The subject matter disclosed herein relates to composite laminate tooling and, more particularly, to tail rotor blade flexbeam tooling.
A rotor blade flexbeam is a primary structural element of a helicopter tail rotor blade assembly inasmuch as its primary function is to transfer combined flapwise, edgewise and centrifugal loads to and/or from a central torque drive hub member. These features are sometimes formed with fiber reinforced resin matrix composite materials due to their advantageous strength-to-weight ratios, however, widespread use thereof has been impeded despite the inherent weight and strength advantages by the high cost of materials and associated fabrication methods.
Conventional methods for manufacturing composite flexbeams include prepreg lay-ups of composite material. Although effective, these processes are relatively time and labor intensive. Normally, prepreg lay-up processes are primarily performed by hand and prepregs have little structural rigidity in their uncured state. The prepregs are hand-stacked and interleaved upon a tooling surface with tooling side walls, which provide the reaction forces at the perimeter profile of the flexbeam. The tail rotor flexbeam is then finished using autoclave processing and employment of a composite caul plate to transfer pressures and to control spar dimensional tolerances during the cure process.
The prepreg lay-up process of stacking composite materials into a female tooling mold cavity is prone to thickness variability and poor composite quality. Additional, destructive quality coupon testing is performed on all specimens where the specimens are removed before final machining such that minimum coupon strength is required for quality control to insure that process variability meets engineering specifications. In addition, existing processes for rectangular components cannot easily direct fibers in off-axis axial directions. They also create a part that is oversized and must be trimmed later in a subsequent operation. The resultant of the machining is cut fibers in the axial direction that when subjected to tension fatigue loads can splinter and propagate into the laminate. Moreover, a typical automated fiber placement machine head may be very large for handling and working with flexbeam composite tooling.
According to one aspect of the invention, a composite piece tool used to create a composite piece includes a substrate having a substrate surface, walls disposed on the substrate and extending from the substrate surface in a thickness direction of the composite piece to define opposite locations of longitudinal composite piece ends and composite piece sides, a tooling surface disposed to occupy an entirety of a space delimited by the walls and on which the composite piece formed and a servo controller coupled to the tooling surface and configured to move the tooling surface upwardly and downwardly relative to the substrate surface and walls to form the composite piece.
In accordance with additional or alternative embodiments, the tooling surface has a contoured topography, and the servo controller controls the tooling surface to move as composite elements are laid up to form the composite piece.
In accordance with additional or alternative embodiments, the walls include first and second walls disposed define the opposite locations of the longitudinal composite piece ends and third and fourth walls disposed to define the opposite locations of the composite piece sides.
In accordance with additional or alternative embodiments, at least the first and second walls include contoured interior facing surfaces.
In accordance with additional or alternative embodiments, the tooling surface is disposed to occupy an entirety of a space delimited by the first, second, third and fourth walls.
In accordance with additional or alternative embodiments, the tooling surface is rigid.
In accordance with additional or alternative embodiments, sealant is disposed between the walls and the tooling surface.
In accordance with additional or alternative embodiments, the servo controller is configured to position the tooling surface in alignment with upper-most surfaces of the walls.
In accordance with additional or alternative embodiments, the servo controller is configured to move the tooling surface by a distance substantially equal to a thickness of a composite laminate ply placed on the tooling surface.
According to another aspect of the invention, a method of manufacturing a composite piece using a tool having a tooling surface disposed to occupy an entirety of a space delimited by walls in alignment with upper-most surfaces of the walls. The method includes laying a composite laminate ply on the tooling surface and moving the tooling surface relative to the upper-most surfaces of the walls by a distance substantially equal to a thickness of the composite laminate ply and repeating the laying of the composite laminate ply and the moving of the tooling surface.
In accordance with additional or alternative embodiments, the tooling surface includes a contoured topography having summits and troughs, and the repeating the laying of the composite laminate ply and the moving of the tooling surface includes laying composite laminate plies having varying shapes.
In accordance with additional or alternative embodiments, the method further includes forming the composite laminate ply as a pre-impregnated tow.
In accordance with additional or alternative embodiments, the method further includes forming the composite laminate ply with steered fiber placement.
In accordance with additional or alternative embodiments, the method further includes forming the composite laminate ply by an automated fiber placement (AFP) machine.
In accordance with additional or alternative embodiments, the method further includes curing each of the composite laminate plies.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
As will be described below, a structurally efficient composite flexbeam tool is provided for the manufacture of an automated fiber placed (AFP) tail rotor blade flexbeam (hereinafter referred to as a “flexbeam”). The tool allows for the location of fibers in a particular orientation, minimizes weight, steers fibers and exhibits a perimeter tooling wall, which is a critical tooling aspect desired for structural integrity of the final cured part. Furthermore, the tool provides for an inexpensive manufacturing process that reduces labor intensive process steps, permits ease of material handling and maintains exacting quality standards during assembly.
With reference to
With reference to
In accordance with embodiments and, as shown in
In accordance with further embodiments and, as shown in
The servo controller 15 is configured to position the tooling surface 14 in alignment with upper-most surfaces 137 of the walls 13. From this position, the servo controller 15 is configured to move the tooling surface 14 downwardly by a distance that is substantially equal to a thickness of a composite laminate ply placed on the tooling surface 14 as will be discussed below.
Each composite laminate ply includes multiple pre-impregnated tows that are fed from multiple spools into an automated fiber placement (AFP) machine head for dispensing into a course. Each tow is formed of toughened epoxy matrix and fiber material where multiple tows create a course and multiple courses of tows form a layer of composite material of a given thickness. In this layer of composite material, fibers may be orientated with respect to a reference rotational axis with zero degree courses located parallel to the longitudinal axis and with bias angled courses located and oriented non-parallel to the longitudinal axis. As each layer of composite material is laid down on the tooling surface 14 as a composite laminate ply from the AFP machine head, the AFP machine controls the servo controller 15 to move the tooling surface 14 downwardly by a distance that is substantially equal to the thickness dimension. Specifically, with each tow, the tooling surface 14 is gradually lowered while the thickness dimension is created. Thus, the walls 13 are not exposed to the AFP machine head and do not induce an interference condition.
With reference back to
The above-described configuration of the flexbeam 1 is achieved by forming the tooling surface 14 with the contoured topography 141, disposing the tooling surface 14 to occupy the entirety of the space 140, which is delimited by the walls 13 and positioning the tooling surface 14 in alignment with the upper-most surfaces 137 of the walls 13. Then, as noted above, a composite laminate ply (i.e., the set of short plies 20) is laid on the tooling surface 14 and the tooling surface 14 is moved downwardly by a distance substantially equal to a thickness of the composite laminate ply. The ply laying and tooling surface moving operations are repeated until the final set of short plies 22 are laid down. At this point, the flexbeam tool 10 is placed in an autoclave and each of the composite laminate plies is cured.
In accordance with additional embodiments and, with reference back to
The steering of the fibers around the central section holes 102 allows for fiber continuity, which (in concert with the no-cut conditions) may provide for dictation of load paths around the central section holes 102. By contrast, conventional processes where the center of rotation elliptical holes are machined and the fibers are straight and parallel to the longitudinal axis results in machined ply endings. Such machined ply endings at the central section holes 102 are minimized or eliminated as described herein.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. By way of example, while described in terms of manufacture of a specific shape, it is understood that aspects of the invention can be used to create other composite piece shapes having additional or fewer summits and troughs, and that other ply arrangements are possible. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
The present application is a 371 National Stage of International Patent Application No. PCT/US2015/064980, filed on Dec. 10, 2015, which claims priority to U.S. Provisional Application No. 62/093,220, filed on Dec. 17, 2014, the contents of which are incorporated herein by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/064980 | 12/10/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/100081 | 6/23/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3598175 | Carl-Erik et al. | Aug 1971 | A |
4591402 | Evans et al. | May 1986 | A |
5071338 | Dublmslu et al. | Dec 1991 | A |
5134569 | Masters | Jul 1992 | A |
5354414 | Feygin | Oct 1994 | A |
5936861 | Jang | Aug 1999 | A |
5939007 | Iszczyszyn et al. | Aug 1999 | A |
6708921 | Sims et al. | Mar 2004 | B2 |
6824714 | Turck | Nov 2004 | B1 |
7165945 | Kovalsky | Jan 2007 | B2 |
7407556 | Oldani et al. | Aug 2008 | B2 |
7555404 | Brennan et al. | Jun 2009 | B2 |
7835567 | Oldani | Nov 2010 | B2 |
8327738 | Davis et al. | Dec 2012 | B2 |
8333864 | Brennan et al. | Dec 2012 | B2 |
8372231 | Tsotsis | Feb 2013 | B1 |
8695922 | Schroeer et al. | Apr 2014 | B2 |
8714226 | Senibi et al. | May 2014 | B2 |
9505489 | Sutton | Nov 2016 | B2 |
20010039811 | Tomisaka | Nov 2001 | A1 |
20050280189 | Macke, Jr. | Dec 2005 | A1 |
20090217529 | Cerezo et al. | Sep 2009 | A1 |
20110041988 | Nelson | Feb 2011 | A1 |
20120045344 | Byrnes et al. | Feb 2012 | A1 |
20120076973 | Guzman et al. | Mar 2012 | A1 |
20130048213 | Jessrang | Feb 2013 | A1 |
20130186557 | Cramer et al. | Jul 2013 | A1 |
20140033479 | Dilo | Feb 2014 | A1 |
20140065343 | Hess | Mar 2014 | A1 |
20140288893 | Blom | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
2660146 | Nov 2013 | EP |
2014060747 | Apr 2014 | WO |
Entry |
---|
International Search Report and Written Opinion of the International Search Authority dated Feb. 18, 2016 in related PCT Application No. PCT/US2015/064980, 9 page. |
Number | Date | Country | |
---|---|---|---|
20170282413 A1 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
62093220 | Dec 2014 | US |