A composite wing of a commercial aircraft is designed for bending strength and stiffness under normal operating conditions (where bending loads are dominant). Wing skin made of a composite material such as carbon fiber reinforced plastic (CFRP) may include multiple plies of reinforcing fibers oriented at 0 degrees with respect to a dominant load direction for bending strength.
The wing skin may also include multiple plies of reinforcing fibers oriented at 90 degrees (with respect to the dominant load direction) for bending stiffness. These 90 degree fibers may also increase transverse strength and bearing strength.
The wing skin may also be designed for damage tolerance. Multiple plies of reinforcing fibers oriented at +45 and −45 degrees (with respect to the dominant load direction) may be added to suppress lengthwise skin splitting that would otherwise occur when the skin incurs a large penetrating damage and fibers are broken. These ±45 degree fibers may also increase shear strength, torsional strength, and bending stiffness.
Each ply of reinforcing fibers adds weight to the wing skin. As weight is added, fuel costs and other aircraft operating costs are increased.
Therein lies the challenge of reducing weight of the wing skin without compromising bending strength, bending stiffness, and damage tolerance.
According to an embodiment herein, a composite laminated plate comprises a first plurality of plies of reinforcing fibers for lengthwise strength in a dominant load direction, and a second plurality of reinforcing fibers oriented at angles ±β with respect to the dominant load direction, where β is between 15 and 35 degrees.
According to another embodiment herein, a structure having a dominant load direction comprises a laminated composite plate including a plurality of plies of α-fibers oriented at angles +α and −α with respect to an x-axis, and a plurality of plies of β-fibers oriented at angles +β and −β with respect to the x-axis. Angle β is between 15 and 35 degrees, and angle α is 0 degrees or between 2 and 12 degrees.
According to another embodiment herein, a composite box beam comprises a stiffening substructure, a first laminated plate covering one side of the substructure, and a second laminated plate covering an opposite side of the substructure. Each plate includes a first plurality of reinforcing fibers oriented at an angle between 15 and 35 degrees with respect to a longitudinal axis of the substructure.
According to another embodiment herein, a method of forming a plate having an x-axis comprises forming a ply stack including a first plurality of reinforcing fibers oriented at an angle ±α with respect to the x-axis, and a second plurality of reinforcing fibers oriented at an angle β with respect to the x-axis, where β is between 15 and 35 degrees, and α is 0 degrees or between 2 and 12 degrees.
These features and functions may be achieved independently in various embodiments or may be combined in other embodiments. Further details of the embodiments can be seen with reference to the following description and drawings.
Reference is made to
Reference is made to
The plate 110 has an x direction-axis, which is represented by a dotted line. For instance, the x-axis may correspond to the dominant load direction of the plate 110, whereby tensile or compressive force is applied in the direction of the x-axis. The plate also has a y-axis, which lies in-plane with the x-axis, and a z-axis, which lies out-of- plane with the x- and y-axes (the y- and z-axes are not illustrated). The x-, y-, and z-axes are orthogonal.
A first plurality of the plies of reinforcing fibers 120 are oriented at angles +α and −α with respect to the x-axis. These fibers, hereinafter referred to as α-fibers 120, provide lengthwise strength in the direction of the x-axis. In some embodiments, α=0 degrees for maximum lengthwise strength.
A second plurality of reinforcing fibers 130 are oriented at angles +β and −β, with respect to the x-axis where β is between 15 and 35 degrees. These fibers are hereinafter referred to as β-fibers 130. In some embodiments, β is about 25 degrees.
If all of the β-fibers are oriented at the same angle, it is possible that ply splitting could occur in the direction of those β-fibers. To suppress ply splitting, the β-fibers may be oriented at slightly different angles, That is, the angle of the β-fibers is “blurred.” Consider the example of β=25 degrees. Instead of using plies with β-fibers oriented at only +25 degrees, some of the plies have β-fibers oriented at +22 degrees, other plies have β-fibers oriented at +25 degrees, and others at +28 degrees such that the average angle of the β-fibers is +25 degrees. Similarly, the average angle of −25 degrees may be obtained by some plies of β-fibers oriented at −22 degrees, others at −25 degrees, and others at −28 degrees.
In some embodiments, a third plurality of plies of reinforcing fibers may be oriented at angles +γ and −γ with respect to the dominant load direction, where γ is between 87 and 92 degrees. These fibers, hereinafter referred to as γ-fibers 140, provide transverse strength and stiffness and also boost bearing strength. In some embodiments, γ=90 degrees.
In the plate 110 of
Suppression or delay of longitudinal ply splitting (along the x-axis) may be further enhanced by using β-fibers oriented at an angle α between 2 and 12 degrees instead of 0 degrees. In some embodiments, the range for angle α is between 3 and 5 degrees. The angle of the α-fibers may also be blurred (that is, the α-fibers may be oriented at slightly different angles to achieve an average angle α). For example, an average angle of 0 degrees may be obtained by some plies of α-fibers oriented at +5 degrees and some plies of α-fibers oriented at −5 degrees.
Reference is made to
To prevent ply splitting, the ratio of fibers for the 0/45/90 coupon was changed to 30/60/10%. Test results for the 0/45/90 coupon are indicated by the black circle. Although ply splitting was prevented, lengthwise strength was reduced.
Large notch tension tests were then conducted on different coupons having β-fibers between 15 and 40 degrees. Moreover, those coupons had a greater percentage of β-fibers than α-fibers (i.e., “soft” laminates). General results of those tests on the α/β/γ soft laminate coupons are indicated by open circles. Those results indicate that the coupons had greater lengthwise strength than the 0/45/90 soft laminate coupon, but not the 0/45/90 hard laminate coupon.
Large notch tension tests were conducted on several coupons having a greater percentage of α-fibers than β-fibers (i.e., “hard” laminates). General results of those tests on the α/β/γ hard laminate coupons are indicated by open boxes. Those results indicate that the coupons having β between 15 and 35 degrees had greater lengthwise strength than the 0/45/90 hard laminate coupon. For some reason, lengthwise strength of an α/β/γ hard laminate coupon was greatest at β=25 degrees.
These tests indicate that the number of plies of a 5/25/90 hard laminate may be reduced to provide the same lengthwise strength as a 0/45/90 hard laminate. However, because the 5/25/90 hard laminate has fewer plies that the 0/45/90 hard laminate, it is thinner and lighter. Moreover, the 5/25/90 hard laminate has greater damage tolerance with respect to ply splitting.
Reference is now made to
Hard laminates (represented by the open and black boxes) have greater lengthwise strength than soft laminates (represented by the open and black circles). Moreover, a hard laminate with having β-fibers oriented at β=20 degrees has similar lengthwise strength as a conventional 0/45/90 hard laminate (represented by the black box).
Reference is now made to
The plies of these reinforcing fibers may be deposited on a layup tool (e.g., a mandrel or mold tool). In some embodiments, each ply may be a unidirectional tape with fibers oriented in a single direction. In other embodiments, each ply may be a weave of fibers oriented in more than one direction. For instance, a weave may have some fibers oriented at +α and others oriented at −α. In still other embodiments, “cartridges” may be include pre-packaged plies having the correct fiber orientation (e.g., +α and −α) with respect to the x-axis.
The 1-axes of the plies may be aligned with the x-axis of the laminated plate. That is, the 1-axes may be aligned with a dominant load direction.
At block 520, the ply stack is cured to produce a composite laminated plate. At block 530, the laminated plate is optionally machined. For example, fastener holes or other types of openings may be drilled or cut into the laminated plate. The β-fibers suppress or delay lengthwise splitting at these holes. The ply splitting may be further suppressed or delayed by α-fibers oriented at an angle α between 2 and 12 degrees.
Reference is made to
The purpose of this example is simply to illustrate that each ply contains fibers with the same fiber orientation, and that different plies have different fiber orientations. In this particular example, the distribution of fibers is 60% α-fibers, 30% β-fibers, and 10% γ-fibers (that is 60/30/10%). Other examples may have other arrangements of plies, and other relative percentages of fibers.
Reference is now made to
These embodiments are not limited to any particular geometry. Examples of beam geometries include, but are not limited to, hat frames, C-channels, Z-beams, J-beams, T-Beams and I-beams, and blade stiffened beams. In
In other embodiments, the beam is a box beam including a box-shaped stiffening substructure and one or more composite laminated plates covering the frame. One or more of the plates include α-fibers and β-fibers oriented with respect to a dominant load direction of the box beam.
Reference is now made to
The wing box 710 further includes composite skin 716 covering the spars 712 and ribs 714. The skin 716 may include upper skin 716a and lower skin 716b.
During operation, the wing is subject to bending loads and torsional loads. For instance, wind gusts or other heavy loads may force the wing 700 to bend upward, thereby placing the upper skin 716a in lengthwise compression and the lower skin 716b in lengthwise tension. The bending loads are dominant. To handle the lengthwise loads, each skin 716a and 716b is composed of one or more composite laminated plates including α-fibers and β-fibers oriented with respect to the dominant load direction. The α-fibers provide bending strength, as they carry most of the lengthwise load.
The β-fibers suppress lengthwise skin splitting that would otherwise occur when the skin 716 incurs a large penetrating damage and fibers are broken. The β-fibers may also increase shear strength, torsional strength, and bending stiffness.
Since the β-fibers also carry some of the lengthwise load, the number of plies of α-fibers may be reduced without compromising bending strength, bending stiffness, and damage tolerance relative to a conventional 0/45/90 hard laminate. By reducing the number of plies of α-fibers, the gage and weight of the skin 716 is reduced. The use of such skin 716 instead of conventional 0/45/90 plates can result in a weight reduction of thousands of pounds. The weight reduction is highly desirable, as it reduces fuel costs and other aircraft operating costs.
In some embodiments, the skin 716 may be slightly unbalanced. In some embodiments, the skin may be slightly non-symmetric.
The stiffening substructure of the wing box 710 may further include stringers 718 that perform functions including, but not limited to, stiffening the skin 716. The stringers 718 may also extend in a spanwise direction.
The spars 712, ribs 714, and stringers 718 may be made of metal or balanced composite materials. The stringers 718 may be configured as beams having caps, flanges, and webs. The caps may be made of composite material plates including α-fibers, β-fibers, and γ-fibers oriented with respect to the longitudinal axis of their stringers 718.
For embodiments in which the stringers 718 may be made of composite material, the stringers 718 may be integrally formed with the skin 716. During ply stack formation, reinforcing fibers for the stringers 718 may be deposited on reinforcing fibers for the skin 716.
The spars 712 may include caps made of composite material having plies of α-fibers, β-fibers, and γ-fibers. The ribs 714 may include chords made of composite material having plies of α-fibers, β-fibers, and γ-fibers.