite detector of the present invention also provides an excellent separation of the gamma and neutron signatures. It should be noted herein that in addition to charged particles, B-10 produces gamma rays. Therefore, in using materials that produce gamma rays following neutron capture, the result may be a detection that looks like gamma rays. Most applications, however, want to detect neutrons; thus, the detector of the present invention is advantageous in that it also detects the neutrons.
In one embodiment, gamma detector panels can be fabricated from solid scintillation materials (without a substrate) such as, but not limited to organic scintillators, including solid plastic scintillators (e.g. NE102) and anthracene; inorganic scintillators including NaI(Tl), CsI(Tl), CsI(Na), and BaF2.
In another embodiment, it is possible to position liquid scintillators between glass sheets to act as the gamma detector. These tend to use organic solvents formed with the anthracene molecule as their base with organometallic compounds to enhance scintillation efficiency and therefore are generally less easy to use than solid scintillators.
In one embodiment, the neutron detector may be comprised of binder molecules such as, but not limited to styrenes dissolved in suitable solvents as the base substrate. As the solvent evaporates, a plastic film forms which, once dry, is quite stable and self-supporting. The scintillation material (for example ZnS) and the neutron specific element (i.e. Gd, Li, B, etc.) are intermixed with the solvent and binder prior to solvent evaporation. As the solvent evaporates, an intimate mixture of all three components is formed.
In an alternative embodiment, a Gd, Li or B loaded liquid scintillator (generally based on the anthracene molecule with suitable organometallic compounds to increase scintillation efficiency) can be sealed in the gap between the gamma scintillation panels. Advantageously, a thin glass barrier will be placed between the neutron scintillator and the gamma-detector to prevent chemical interaction between the two scintillator materials.
In one embodiment, a typical panel size ranges from 0.1 m×0.1 m for handheld applications up to 2 m×1 m for large fixed site installations. Above this maximum size, light collection starts to become an issue as does physical handling and packaging. Below the minimum size, detection efficiency will start to drop below useful levels, resulting in increasingly long measurement times.
In one embodiment, the gamma detector is thicker than the neutron detector. The gamma detector thickness will advantageously be no less than 0.01 m (for hand held applications) up to 0.2 m for large fixed site systems. The front gamma detector may be optimized to a different thickness compared to the back gamma detector in order to maximize overall gamma and neutron detection efficiency. For example, a front gamma detector thickness of 0.05 m and a rear gamma detector thickness of 0.1 m would be applicable to a large fixed site system. The neutron detector will generally be thin to minimize gamma interaction probability and to maximize the chance of light escape from the scintillator. A typical neutron detector based on a solid screen scintillator would be in the range of 0.5-1 mm thick while a liquid neutron scintillator may be in the range of 0.01 to 0.05 m thick.
Optical signals from both the gamma detectors 101, 102 and the neutron detector 103 are readout by one or more photodetectors, which in one embodiment are photomultiplier tubes (PMTS) 104. The optical signals are thus converted to electronic signals which are then processed by a pulse processor 105 which assigns interactions separately due to gamma and neutron interactions 106 and 107, respectively.
In one embodiment, the gamma-sensitive 101 and 102 panels are advantageously fabricated from a plastic scintillator with a fast decay time, such as less than 0.1 μs. Further, the Li-6 or B-10 nuclei of the neutron detector 103 are advantageously mixed with a scintillation material having a slower decay time, such as ZnS. In one embodiment, the decay time for the scintillation material is greater than 1 μs. The difference in decay times for scintillators in gamma detectors and in neutron detector contributes to provide a significant separation between the gamma and neutron signatures 106 and 107. In general, it is desirable to select a scintillation material with low atomic number so as to minimise the probability of direct excitation by a passing gamma ray which causes enhanced gamma-neutron rejection.
In another embodiment, the Li-6 or B-10 is mixed with a material with very fast response (˜10 ns) and surrounded by a material with slow response (˜1 μs).
It may be noted that if material used around Li-6 is a very fast scintillator, the detector can measure neutrons at a very high counting rate, in particular when no scintillator is used to surround it.
One of ordinary skill in the art would appreciate that scintillation materials such as ZnS can absorb their own light and therefore there is a limit to the thickness of a scintillation based detector in ZnS. It may be noted that this thickness is typically only a few millimeters. Further, since light is emitted isotropically during each scintillation event, it is efficient to form the scintillator into a wide area screen where light emission can be captured from both sides of the screen simultaneously. Therefore, in one embodiment the scintillator based neutron detector 103 is designed as a screen with a wide area, such that light may be collected with a high efficiency from both sides of the screen.
It may be noted that the detection efficiency of a 1 mm thick Li-6/ZnS screen is of the same order as that of a pressurised He-3 gas proportional tube several cm in diameter. That is, the Li-6/ZnS based neutron detector of the present invention offers equivalent or greater detection efficiency as compared to the pressurised He-3 gas tube detector, at a much reduced size.
Therefore, in one embodiment, a neutron detector is based on mixtures of silver activated zinc sulfide, ZnS(Ag), with the mixtures containing materials with high thermal neutron-capture cross section with emission of heavy particles, such as 6Li or 10B. That is, the mixtures consist of thermal neutron absorbers that produce heavy-particle emission following thermal capture.
The technology described above can also be implemented with simultaneous gamma-ray detection with the same basic electronics. Thus, the detector 200 further comprises a plastic scintillator 205, which serves as a gamma-ray detector and moderator. The plastic scintillator may be made up polyvinyl toluene or PVT, or any other suitable plastic scintillator material known in the art. Light produced by gamma-ray interactions in the scintillator 205 is detected by another PMT 206, which produces a signal from which the gamma-ray events are counted, using the counter 207. In one embodiment, counter 207 is a Multi-Channel Analyzer (MCA) that is used to measure the spectra of the gamma rays.
A reflector foil 208 is placed between the plastic scintillator 205 and the screen(s) 201 to prevent cross-contamination between optical signals from the neutron and gamma detection materials. Thus, the reflector is used to prevent light produced from the gamma rays to be collected with the same PMT as light produced by the neutrons. This prevents appearance of false neutron counts from gamma rays. Due to the reflector 208, some of the light produced by neutron interactions in the screen will be reflected back into the light guide.
The design of
Another exemplary detector 300 for simultaneous neutron and gamma-ray detection is shown in
The signal distribution in
For applications focused on neutron detection, a major advantage of ZnS(Ag) phosphorus is the large light output for heavy particles compared with electrons produced by gamma-ray interactions. Also, due to the small thickness of the screen, the gamma-ray detection efficiency is low. Further, since the time-decay of the PVT light is ˜3 ns, similar to that of the light produced by electrons in the ZnS(Ag) screen, PSD will also reject gamma rays interacting in the PVT.
As known to persons of ordinary skill in the art, neutrons generated by radioactive materials of interest have a range of energies, and that the efficiency of neutron interaction in the detector will generally increase markedly as the energy of the interacting neutron decreases. For this reason, most He-3 detectors are located within a hydrogen rich moderating material, such as polythene, whose function is to promote neutron scattering of high energy neutrons such that they lose substantial amounts of energy in order to increase the probability of detection in the He-3 gas proportional counter. In the present invention, the gamma detector is advantageously designed to provide a dual function of gamma detection and neutron moderation to further improve the detection efficiency for neutrons. A plastic scintillator material is quite an efficient moderator as this feature is incorporated in the overall detector design.
In one embodiment, the gamma-ray rejection is improved by subtracting a calibrated fraction of gamma-ray counts from the measured neutron counts.
In one embodiment, the digital pulse processing is advantageously performed directly at the output of the detector. Since data rates can be quite high, processing at the detector helps filter the data down to a low bandwidth for transmission on to other processing systems. This data can be used to monitor the amount of radioactivity that is detected and to raise suitable alarms and/or display data by a number of means.
In yet another aspect of this invention, it is noted that the neutron reaction may also create an associated gamma-ray emission. For example in the reaction of a neutron with Gd-157, the excited Gd-158 nucleus decays with the emission of a gamma-ray. This gamma-ray is produced within a finite time of the neutron interaction and, therefore, it is possible to include the gamma-ray response that is measured in the surrounding gamma-detector in combination with the neutron scintillator response to produce a combined signal using the principle of pulse shape discrimination and time domain correlation.
While
In another configuration shown in
One of ordinary skill in the art would appreciate that other configurations of scintillator materials and photo-detectors are possible, and any configuration may be selected depending upon its suitability to the application. Therefore, the composite gamma-neutron detector of the present invention described with reference to
It shall be appreciated that the use of light reflective coatings with suitable optical coupling materials will improve overall light collection efficiency and hence the uniformity of response of the detector. It should also be understood that optical light guides and shaping of the scintillator materials may also be used to improve light collection efficiency of the detection system. Further, it should also be understood that the addition of radiation shielding materials such as lead, polythene and cadmium foil around the scintillation materials may be used to reduce the response of the detection system to naturally occurring background radiation.
In a further embodiment of the invention, a neutron scintillator can be used which provides different pulse shapes due to fast and thermal neutron interactions, where each pulse shape is different to that selected for the gamma detector.
In an alternate configuration, the PMT 801 may be d.c. coupled to the input of the ADC 805 using a high bandwidth analogue amplifier. A variety of other circuit configurations will be apparent to one skilled in the art.
The digital data produced by the ADC is advantageously passed directly to a digital processing circuit, such as a field programmable gate array (FPGA) 806. The FPGA provides high speed digital pulse shape processing and is configured to (1) record the time of arrival of a pulse, (2) determine the magnitude of the pulse and (3) determine the fall time of the pulse in order to discriminate between neutron and gamma interactions. This pulse-by-pulse data is histogrammed to a random access memory 807 and can subsequently be analysed by a software program running on a computer 808 to resolve detected count rates relative to a dynamically adjusted baseline. The result may be indicated to an operator through a visual display screen 809, a visual indicator, an audible sounder or any other suitable device in order to signal when a radioactive substance has been detected.
A variety of other methods to provide pulse-shape discrimination will be apparent to those of ordinary skill in the art.
When not actively scanning a vehicle at the scanning site, the gamma-neutron detector in its off state is used to record the natural background radiation and this natural background rate is used to set an appropriate alarm threshold for when additional activity is detected in a passing vehicle during the on state of the scanner.
In another application, the composite gamma-neutron detector 901 is installed in a vehicle 902 that can be driven past stationary targets at a known velocity. As the vehicle 902 drives by, radiation emission data is collected in order to determine the presence of radioactive materials in the stationary object.
In an alternative configuration, one or more gamma-neutron detectors of the present invention are installed with a baggage handling system employed at airports. In this manner, the system of present invention may also be used for detection of radioactive materials in baggage passing through an airport terminal. In another alternative configuration, one or more gamma detectors of the present invention can be installed in air cargo facilities and at the entrance of scrap metal facilities.
In a further embodiment of the present invention, a gamma-neutron detector is combined with a mobile X-ray scanner for generating composite gamma-neutron X-ray images. This is illustrated in
In yet another embodiment, the gamma-neutron detector of the present invention is combined with an X-ray imaging system, in a portal or gantry configuration. Referring to
The novel approach of the present invention combines a neutron scintillation detector with a gamma detector to form a hybrid gamma-neutron detector. This approach provides the advantage of detecting dual signatures, thereby increasing detection efficiency. Further, by using the method of pulse shape discrimination, the system of present invention also provides an excellent separation of the neutron signal from the gamma signal. The system of present invention may be used in various configurations, depending upon the application, including but not limited to, fixed, drive-through portal, gantry, portable and hand-held. The combined detector can be used for sea cargo inspection, and vehicle inspection in land crossings and scrap-metal facilities, in baggage and air cargo scanning, and other applications. The combined neutron-gamma detector of the present invention and/or the neutron detector portion and/or the gamma detector portion is further designed to meet ANSI standards for radiation detection.
Compared to He-3 based systems, which face a problem due to short supply of He-3, the present invention does not limit the use of the system with a particular nucleus. As mentioned previously, any suitable material with high neutron thermal capture cross-section with emission of particles, such as Lithium (Li-6), Boron (B-10), Cadmium (Cd), Gadolinium (Gd), and Helium (3-He) may be used for radioactive material detection with the system of present invention. This feature helps to keep cost and supply under control. Further, the combined gamma-neutron detector of the present invention is more compact and lighter as compared to He-3 based systems, as the detector of present invention only uses, in one embodiment, one set of electronics whereas He-3 based systems multiple sets of electronics are employed. It should be noted herein that in other embodiments, the present invention may be used with a plurality of electronic sets.
Most Radiation Portal Monitors (RPM) deployed around the world employ plastic scintillators to detect gamma rays and moderated 3He detectors to measure neutrons. It is important to note that in typical RPMs, only one or two 3He tubes are used per module with a suboptimal moderating configuration to reduce cost. This results in a neutron detection efficiency of few percent.
The proposed neutron detector can replace 3He detectors in Radiation Portal Monitors (RPMs) as its neutron detection and gamma-ray rejection capabilities are similar to that of 3He. Further, the detectors of present invention do not contain hazardous materials, are commercially available, do not require special transport permits, are very rugged—mechanically as well as environmentally, and are easy to manufacture at a reasonable cost. The detectors are also suitable for handheld and backpack detectors, where efficiencies exceed that of 3He. Finally, the present approach is suitable for integrated neutron and gamma-ray detectors, as it employs a single PMT with relatively simple and compact electronics.
As mentioned above, 10B, like 3He, has a high thermal neutron capture cross-section and emits two detectable high energy charged particles, but unlike 3He, is naturally abundant. On the other hand, the supply of 3He is rapidly dwindling and as a result, 3He gas has become extremely expensive and difficult to obtain. Although boron coated detectors have been available in the past and for example, utilized as reactor neutron flux monitors, they were inefficient, limiting their usage.
The present specification, therefore, describes in one embodiment, a thinly-coated 10B flat-panel ionization chamber neutron detector, which can be deployed as a direct drop-in replacement for current Radiation Portal Monitor (RPM)3He detectors. In various embodiments, the 10B coating has a thickness range of 0.1 to 2.0 micron. In one embodiment, the 10B coating is 1.0 micron thick. A thicker coating means the energy losses are greater from the charge particle traversing through the coating into the gas chamber. This results in a detriment to the signal. However, a thicker coating can increase detection efficiency lowering the number of layers required to reach a certain efficiency.
In one embodiment, the detector of the present specification comprises an argon gas cell sandwiched between boron-coated anode and cathode electrode plates.
In one embodiment, parallel plate geometry is employed, which allows for integration of neutron moderating sheets, such as polyethylene, on the back of the electrode plates to thermalize the neutrons and then detect them with high efficiency. Optionally, the moderator can be replaced with plastic scintillator sheets that can be viewed with a large area photomultiplier tube to detect gamma-rays in addition to neutrons, as is the case with existing RPMs.
The present specification further describes a large-area detector that is simple in its construction and manufacture, easily scalable with respect to the unit cell detector, easily adaptable to a variety of applications, and low cost.
In one embodiment, as mentioned above, the approach in developing a large-area 10B-based 3He replacement detector focuses on utilizing a parallel plate ionization chamber concept, which is illustrated in
As seen in the reaction, a 7Li and alpha particle are emitted in opposite directions. One particle ionizes the gas in the gas cell 1403 creating free electron and ion pairs. The high-voltage bias sweeps the ions creating a signal pulse proportional to the number of electron/ion pairs created. Because the chamber does not rely on multiplication of electrons, which proportional counters utilize to increase signal, lower voltages can be applied. In 94% of the reactions, an alpha particle receives 1.47 MeV, while it receives 1.78 MeV in about 6% of the reactions.
10B has the second highest thermal neutron capture cross-section for a low-Z material. The cross-section is 3837 barns, while 3He has a cross-section of 5333 barns. Because 10B has such a high thermal neutron capture cross-section, 10B-based detectors can achieve 3He equivalent efficiencies. The large-area parallel plate ionization chamber can not only be designed to be a pure thermal neutron detector, it can be designed and optimized to detect fast neutrons as well.
Fast neutron detection is in many cases more relevant to the inspection arena than pure thermal neutron detection efficiencies, as all neutrons, when produced, are “fast” (with energies above 0.1 MeV). Indeed fast fission neutrons are one of the most important signatures of a fission event. In one embodiment, multiple unit cell detectors of
As shown in
As mentioned above, scalability of the detector to cover large areas is achievable through the parallel plate ionization chamber concept.
By adding more boron, or stated differently, by adding more layers of boron, by stacking more than one unit cell detector, the amount of neutron absorbing material within the detector stack is increased. With more boron, there is a greater likelihood of detecting a neutron because as the neutron passes through the detector there is a greater chance that it will interact with at least one layer of boron. Thus, in one embodiment, multiple unit cell detectors are stacked together to increase the intrinsic efficiency of the detector. In one embodiment, the detector is multi-layered and includes greater than 20 layers.
In yet another embodiment,
The large-area 10B thermal neutron detector can also be a good fast neutron detector. In many active interrogation techniques, it is the detection of fast neutrons that indicate hidden special nuclear materials.
The DDAA detector achieves a die-away time of 40 μs with a detection efficiency of around 25%. That means, for the same die-away time as the DDAA detector, each polyethylene layer in the 10B neutron detector must be a thickness of 6 mm, as shown by the curve 1801. Subsequently, the intrinsic detection efficiency of the 10B neutron detector at this point is around 20%, as shown by curve 1802, which is very similar to the DDAA detector.
As shown in
As shown in
Once the traces have been etched, the layer is mounted onto a drum 1921 for vacuum deposition, as shown in
As shown in
Because boron is electrically conductive, a mask 1935 is used to block the deposition of boron onto the etched electrical lines, thus keeping the lines from shorting.
As shown in
As shown in
After each layer has been fabricated, each individual substrate layer, as described with respect to
Thus, the unit cell detector of the present invention comprises at least two boron coated metal layer sandwiching a gas cell. In one embodiment, the detector comprises a plurality of unit cell detectors, which may include a total of more than 20 layers.
For fast neutrons (fission spectrum), most of the neutrons will need to be moderated before the boron capture occurs. It should be noted that the cross section for capture increases as the neutron energy decreases. Once moderated, a neutron is absorbed or captured by the boron, which emits charged particles. Since the particles are emitted in 180 degrees, only one will traverse through the gas cell, creating detectable electrons/ions. If the first polyethylene or scintillator layer does not moderate the fast neutron, the second layer can do it, up to the nth layer, thereby increasing detection efficiency. While it is noted that a neutron can lose all of its energy on the first collision, this is not usually the case, thus necessitating the use of the entire unit cell detector in each layer of the stack, including the additional polyethylene or scintillating sheets. Therefore, as more layers are added to the stack, the probability of detecting more neutrons is increased.
The above examples are merely illustrative of the many applications of the system of present invention. Although only a few embodiments of the present invention have been described herein, it should be understood that the present invention might be embodied in many other specific forms without departing from the spirit or scope of the invention. Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive, and the invention may be modified within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
0810638.7 | Jun 2008 | GB | national |
The present specification is a continuation of U.S. patent application Ser. No. 13/753,458, of the same title, and filed on Jan. 29, 2013, which relies on U.S. Provisional Patent Application No. 61/595,044, filed on Feb. 4, 2012, for priority. In addition, U.S. patent application Ser. No. 13/753,458 is a continuation-in-part of U.S. patent application Ser. No. 12/976,861, entitled “Composite Gama Neutron Detection System” filed on Dec. 22, 2010, and now U.S. Pat. No. 8,389,941, issued on Mar. 5, 2013, which relies on United States Provisional Patent Application No. 61/289,207, of the same title, and filed on Dec. 22, 2009, for priority. In addition, U.S. patent application Ser. No. 13/753,458 is a continuation-in-part of U.S. patent application Ser. No. 12/997,251, entitled “Photomultiplier and Detection Systems”, filed on Dec. 10, 2010, now U.S. Pat. No. 8,389,942, issued on Mar. 5, 2013, for priority, which is a national stage application of PCT/GB2009/001444, filed on Jun. 11, 2009 and which relies on Great Britain Patent Application Number 0810638.7, filed on Jun. 11, 2008, for priority. All of the above-mentioned applications are herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2831123 | Daly | Apr 1958 | A |
2971433 | Akin | Feb 1961 | A |
3676783 | Kinbara | Jul 1972 | A |
3766387 | Heffan | Oct 1973 | A |
3767850 | McMillian et al. | Oct 1973 | A |
3770955 | Tomita | Nov 1973 | A |
3784837 | Holmstrom | Jan 1974 | A |
RE28544 | Stein | Sep 1975 | E |
3904923 | Schwartz | Sep 1975 | A |
4047035 | Dennhoven | Sep 1977 | A |
4139771 | Dennhoven | Feb 1979 | A |
4210811 | Dennhoven | Jul 1980 | A |
4216499 | Kotowski | Aug 1980 | A |
4366382 | Kotowski | Dec 1982 | A |
4430568 | Yoshida | Feb 1984 | A |
4563707 | Kishida | Jan 1986 | A |
4566113 | Doenges | Jan 1986 | A |
4599740 | Cable | Jul 1986 | A |
4626688 | Barnes | Dec 1986 | A |
4641330 | Herwig | Feb 1987 | A |
4709382 | Sones | Nov 1987 | A |
4736401 | Donges | Apr 1988 | A |
4788704 | Donges | Nov 1988 | A |
4817123 | Sones | Mar 1989 | A |
4825454 | Annis | Apr 1989 | A |
4853595 | Alfano | Aug 1989 | A |
4872188 | Lauro | Oct 1989 | A |
4884289 | Glockmann | Nov 1989 | A |
4979202 | Siczek | Dec 1990 | A |
4991189 | Boomgaarden | Feb 1991 | A |
5006299 | Gozani | Apr 1991 | A |
5022062 | Annis | Jun 1991 | A |
5065418 | Bermbach | Nov 1991 | A |
5076993 | Sawa | Dec 1991 | A |
5091924 | Bermbach | Feb 1992 | A |
5098640 | Gozani | Mar 1992 | A |
5114662 | Gozani | May 1992 | A |
5179581 | Annis | Jan 1993 | A |
5181234 | Smith | Jan 1993 | A |
5182764 | Peschmann | Jan 1993 | A |
5221843 | Alvarez | Jun 1993 | A |
5224144 | Annis | Jun 1993 | A |
5237598 | Albert | Aug 1993 | A |
5247561 | Kotowski | Sep 1993 | A |
5253283 | Annis | Oct 1993 | A |
5313511 | Annis | May 1994 | A |
5367552 | Peschmann | Nov 1994 | A |
5379334 | Zimmer | Jan 1995 | A |
5493596 | Annis | Feb 1996 | A |
5548123 | Perez-Mendez | Aug 1996 | A |
5606167 | Miller | Feb 1997 | A |
5608214 | Baron | Mar 1997 | A |
5638420 | Armistead | Jun 1997 | A |
5642393 | Krug | Jun 1997 | A |
5642394 | Rothschild | Jun 1997 | A |
5666393 | Annis | Sep 1997 | A |
5687210 | Maitrejean | Nov 1997 | A |
5692028 | Geus | Nov 1997 | A |
5751837 | Watanabe | May 1998 | A |
5764683 | Swift | Jun 1998 | A |
5768334 | Maitrejean | Jun 1998 | A |
5787145 | Geus | Jul 1998 | A |
5805660 | Perion | Sep 1998 | A |
5838759 | Armistead | Nov 1998 | A |
5903623 | Swift | May 1999 | A |
5910973 | Grodzins | Jun 1999 | A |
5930326 | Rothschild | Jul 1999 | A |
5940468 | Huang | Aug 1999 | A |
5974111 | Krug | Oct 1999 | A |
6011266 | Bell | Jan 2000 | A |
6031890 | Bermbach | Feb 2000 | A |
6058158 | Eiler | May 2000 | A |
6067344 | Grodzins | May 2000 | A |
6081580 | Grodzins | Jun 2000 | A |
6094472 | Smith | Jul 2000 | A |
6151381 | Grodzins | Nov 2000 | A |
6188747 | Geus | Feb 2001 | B1 |
6192101 | Grodzins | Feb 2001 | B1 |
6192104 | Adams | Feb 2001 | B1 |
6195413 | Geus | Feb 2001 | B1 |
6198795 | Naumann | Mar 2001 | B1 |
6218943 | Ellenbogen | Apr 2001 | B1 |
6249567 | Rothschild | Jun 2001 | B1 |
6252929 | Swift | Jun 2001 | B1 |
6256369 | Lai | Jul 2001 | B1 |
6278115 | Annis | Aug 2001 | B1 |
6282260 | Grodzins | Aug 2001 | B1 |
6292533 | Swift | Sep 2001 | B1 |
6301326 | Bjorkholm | Oct 2001 | B2 |
6320933 | Grodzins | Nov 2001 | B1 |
6347132 | Annis | Feb 2002 | B1 |
6356620 | Rothschild | Mar 2002 | B1 |
6373066 | Penn | Apr 2002 | B1 |
6424695 | Grodzins | Jul 2002 | B1 |
6434219 | Rothschild | Aug 2002 | B1 |
6435715 | Betz | Aug 2002 | B1 |
6442233 | Grodzins | Aug 2002 | B1 |
6445765 | Frank | Sep 2002 | B1 |
6448564 | Johnson | Sep 2002 | B1 |
6453003 | Springer | Sep 2002 | B1 |
6453007 | Adams | Sep 2002 | B2 |
6456684 | Mun | Sep 2002 | B1 |
6459761 | Grodzins | Oct 2002 | B1 |
6459764 | Chalmers | Oct 2002 | B1 |
6473487 | Le | Oct 2002 | B1 |
RE37899 | Grodzins | Nov 2002 | E |
6483894 | Hartick | Nov 2002 | B2 |
6507025 | Verbinski | Jan 2003 | B1 |
6532276 | Hartick | Mar 2003 | B1 |
6542574 | Grodzins | Apr 2003 | B2 |
6542578 | Ries | Apr 2003 | B2 |
6542580 | Carver | Apr 2003 | B1 |
6546072 | Chalmers | Apr 2003 | B1 |
6552346 | Verbinski | Apr 2003 | B2 |
6563903 | Kang | May 2003 | B2 |
6580079 | Craig | Jun 2003 | B1 |
6580778 | Meder | Jun 2003 | B2 |
6584170 | Aust | Jun 2003 | B2 |
6597760 | Beneke | Jul 2003 | B2 |
6606516 | Levine | Aug 2003 | B2 |
6636581 | Sorenson | Oct 2003 | B2 |
6653588 | Gillard-Hickman | Nov 2003 | B1 |
6658087 | Chalmers | Dec 2003 | B2 |
6663280 | Doenges | Dec 2003 | B2 |
6665373 | Kotowski | Dec 2003 | B1 |
6665433 | Roder | Dec 2003 | B2 |
6727506 | Mallette | Apr 2004 | B2 |
6763635 | Lowman | Jul 2004 | B1 |
6785357 | Bernardi | Aug 2004 | B2 |
6812426 | Kotowski | Nov 2004 | B1 |
6816571 | Bijjani | Nov 2004 | B2 |
6837422 | Meder | Jan 2005 | B1 |
6839134 | Saito | Jan 2005 | B2 |
6839403 | Kotowski | Jan 2005 | B1 |
6843599 | Le | Jan 2005 | B2 |
6920197 | Kang | Jul 2005 | B2 |
6924487 | Bolozdynya | Aug 2005 | B2 |
6928141 | Carver | Aug 2005 | B2 |
6965314 | Bohnic, Jr. | Nov 2005 | B2 |
7039159 | Muenchau | May 2006 | B2 |
7045788 | Iwatschenko-Borho | May 2006 | B2 |
7099434 | Adams | Aug 2006 | B2 |
7103137 | Seppi | Sep 2006 | B2 |
7116235 | Alioto | Oct 2006 | B2 |
7166844 | Gormley | Jan 2007 | B1 |
7207713 | Lowman | Apr 2007 | B2 |
7238951 | Disdier | Jul 2007 | B2 |
7244947 | Polichar | Jul 2007 | B2 |
7260255 | Polichar | Aug 2007 | B2 |
7322745 | Agrawal | Jan 2008 | B2 |
7335891 | Kniss | Feb 2008 | B2 |
7352843 | Hu | Apr 2008 | B2 |
7372040 | Polichar | May 2008 | B2 |
7420174 | Kurita | Sep 2008 | B2 |
7453987 | Richardson | Nov 2008 | B1 |
7483511 | Bendahan | Jan 2009 | B2 |
7505556 | Chalmers | Mar 2009 | B2 |
7505557 | Modica | Mar 2009 | B2 |
7525101 | Grodzins | Apr 2009 | B2 |
7547888 | Cooke | Jun 2009 | B2 |
7649976 | Georgeson | Jan 2010 | B2 |
7724869 | Wang | May 2010 | B2 |
7738687 | Tortora | Jun 2010 | B2 |
7741612 | Clothier | Jun 2010 | B2 |
7760103 | Frank | Jul 2010 | B2 |
7783003 | Clayton | Aug 2010 | B2 |
7800073 | Clothier | Sep 2010 | B2 |
7809104 | Foland | Oct 2010 | B2 |
7876879 | Morton | Jan 2011 | B2 |
7915596 | Clothier | Mar 2011 | B2 |
7952079 | Neustadter | May 2011 | B2 |
7982191 | Friedman | Jul 2011 | B2 |
8031903 | Paresi | Oct 2011 | B2 |
8173970 | Inbar | May 2012 | B2 |
8263938 | Bjorkholm | Sep 2012 | B2 |
8389941 | Bendahan | Mar 2013 | B2 |
8389942 | Morton | Mar 2013 | B2 |
8502699 | Zerwekh | Aug 2013 | B2 |
8735833 | Morto | May 2014 | B2 |
20040017888 | Seppi | Jan 2004 | A1 |
20040086078 | Adams | May 2004 | A1 |
20040104500 | Brass | Jun 2004 | A1 |
20040125914 | Kang | Jul 2004 | A1 |
20040141584 | Bernardi | Jul 2004 | A1 |
20040178339 | Gentile | Sep 2004 | A1 |
20040258198 | Carver | Dec 2004 | A1 |
20050023479 | Grodzins | Feb 2005 | A1 |
20050117700 | Peschmann | Jun 2005 | A1 |
20050135668 | Polichar | Jun 2005 | A1 |
20050156734 | Zerwekh | Jul 2005 | A1 |
20050157842 | Agrawal | Jul 2005 | A1 |
20050169421 | Muenchau | Aug 2005 | A1 |
20060027751 | Kurita | Feb 2006 | A1 |
20060284094 | Inbar | Dec 2006 | A1 |
20070085010 | Letant | Apr 2007 | A1 |
20070110215 | Hu | May 2007 | A1 |
20070140423 | Foland | Jun 2007 | A1 |
20070172129 | Tortora | Jul 2007 | A1 |
20070189454 | Georgeson | Aug 2007 | A1 |
20070210255 | Bjorkholm | Sep 2007 | A1 |
20070269005 | Chalmers | Nov 2007 | A1 |
20070272874 | Grodzins | Nov 2007 | A1 |
20070280416 | Bendahan | Dec 2007 | A1 |
20070280502 | Paresi | Dec 2007 | A1 |
20070286337 | Wang | Dec 2007 | A1 |
20080044801 | Modica | Feb 2008 | A1 |
20080084963 | Clayton | Apr 2008 | A1 |
20080236496 | Noguchi et al. | Oct 2008 | A1 |
20080304622 | Morton | Dec 2008 | A1 |
20090045348 | Stuenkel | Feb 2009 | A1 |
20090134334 | Nelson | May 2009 | A1 |
20110204243 | Bendahan | Aug 2011 | A1 |
20110266643 | Engelmann | Nov 2011 | A1 |
Number | Date | Country |
---|---|---|
0077018 | Apr 1983 | EP |
0176314 | Apr 1986 | EP |
0287707 | Oct 1988 | EP |
0919186 | Jun 1999 | EP |
1413898 | Apr 2004 | EP |
2255634 | Nov 1992 | GB |
2424065 | Sep 2006 | GB |
2438317 | Nov 2007 | GB |
2009047559 | Mar 2009 | JP |
9855851 | Dec 1998 | WO |
2004010127 | Jan 2004 | WO |
2005098400 | Oct 2005 | WO |
2006036076 | Apr 2006 | WO |
2006045019 | Apr 2006 | WO |
2006078691 | Jul 2006 | WO |
2006095188 | Sep 2006 | WO |
2007035359 | Mar 2007 | WO |
2007051092 | May 2007 | WO |
2007068933 | Jun 2007 | WO |
2008017983 | Feb 2008 | WO |
2009106803 | Sep 2009 | WO |
2009141613 | Nov 2009 | WO |
2009141615 | Nov 2009 | WO |
2009150416 | Dec 2009 | WO |
2011087861 | Jul 2011 | WO |
2013116241 | Aug 2013 | WO |
Entry |
---|
International Search Report PCT/GB2009/000515, Feb. 23, 2010, Rapiscan Security Products, Inc. |
International Search Report for PCT/GB2009/000497, Jan. 22, 2010. |
International Search Report PCT/GB2009/001444, Apr. 6, 2010, Rapiscan Security Products. |
International Search Report for PCT/GB2009/000556, Feb. 19, 2010, Rapiscan Security Products, Inc. |
International Search Report PCT/GB2009/001277, Jul. 20, 2010, Rapiscan Systems, Inc. |
International Search Report for PCT/GB2009/001275, Jul. 24, 2009, Rapiscan Security Products Inc. |
International Search Report for PCT/GB2009/001250, Mar 2, 2010, Rapiscan Security Products Inc. |
Mobile X-Ray Inspection Systems, Internet Citation, Feb. 12, 2007, pp. 1-2, URL:http://web.archive.org/web/20070212000928/http://www.bombdetection.com/cat--details.php?catid=20. |
Molchanov P A et al: ‘Nanosecond gated optical sensors for ocean optic applications’ Sensors Applications Symposium, 2006. Proceedings of the 2006 IEEE Houston, Texas, USA Feb. 7-9, 2006, Piscataway, NJ, USA,IEEE, Feb. 7, 2006 , pp. 147-150, XP010917671 ISBN: 978-0-7803-9580-0. |
International Search Report for PCT/US2010/061908, mailed on Apr. 2, 2012, Rapiscan Systems, Inc. |
International Search Report for PCT/US13/23676, Jun. 28, 2013. |
Number | Date | Country | |
---|---|---|---|
20160091618 A1 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
61595044 | Feb 2012 | US | |
61289207 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13753458 | Jan 2013 | US |
Child | 14597129 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12976861 | Dec 2010 | US |
Child | 13753458 | US | |
Parent | 12997251 | US | |
Child | 12976861 | US |