The present application relates to fiberboard panels and, more particularly, to a fiberboard panel used as building panel such as roofing or wall panel and methods of manufacturing and assembling same.
In the construction industry, multilayer panels are frequently used, as such panels offer multiple functions as a function of the layers that compose them. Such multilayer panels can benefit from their various layers (e.g., elastomeric, asphalt, fiberboard, EPS or XPS, fiberglass, mineral wool etc.) to offer features such as structural support, waterproofness, insulation and fire-resistance.
United States Publication No. 2003/0102184, by Mario Brisson et al., describes an acoustical support panel formed essentially of a support fiberboard layer having a membrane of resilient material thereon. Accordingly, the fiberboard layer provides the structural integrity to the support panel while the membrane of resilient material offers resilience against impact as well as noise insulation. This acoustical support panel is primarily used in flooring applications, for instance to support hardwood flooring panels.
It is an aim of the present invention to provide a novel panel providing additional features.
The panel is a composite product that is made in factory so as to have continuous quality.
Therefore, in accordance with the present application, there is provided a building panel comprising: a fiberboard panel providing the structural integrity of the building panel; and an insulation layer laminated to the fiberboard panel, the insulation layer providing a required thermal value to the building panel.
Further in accordance with the present application, there is provided a building panel such as roofing or wall panel comprising: either a layer of elastomeric material forming a waterproof portion of the roofing panel, a vapor barrier made with a polyethylene or high-density woven fabric, kraft paper, paint, coating, mastic adhesive, concrete, metal, polymers or other materials used as vapor barrier and air barriers made with polypropylene, olefin textile-tied, spinning-textile polyolefin, sheets of polyethylene, polymers or others, used as air barrier. These composite panels are offering the thermal resistance and the watertightness of the roof and walls of a building. A fiberboard panel is secured to the elastomeric material as the air or vapor barriers. The fiberboard panel provides the structural integrity of the roof or wall panels. An insulation layer is secured to the fiberboard panel, the insulation layer increasing a thermal value of the roof or wall panel.
Referring now to the drawings, and more particularly to
In the embodiment of
The functional layer 12 serves as the exposed layer.
In one embodiment, the building panel 10 is used as a wall panel, ceiling panel or roofing panel, used either for exterior sides of walls or roofs, or interior sides of walls or ceilings. In outdoor applications, the functional layer 12 forms an air/water barrier that is oriented toward the exterior of the building with respect to the layers 14 and 16. The use of the functional layer 12 as air barrier gives the panel 10 the characteristic of resisting to the passage of water (e.g., rain) while being relatively permeable to vapor. The air-barrier functional layer 12 generally prevents outdoor air from infiltrating in the building or indoor air from exfiltrating through the envelope made of building panels 10. Contemplated materials amongst others for the air-barrier functional layer 12 include woven alkenes bound by polypropylene or other polymers, spun polyolefin optionally bound by polymers, sheeted polyethylene. The air barrier is optional if the building panel 10 is used for indoor applications.
In indoor applications, the functional layer 12 forms a vapor barrier that is oriented toward the interior of the building with respect to the layers 14 and 16. The use of the functional layer 12 as vapor barrier gives the panel 10 the characteristic of being impermeable to the passage of vapor. Accordingly, the functional layer 12 prevents vapor from reaching the insulation layer 16 from the interior of the building. Contemplated materials amongst others for the vapor-barrier functional layer 12 include woven polyethylene, woven polypropylene or mixtures thereof, kraft paper with polyethylene, some types of paint or polymers, adhesives and sealants, concrete. The vapor barrier is optional if the building panel 10 is used for indoor applications.
In another embodiment, the building panel 10 is used as a roofing panel, whereby the functional layer 12 is made of an elastomeric material which forms the waterproof layer of the building panel 10, preventing water infiltration through the building panel 10 used as part of the roof.
The fiberboard layer 14 provides structural integrity to the building panel 10, also increasing the overall thermal value of the panel. More specifically, the fiberboard layer 14 is made of a fibrous material, such as wood fibers. In an embodiment, the wood fibers are bound into a compression-resistant panel with a bonding agent. Moreover, an additive is optionally used to add a flame and/or smoke retardant property to the fiberboard layer 14. In another embodiment, all six faces of the fiberboard layer 14 are coated with asphalt. As an alternative to wood fibers, it is considered to have layer 14 made of a perlite panel.
The thickness of the fiberboard layer 14 is selected as a function of the contemplated use of the building panel 10 (e.g., flat roof, pitch roof, wall, ceiling, etc.). For instance, a suitable thickness for the fiberboard layer 14 ranges between 0.25″ to 2.0″.
The insulation layer 16 provides the highest thermal value of the three layers of the panel 10 and is therefore primarily added for its insulation properties. The insulation layer 16 is preferably selected from expanded polymers. In an embodiment, the insulation layer, 16 is expanded polystyrene, molded or cut. Other polymeric materials considered for the insulation layer 16 include non-exclusively expanded and extruded polystyrene, polyisocyanurate (modified polyurethane), as well as expanded resins such as expanded polypropylene, expanded polyethylene, Arcel™, and the like, and mineral fibers and glass fibers. It is considered to use fire-retardant or flame-retardant additives in the insulation layer 16.
The thickness and density of the insulation layer 16 are selected as a function of the desired insulating value required from the building panel 10. For instance, a suitable thickness for the insulation layer 16 ranges between 0.25″ to 4.0″.
The multilayer building panel 10 is assembled in plant/factory. The various layers forming the building panel 10 are bound using suitable adhesives in a laminated fashion. As an example, a polyvinyl adhesive (PVA glue), water-based, asphalt-based or pressure-sensitive adhesives, or hot-melt adhesives may all suitably be used to bond the layers 12 (optional), 14 and 16 to one another.
Accordingly, the use of the building panel 10 simplifies the construction of walls, ceiling and roofs (e.g., flat roof, pitch roof), in that a composite panel provides simultaneously the features of waterproofness and insulation with stable features since it is assembled in factory in reproducible conditions.
In order to facilitate the on-site assembly of building panels 10 in side-by-side arrangement to form a roof, a wall or a ceiling, various configurations of the panel 10 are considered. In addition to the flat edges of the panel 10 as illustrated in
Referring to
When an elastomeric or polymeric material is used for the functional layer 12, it may be required to heat the overlapping portion 12A to ensure that a waterproof joint is formed between adjacent panels 10. Alternatively, the overlapping portion 12A can also be self-adhesive. Although the illustration of
Referring to
Referring to
It is considered to provide a strip of protective material to cover the complementary joint portion 14B in the case of the panels 10 of
In roof applications for the building panel 10, once the panels 10 form a roof surface by being positioned side by side, a finishing elastomeric membrane is welded on top of membrane 12 this application is made on job site. All necessary fasteners or adhesives are used to secure the panels 10 to the structure of the building.
When the building panel 10 is used as a wall or ceiling panel, one well-suited dimension is 4″ width by 9″ height, according to standards in the construction industry. Other dimensions are also considered.
It is observed that the building panel 10 as described above has sound attenuating qualities. Accordingly, the panel 10 may be used as a wall panel and/or ceiling panel for sound insulation through walls and floors/ceilings.
This patent application claims priority on U.S. Provisional Applications No. 60/883,671, filed on Jan. 5, 2007, and No. 60/950,126, filed on Jul. 17, 2007.
Number | Date | Country | |
---|---|---|---|
60883671 | Jan 2007 | US | |
60950126 | Jul 2007 | US |