Field of Technology
The present disclosure relates to medical apparatuses and procedures in general, and more particularly to medical apparatuses and procedures for reconstructing a ligament.
Related Art
In many cases, ligaments are torn or ruptured as the result of an accident. Accordingly, various procedures have been developed to repair or replace such damaged ligaments.
For example, in the human knee, the anterior and posterior cruciate ligaments (i.e., the “ACL” and “PCL”) extend between the top end of the tibia and the bottom end of the femur. Often, the anterior cruciate ligament (i.e., the ACL) is ruptured or torn as the result of, for example, a sports-related injury. Consequently, various surgical procedures have been developed for reconstructing the ACL so as to restore substantially normal function to the knee.
In many instances, the ACL may be reconstructed by replacing the ruptured ACL with a graft ligament. More particularly, in such a procedure, bone tunnels are generally formed in both the top of the tibia and the bottom of the femur, with one end of the graft ligament being positioned in the femoral tunnel and the other end of the graft ligament being positioned in the tibial tunnel, and with the intermediate portion of the graft ligament spanning the distance between the bottom of the femur and the top of the tibia. The two ends of the graft ligament are anchored in their respective bone tunnels in various ways well known in the art so that the graft ligament extends between the bottom end of the femur and the top end of the tibia in substantially the same way, and with substantially the same function, as the original ACL. This graft ligament then cooperates with the surrounding anatomical structures so as to restore substantially normal function to the knee.
In some circumstances, the graft ligament may be a ligament or tendon which is harvested from elsewhere within the patient's body, e.g., a patella tendon with or without bone blocks attached, a semitendinosus tendon and/or a gracilis tendon.
As noted above, various approaches are well known in the art for anchoring the two ends of the graft ligament in the femoral and tibial bone tunnels.
In one well-known procedure, which may be applied to femoral fixation, tibial fixation, or both, the end of the graft ligament is placed in the bone tunnel, and then the graft ligament is fixed in place using a headless orthopedic screw, generally known in the art as an “interference” screw. More particularly, with this approach, the end of the graft ligament is placed in the bone tunnel and then the interference screw is advanced into the bone tunnel so that the interference screw extends parallel to the bone tunnel and simultaneously engages both the graft ligament and the side wall of the bone tunnel. In this arrangement, the interference screw essentially drives the graft ligament laterally, into engagement with the opposing side wall of the bone tunnel, whereby to secure the graft ligament to the host bone with a so-called “interference fit”. Thereafter, over time (e.g., several months), the graft ligament and the host bone grow together at their points of contact so as to provide a strong, natural joinder between the ligament and the bone.
Interference screws have proven to be an effective means for securing a graft ligament in a bone tunnel. However, the interference screw itself generally takes up a substantial amount of space within the bone tunnel, which can limit the surface area contact established between the graft ligament and the side wall of the bone tunnel. This in turn limits the region of bone-to-ligament in-growth, and hence can affect the strength of the joinder. By way of example but not limitation, it has been estimated that the typical interference screw obstructs about 50% of the potential bone-to-ligament integration region.
For this reason, substantial efforts have been made to provide interference screws fabricated from absorbable materials, so that the interference screw can eventually disappear over time and bone-to-ligament in-growth can take place about the entire perimeter of the bone tunnel. To this end, various absorbable interference screws have been developed which are made from biocompatibie, bioabsorbable polymers, e.g., polylactic acid (PLA), polyglycolic acid (PGA), etc. These polymers generally provide the substantial mechanical strength needed to advance the interference screw into position, and to thereafter hold the graft ligament in position while bone-to-ligament in-growth occurs, without remaining in position on a permanent basis.
In general, interference screws made from such biocompatible, bioabsorbable polymers have proven clinically successful. However, these absorbable interference screws still suffer from several disadvantages. First, clinical evidence suggests that the quality of the bone-to-ligament in-growth is somewhat different than natural bone-to-ligament in-growth, in the sense that the aforementioned bioabsorbable polymers tend to be replaced by a fibrous mass rather than a well-ordered tissue matrix. Second, clinical evidence suggests that absorption generally takes a substantial period of time, e.g., on the order of three years or so. Thus, during this absorption time, the bone-to-ligament in-growth is still significantly limited by the presence of the interference screw. Third, clinical evidence suggests that, for many patients, absorption is never complete, leaving a substantial foreign mass remaining within the body. This problem is exacerbated somewhat by the fact that absorbable interference screws generally tend to be fairly large in order to provide them with adequate strength, e.g., it is common for an interference screw to have a diameter (i.e., an outer diameter) of 8-12 mm and a length of 20-25 mm.
Thus, there is a need for a new and improved interference fixation system. which (i) has the strength needed to hold the graft ligament in position while bone-to-ligament in-growth occurs, and (ii) promotes superior bone-to-ligament in-growth.
In one aspect, the present disclosure relates to an anchor. The anchor includes a suture bridge having a proximal end and distal end. The distal end of the suture bridge has a thickness greater than a thickness of the proximal end of the suture bridge. At least two ribs extend from the proximal end of the suture bridge to a proximal end of the anchor. At least one open helical coil wraps around the at least two ribs and extends, substantially, from the proximal end of the suture bridge to the proximal end of the anchor. The at least one open helical coil defines an internal volume communicating with a region exterior to the anchor through apertures between turns of the at least one open helical coil. The at least two ribs are engagable with a grooved shaft of a driver.
In yet another aspect, the present disclosure relates to a delivery device and anchor combination. The delivery device of the combination includes a handle and shaft connected to the handle. The shaft includes a distal end having a slot and at least two grooves extending from the slot. The anchor of the combination includes a suture bridge having a proximal end and distal end. The distal end of the suture bridge has a thickness greater than a thickness of the proximal end of the suture bridge. At least two ribs extend from the proximal end of the suture bridge to a proximal end of the anchor. At least one open helical coil wraps around the at least two ribs and extends, substantially, from the proximal end of the suture bridge to the proximal end of the anchor. The at least one open helical coil defines an internal volume communicating with a region exterior to the anchor through apertures between turns of the at least one open helical coil. The anchor is located on the distal end of the delivery device such that the slot houses the proximal portion of the suture bridge and the at least two grooves engage the at least two ribs of the suture bridge.
Further areas of applicability of the present disclosure will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the disclosure, are intended for purposes of illustration only and are not intended to limit the scope of the disclosure.
The accompanying drawings, which are incorporated in and form a part of the specification, illustrate the embodiments of the present disclosure and together with the written description serve to explain the principles, characteristics, and features of the disclosure. In the drawings:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the disclosure, its application, or uses.
The distal end 12b of the shaft 12 is placed within the interior of the screw 20, via the opening 27, until the proximal end 25a of the depth stop 25 engages the depth stop 12e of the shaft 12. During insertion of the shaft 12 into the screw 20, the runners 26 engage the grooves 12d and become housed within the grooves 12d. As shown in
Once the outer member 32 is disposed over the inner member 31, threads 32c engage threads 31e to move the outer member 32 relative to the inner member 31. Moving the outer member 32 relative to the inner member 31 allows for more or less of the distal end 31b of the inner member 31 to be shown. Similar to the distal end 12b of the shaft 12, the distal end 31b of inner member 31 includes hash marks/numbers (not shown) that align with an end 32b′ of the second section 32b, thereby indicating a length of screw 40 that will be disposed on the distal end 31b of the inner member 31. As shown in
A handle assembly, similar to the handle assembly 11, is coupled to the proximal end 31a of the inner member 31. Similar to screw 20, screw 40 includes a proximal end 41 and a distal end 42. The screw 40 includes screw threads 43 in the form of an open helical coil having an interior and a plurality of longitudinally-extending runners 45 extending along the interior of the screw threads 43. Screw 40 is more fully described in United States Patent Application Publication No. 20080154314, the disclosure of which is incorporated herein by reference in its entirety. Once the outer member 32 has been moved to indicate the screw length, the screw 40 is loaded onto the distal end 31b, such that a proximal end 41 of the screw 40 engages the end 32b′ and the runners 45 engage the grooves 31d and become housed within the grooves 31d.
Similar to screw 20 shown in
The second portion 52 of the shaft 50 is placed within the interior of the screw 60, via the opening 67, until the proximal end 65a of the depth stop 65 engages the second depth stop 52c of the shaft 50. During insertion of the shaft 50 into the screw 60, the runners 66 engage the grooves 53 and become housed within the grooves 53. The screws 60 may be of a variety of lengths. For example, a screw 60 may be of such length that its proximal end 61 would engage the first depth stop 51b′.
As described above, during ligament reconstruction surgery, the end of the graft ligament is placed in the bone tunnel and then the interference screw 20,40,60 is advanced into the bone tunnel via the use of shafts 12,30,50 so that the interference screw 20,40,60 extends parallel to the bone tunnel and simultaneously engages both the graft ligament and the side wall of the bone tunnel. The screws 20,40,60 may be used in either the femoral or tibial tunnels. Methods of ligament reconstruction via use of the screws 20,40,60 is further shown in the '314 publication shown above.
The delivery device 200 includes a distal end 201 having a slot 202 and grooves 203 extending from the slot 202 on each side of the device 200. As shown in
For clarity purposes, only the distal end 201 of the device 200 is shown. However, the device 200 would include a proximal end, similar to the devices above, which may be coupled to a handle assembly, similar to handle assembly 11 above. The screws 100,300 are used in the repair of soft tissue, specifically to re-attach tissue to bone. One example of this repair is when the screw 100,300 is delivered into bone via the use of device 200, the device 200 is removed from screw 100,300, the tissue is placed on the hone to be adjacent the screw 100,300, the suture ends 110a,110b are pulled through the tissue, and then the suture ends 110a,110b are tied. A hole may be made in the bone prior to insertion of the screw 100,300 into the bone. However, screw 300 may be inserted into bone without first making a hole in the bone. In this case, the pointed tip 311 is used to start insertion of the screw 300 into the bone and then rotary motion may be used to complete insertion of the screw 300 into the bone. Other methods of tissue repair via use of these screws and delivery device may also be used.
The handle 11a of handle assembly 11 is made from plastic, however, other non-metal and metal materials may also be used. The shape and size of handle 11a, may be any shape and size necessary to help facilitate insertion of the screw 20 into bone. The coupler 11b is made from a metal material, such as stainless steel or titanium, but may be made from other metal and non-metal materials that are strong enough to withstand the forces applied during surgery. The coupler 11b is press-fit to the handle 11a, but may be coupled to the handle 11a in any other manner known to those of skill in the art. The size and shape of the coupler 11b may be any size and shape necessary to help facilitate insertion of the screw 20 into bone. The channel 11b′ may be any length necessary and the opening 11b″ may be any shape necessary to facilitate coupling of the shaft 12 to the coupler 11b.
The shaft 12 is made from a metal material, such as stainless steel and titanium, however, other metal and non-metal materials that would withstand the forces applied during surgery may be used. The diameter of the shaft 12 may vary. The proximal end 12a of the shaft 12 may be any shape necessary to facilitate insertion of the end 12a through opening 11b″ and into channel 11b′. The number of threads 12c and grooves 12d may vary and the lengths of the grooves 12d may also vary. The location of depth stop 12e may also vary based on the diameter of the shaft 12 and the diameter of the screw 20 that is used. The grooves 12d, depth stop 12e, and threads 12c may be formed by any method known to one of skill in the art.
The screw 20 is made from a polymer material via a molding method. However, other material, which would allow the screw 20 to withstand forces applied during surgery, and other methods of making may be used. The depth stop 25 is open ended and doesn't extend the entire inner diameter of the screw 20. The amount of screw inner diameter that the depth stop 25 covers may vary and the length of the depth stop 25 may vary based on the diameter of the screw. The number and length of the runners 25 may also vary. Once the screw 20 is located on the shaft 12, the distal end 12b of the shall 12 extends from the distal end 22 of the screw 20. During insertion of the screw 20 into bone, the threads 12c create threads in the bone, thereby creating a seat for the screw threads 23, as described more fully in the '314 publication. The amount of the distal end 12b of the shaft 12 that extends from the distal end 22 of the screw 20 may vary.
The diameters of the first and second sections 32a,32b of outer member 32 may vary and the number of threads 32c may also vary. The number of threads 31c,31e and grooves 31d may vary and the lengths of the grooves 31d may also vary, The inner and outer members 31,32 are made from a metal material, such as stainless steel and titanium, and via a method known to one of skill in the art. However, other materials may also be used. The screw 40 is made from a polymer material via a molding method. However, other material and methods of making may be used. The number and length of the runners 45 may also vary. Once the screw 40 is located on the shaft 30, the distal end alb of the shaft 30 extends from the distal end 42 of the screw 40. During insertion of the screw 40 into bone, the threads 31c create threads in the bone, thereby creating a seat for the screw threads 43, as described more fully in the '314 publication. The amount of the distal end 31b of the shaft 30 extending from the screw 40 may vary.
The shaft 50 is made from a metal material, such as stainless steel or titanium, but may be made from another metal material or a non-metal material that is strong enough to withstand. the force applied to the shaft 50 during surgery. The shaft 50 may be made via a method known to one of skill in the art. The diameters of the first and second portions 51,52 may vary along with the number and lengths of the grooves 53 and the locations of the depth stops 52c,51b′ may vary based on the diameter of the screw 60 or other factors. Rather than being tapered, the end 52b′ may be designed in another manner to allow easier insertion of the screw 60 into bone. The screw 60 is made from a polymer material via a molding method. However, other material, which would allow the screw to withstand the forces applied during surgery, and other methods of making may be used. The number and length of the runners 66 may also vary. Once the screw 60 is located on the shaft 50, the second portion 52 of the shaft 50 extends from the distal end 62 of the screw 60. The amount of the second portion 52 extending from the screw 60 may vary. Additionally, the length of the depth stop 65 may also vary based on the diameter of the screw 60 or other factors.
The delivery device 200 is made from a metal material, such as stainless steel or titanium, but may he made from a non-metal material that is strong enough to withstand the forces applied to the device 200 during surgery. The delivery device 200 is made via a method known to one of skill in the art. The screws 100,300 are made from a polymer material and via a molding process, however, other material, which would allow the screw to withstand the forces applied during surgery, and other processes known to one of skill in the art may he used. The suture bridge 105 may have a distal end 105b having a shape other than concave and the length of the suture bridge 105, the slot 202, and the grooves 203 may vary. The size and the shape of the hole 312 may vary.
For example,
The distal end 402 also includes a suture bridge 405 that extends a partial length of the screw 400. The suture bridge 405 includes a proximal end 405a and a distal end 405b.
The distal end 405b of the suture bridge 405 has a thickness greater than a thickness of the proximal end 405a of the suture bridge 405. In one example, the distal end 405b includes a convex shape. A convenient example of the screw 400 has a suture bridge with a bulbous profile. A flexible member 410, such as a suture, is housed within the screw 400, such that the suture 110 extends around the distal end 405b of the bridge 405.
A majority of the screw 400 includes screw threads 403 in the form of an open helical coil, i.e. a connected series of continuous regularly spaced turns extending in a helical or spiral form substantially from the proximal end 405a of the suture bridge 405 to the proximal end 401 of the screw 400 with apertures 404 being defined by the space between the turns of the coil. In other words, the screw 400 may include an open helical coil defining an internal volume, with the internal volume communicating with the region exterior to the open helical coil through the spacing between the turns of the open helical coil.
In one example of the screw 400, the screw threads 403 cover the proximal end 405a of the suture bridge 405 (best seen in
Longitudinally-extending runners (ribs) 406 extend from the suture bridge 405 and along the interior of the screw threads 403. For the purposes of this disclosure, there are two longitudinally extending runners 406. However, more or less than two runners are within the scope of this disclosure.
The delivery device 200 includes a distal end 201 having a slot 202 and grooves 203 extending from the slot 202 on each side of the device 200. As shown in
The general suture bridge design described above with reference to
While the suture bridge 405 and its examples are described above in the context of a single suture, the foregoing disclosure also applies to a device loaded with multiple sutures (e.g., three) and the associated suture load. Because the distal (thick) end of the suture bridge 405 extends beyond the inserter 200, the suture bridge 405 is able to accommodate a large suture load. Because the distal end 402 of the bridge 405 is bulbous, the suture bridge 405 can withstand significant loads applied by multiple sutures.
The general suture bridge design contemplates other variations providing a suture bridge that is structurally strong to hold up to loads imparted onto it by a suture(s), particularly during knot tying by a surgeon. In one example, the bulbous portion of the suture bridge extends distally further increasing the load carrying capability of the suture bridge. In other example, the diameter of the suture bridge extends beyond the width of the longitudinal ribs/runners further enhancing the strength of the suture bridge.
In testing, open-architecture anchors made from bioabsorbable material inserted into 25/5 pcf bilayer bone block simulating average humeral head bone, exhibit a novel failure mode of thread stripping from the anchors. Failure of the threads initiates in the simulated cortical layer (25 pcf) and cascades down the anchors as each subsequent thread encounters the simulated cortical layer during a pullout event, such as when a surgeon tensions a suture to tie a knot. Failure initiates in the distal most threads of the anchors because a disproportionately high amount of the (axial) load applied by the suture to the anchors is reacted by the distal most threads, which are embedded in the denser (harder) cortical layer. The failure of the distal most threads and the subsequent cascade of thread failure lead to reduced fixation strength of the anchors in average humeral head bone quality as represented by 25/5 pcf bone block.
A majority of the anchor 500 includes screw threads 503 in the form of an open helical coil, i.e. a connected series of continuous regularly spaced turns extending in a helical or spiral form substantially from the proximal end 505a of the suture bridge 505 to the proximal end 501 of the anchor 500. The terms screw threads and helical coil are used interchangeably herein. The anchor 500 includes apertures 504 being defined by the space between turns of the helical coil 503. The anchor 500 is further characterized by a number of turns per a given length, called “screw thread pitch” or simply “pitch.”
At the proximal end 501 of the anchor 500, webbing 520 extends between adjacent turns 515a and 515b of the coil 503. The number of turns with webbing in between is a function of the thickness of the cortical layer 560 and the pitch of the helical coil 503. Because the anchor 500 (and its example) is reinforced, proximally, according to the foregoing relationship, the inserted anchor 500 supports a greater axial load than compared to non-reinforced anchors. The inserted anchor 500 (and its example) exhibits a greater resistance to being pulled out of bone or “pull out strength” than compared to anchors without proximal reinforcement, particularly, in the hard layer and soft layer makeup found in typical humeral head hone stock.
In one example of the anchor 500, the number of turns with webbing in between increases as the thickness of the cortical layer 560 and/or the pitch of helical coil 503 increases.
As shown in
The example of the anchor 500 shown in
Some examples of the anchor 500 have different numbers of turns corresponding to different cortical layer thicknesses. The thickness of the cortical layer varies from bone to bone, e.g., the cortical layer of the humeral head is thinner than the cortical layer of the tibia. Proximal reinforcement of the anchor 500 may be advantageously tailored to a specific application e.g., the proximal reinforcement of an anchor used in shoulder repair is different than the proximal reinforcement of an anchor used in knee repair.
As various modifications could be made to the exemplary embodiments, as described above with reference to the corresponding illustrations, without departing from the scope of the disclosure, it is intended that all matter contained in the foregoing description and shown in the accompanying drawings shall be interpreted as illustrative rather than limiting. Thus, the breadth and scope of the present disclosure should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims appended hereto and their equivalents.
This application is a continuation of U.S. patent application Ser. No. 13/787,139, filed Mar. 6, 2013, entitled COMPOSITE INTERFERENCE SCREWS AND DRIVERS, which in turn is a continuation-in-part application of U.S. patent application Ser. No. 13/044,777, filed Mar. 10, 2011, now U.S. Pat. No. 8,979,865, which in turn claims priority to and benefit of U.S. Provisional Patent Application No. 61/312,291, filed Mar. 10, 2010, U.S. Provisional Patent Application No. 61/334,808, filed May 14, 2010, and U.S. Provisional Patent Application No. 61/359,080, filed Jun. 28, 2010, the disclosures of which are incorporated herein by reference in their entireties for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2288864 | Whitehead et al. | Jul 1942 | A |
3320783 | Kerr | May 1967 | A |
3821975 | Haker | Jul 1974 | A |
3874258 | Semola et al. | Apr 1975 | A |
4027572 | Burge | Jun 1977 | A |
D288777 | Kwon | Mar 1987 | S |
RE33114 | Chiavon | Nov 1989 | E |
4961740 | Ray et al. | Oct 1990 | A |
5026373 | Ray et al. | Jun 1991 | A |
5055104 | Ray | Oct 1991 | A |
5197967 | Wilson | Mar 1993 | A |
5695497 | Stahelin | Dec 1997 | A |
5968098 | Winslow | Oct 1999 | A |
6302632 | Lin | Jan 2001 | B1 |
6503251 | Shadduck | Jan 2003 | B1 |
6527774 | Lieberman | Mar 2003 | B2 |
6685728 | Sinnott et al. | Feb 2004 | B2 |
6863671 | Strobel et al. | Mar 2005 | B1 |
7189251 | Kay | Mar 2007 | B2 |
7883529 | Sinnott et al. | Feb 2011 | B2 |
7914539 | Stone et al. | Mar 2011 | B2 |
8034090 | Stone et al. | Oct 2011 | B2 |
8167906 | Cauldwell et al. | May 2012 | B2 |
8597328 | Cauldwell et al. | Dec 2013 | B2 |
8979865 | Fan et al. | Mar 2015 | B2 |
9155531 | Housman | Oct 2015 | B2 |
9308080 | Housman et al. | Apr 2016 | B2 |
9393006 | Housman et al. | Jul 2016 | B2 |
9427270 | Housman | Aug 2016 | B2 |
9526488 | Arai et al. | Dec 2016 | B2 |
9579188 | Bowman et al. | Feb 2017 | B2 |
20020055742 | Lieberman | May 2002 | A1 |
20030195529 | Takamoto et al. | Oct 2003 | A1 |
20040093032 | Sinnott et al. | May 2004 | A1 |
20040153074 | Bojarski et al. | Aug 2004 | A1 |
20050222619 | Dreyfuss | Oct 2005 | A1 |
20050222681 | Richley et al. | Oct 2005 | A1 |
20050267478 | Corradi et al. | Dec 2005 | A1 |
20060030948 | Manrique et al. | Feb 2006 | A1 |
20060100627 | Stone et al. | May 2006 | A1 |
20060247642 | Stone et al. | Nov 2006 | A1 |
20080147119 | Cauldwell | Jun 2008 | A1 |
20080154314 | McDevitt | Jun 2008 | A1 |
20090076544 | DiMatteo et al. | Mar 2009 | A1 |
20110054526 | Stone et al. | Mar 2011 | A1 |
20110224727 | Housman et al. | Sep 2011 | A1 |
20120059384 | Fan et al. | Mar 2012 | A1 |
20120179163 | Housman et al. | Jul 2012 | A1 |
20120323285 | Assell | Dec 2012 | A1 |
20130178901 | Arai et al. | Jul 2013 | A1 |
20140081339 | Bowman et al. | Mar 2014 | A1 |
20140172016 | Housman | Jun 2014 | A1 |
20140277129 | Arai et al. | Sep 2014 | A1 |
20140277130 | Housman | Sep 2014 | A1 |
20140277192 | Housman | Sep 2014 | A1 |
20150196388 | Housman et al. | Jul 2015 | A1 |
20150327984 | Arai et al. | Nov 2015 | A1 |
20160235399 | Housman et al. | Aug 2016 | A1 |
20160374661 | Housman et al. | Dec 2016 | A1 |
20170014224 | Arai et al. | Jan 2017 | A1 |
20170020589 | Bowman et al. | Jan 2017 | A1 |
20170049438 | Arai et al. | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
1701772 | Nov 2005 | CN |
101422381 | May 2009 | CN |
201436022 | Apr 2010 | CN |
102068305 | May 2011 | CN |
102551821 | Jan 2012 | CN |
102512253 | Jun 2012 | CN |
102525583 | Jul 2012 | CN |
102905636 | Jan 2013 | CN |
102573662 | Aug 2015 | CN |
0502698 | Sep 1992 | EP |
0686373 | Mar 2001 | EP |
1234637 | Aug 2002 | EP |
1430843 | Jun 2004 | EP |
1917926 | Nov 2009 | EP |
2596758 | May 2013 | EP |
2005-529650 | Oct 2005 | JP |
2006-212449 | Aug 2006 | JP |
2006-305348 | Nov 2006 | JP |
2008132327 | Jun 2008 | JP |
03063713 | Aug 2003 | WO |
03103507 | Dec 2003 | WO |
2008021474 | Feb 2008 | WO |
2010009217 | Jan 2010 | WO |
Entry |
---|
Decision of Rejection from related Japanese Application No. 2013-558094 dated Sep. 5, 2016. |
Japanese Office Action from corresponding International Application No. 2015-561605, dated Dec. 25, 2017. |
Chinese Decision on Rejection from corresponding International Application No. 201480012203.0, dated Dec. 14, 2017. |
Communication from EPO from related European Application No. 12711719.0-1666 dated Jul. 28, 2016. |
Office Action from related Russian Application No. 2015147534/20(073143) dated Jun. 29, 2016. |
First Office Action from related Chinese Application No. 201480012203.0 dated Aug. 17, 2016. |
Office Communication from related European Application No. 14712930.8-1662 dated Nov. 24, 2016. |
Office Action and Search Report from related Chinese Application No. 201480032876.2 dated Oct. 19, 2016. |
Third Office Action from related Chinese Application No. 201280038677.3 dated Nov. 28, 2016. |
Office Action from related Japanese Application No. 2014-514625 dated Dec. 19, 2016. |
Office Action from related Russian Application No. 2016124173/20(037886) dated Jan. 19, 2017. |
Office Action from related EPO Application No. 14716107.9-1664 dated Mar. 23, 2017. |
Number | Date | Country | |
---|---|---|---|
20170014224 A1 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
61312291 | Mar 2010 | US | |
61334808 | May 2010 | US | |
61359080 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13787139 | Mar 2013 | US |
Child | 15227468 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13044777 | Mar 2011 | US |
Child | 13787139 | US |