1. Field of Invention
The present invention relates to a composite light guide plate manufacturing method.
2. Description of Related Art
The Taiwan patent application (No. TW201224541) discloses a conventional backlight module. Referring to
However, the current portable electronic products are all designed with thin profiles, such that the conventional light guide module encountered the difficulties on the reduction of the thickness when thin-profile electronic products are manufactured.
It is therefore an objective of the present invention to provide a composite light guide plate manufacturing method in order to reduce an overall thickness of a backlight module.
In accordance with the foregoing and other objectives of the present invention, a composite light guide plate manufacturing method includes the steps of providing a light guide substrate; providing a transfer membrane, which includes sequentially includes a substrate, a reflective layer and a diffusion microstructure; attaching the transfer membrane to the light guide substrate with a side of the transfer membrane, which has the diffusion microstructure; and removing the substrate to expose the reflective layer.
According to another embodiment disclosed herein, the method further includes the step of forming a light diffusion layer located on a surface of the light guide substrate, which is opposite to the reflective layer.
According to another embodiment disclosed herein, the light diffusion layer is formed by coating or imprinting.
According to another embodiment disclosed herein, the reflective layer is formed by printing a white ink layer or a metallic ink layer on the substrate.
According to another embodiment disclosed herein, the reflective layer is a metal coating formed by electroless plating, electroplating, sputtering or vapor deposition.
According to another embodiment disclosed herein, the method further includes the step of forming a releasing layer between the substrate and the reflective layer to easily separate the substrate apart from the reflective layer.
According to another embodiment disclosed herein, the method further includes the step of forming an adhesive layer on the diffusion microstructure.
According to another embodiment disclosed herein, the substrate is a plastic membrane, a metallic membrane or a paper membrane.
According to another embodiment disclosed herein, the diffusion microstructure is an opaque white ink layer.
Thus, the composite light guide plate manufacturing method has at least the following advantages:
(1) The thickness of the reflective layer can be made thinner (compared with the conventional reflection sheet) by a transfer method instead, thereby reducing the overall thickness of the composite light guide plate;
2) The light diffusion layer on the emitting surface of the light guide plate can be formed by directly coating or imprinting manner, and its thickness is also thinner than a conventional independent diffusion sheet, thereby reducing the overall thickness of the composite light guide plate as well; and
(3) The downsizing of the reflective layer and the diffusion layer can also decrease the materials of the reflective layer and the diffusion layer, thereby saving the material costs.
It is to be understood that both the foregoing general description and the following detailed description are by examples, and are intended to provide further explanation of the invention as claimed.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention. In the drawings,
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
The present invention provides a composite light guide plate manufacturing method to manufacture a light guide plate within a backlight module of a thin-profile portable electronic product.
The light diffusion layer 214 can be formed by, but not being limited to, coating or imprinting (e.g., heat imprinting). The substrate 204 of the transfer membrane 202 can be a plastic membrane, a metallic membrane, a paper membrane or other applicable membranes. In an embodiment, the reflective layer 206 of the transfer membrane 202 is formed by, but not being limited to, printing a white ink layer or a metallic ink layer on the substrate 204. In another embodiment, the reflective layer 206 of the transfer membrane 202 can be a metal coating formed by, but not being limited to, electroless plating, electroplating, sputtering or vapor deposition. No matter how the reflective layer 206 is made, e.g., electroless plating, electroplating, sputtering or vapor deposition, the reflective layer 206 can be made thinner (compared with the conventional reflective layer) because the reflective layer 206 is coated on the substrate 204, which serves as a support base. When the reflective layer 206 of the transfer membrane 202 is “transferred” to the light guide substrate 212 to form a composite light guide plate 200, its overall thickness is a little bit thicker than the light guide substrate 212, thereby maintain the composite light guide plate 200 as a thin profile. In addition, the diffusion microstructures 208 are opaque white ink layers on the reflective layer 206. In this embodiment, the diffusion microstructures 208 may contain, but not being limited to, diffusion particles 208a mixed therein.
Referring to
A light guide substrate 212 is provided with a light diffusion layer 414, but not being limited to, formed on a light-emitting surface 212a of the light guide substrate 212. A transfer membrane 202′ is provided to sequentially include a substrate 204, a releasing layer 205, a reflective layer 206 and multiple diffusion microstructures 208. The transfer membrane 202′ is used to “transfer” the reflective layer, the reflective layer and multiple diffusion microstructures 208 to the light guide substrate 212 so as to achieve a thin-profile composite light guide plate. Referring to
In this embodiment, a releasing layer 205 is added between the substrate 204 and the reflective layer 206 of the transfer membrane 202′ so as to easily separate substrate 204 apart from the reflective layer 206 and not to damage the reflective layer 206.
Moreover, adhesive layers 209 may be further formed on those diffusion microstructures 208 before the transfer membrane 202′ is attached to the light guide substrate 212. Therefore, after the transfer membrane 202′ is attached to the light guide substrate 212, the diffusion microstructures 208 can be reliably attached to the light guide substrate 212.
The light diffusion layer 214 can be formed by, but not being limited to, coating or imprinting (e.g., heat imprinting). The substrate 204 of the transfer membrane 202′ can be a plastic membrane, a metallic membrane, a paper membrane or other applicable membranes. In an embodiment, the reflective layer 206 of the transfer membrane 202′ is formed by, but not being limited to printing a white ink layer or a metallic ink layer on the substrate 204. In another embodiment, the reflective layer 206 of the transfer membrane 202′ can be a metal coating formed by, but not being limited to, electroless plating, electroplating, sputtering or vapor deposition. No matter how the reflective layer 206 is made, e.g., electroless plating, electroplating, sputtering or vapor deposition, the reflective layer 206 can be made thinner (compared with the conventional reflective layer) because the reflective layer 206 is coated on the substrate 204, which serves as a support base. When the reflective layer 206 of the transfer membrane 202′ is “transferred” to the light guide substrate 212 to form a composite light guide plate 200, its combination thickness is a little bit thicker than the light guide substrate 212, thereby maintaining the composite light guide plate 200 as a thin profile. In addition the diffusion microstructures 208 are opaque white ink layers of the reflective layer 206. In this embodiment, the diffusion microstructure 208 may contain, but not being limited to, diffusion particles 208a mixed therein.
Referring to
According to the above-discussed embodiments of the present invention, the composite light guide plate manufacturing method has at least the following advantages:
(1) The thickness of the reflective layer can be made thinner (compared with the conventional reflection sheet) by a transfer method instead, thereby reducing the overall thickness of the composite light guide plate;
(2) The light diffusion layer on the emitting surface of the light guide plate can be formed by directly coating or imprinting manner, and its thickness is also thinner than a conventional independent diffusion sheet, thereby reducing the overall thickness of the composite light guide plate as well; and
(3) The downsizing of the reflective layer and the diffusion layer can also decrease the materials of the reflective layer and the diffusion layer, thereby saving the material costs.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
The present application is based on, and claims priority from, U.S. Provisional Application Ser. No. 61/720,995, filed on Oct. 31, 2012, the disclosure of which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5698299 | Schmidt et al. | Dec 1997 | A |
6447135 | Wortman et al. | Sep 2002 | B1 |
6521324 | Debe et al. | Feb 2003 | B1 |
6687200 | Kobayashi | Feb 2004 | B1 |
6887650 | Shimoda et al. | May 2005 | B2 |
6929377 | Hirose | Aug 2005 | B2 |
7045558 | Chisholm et al. | May 2006 | B2 |
7251077 | Holmes et al. | Jul 2007 | B2 |
7262899 | Bigman | Aug 2007 | B2 |
7270929 | Kwasny et al. | Sep 2007 | B2 |
7278772 | Kunimochi | Oct 2007 | B2 |
7281810 | Lee | Oct 2007 | B2 |
7446915 | Holmes et al. | Nov 2008 | B2 |
7491422 | Zhang et al. | Feb 2009 | B2 |
7507012 | Aylward et al. | Mar 2009 | B2 |
7531120 | Van Rijn et al. | May 2009 | B2 |
7625515 | Lee et al. | Dec 2009 | B2 |
7824092 | Yang et al. | Nov 2010 | B2 |
7834962 | Satake et al. | Nov 2010 | B2 |
7914174 | Ho et al. | Mar 2011 | B2 |
7942556 | Harbers et al. | May 2011 | B2 |
7972875 | Rogers et al. | Jul 2011 | B2 |
8027086 | Guo et al. | Sep 2011 | B2 |
8192637 | Washiya et al. | Jun 2012 | B2 |
8264622 | Gourlay | Sep 2012 | B2 |
8377540 | Chiu et al. | Feb 2013 | B2 |
8487518 | Johnston et al. | Jul 2013 | B2 |
8632237 | Chiang et al. | Jan 2014 | B2 |
8721824 | Chang et al. | May 2014 | B2 |
8834001 | Lin et al. | Sep 2014 | B2 |
20010022636 | Yang et al. | Sep 2001 | A1 |
20030022403 | Shimoda et al. | Jan 2003 | A1 |
20030067565 | Yamamura | Apr 2003 | A1 |
20040028875 | Van Rijn et al. | Feb 2004 | A1 |
20040136038 | Holmes et al. | Jul 2004 | A1 |
20040190102 | Mullen et al. | Sep 2004 | A1 |
20050002172 | Han et al. | Jan 2005 | A1 |
20050030630 | Ohnishi et al. | Feb 2005 | A1 |
20050052745 | Lee | Mar 2005 | A1 |
20050106839 | Shimoda et al. | May 2005 | A1 |
20050110174 | Chen | May 2005 | A1 |
20050255237 | Zhang et al. | Nov 2005 | A1 |
20060188828 | Kwasny et al. | Aug 2006 | A1 |
20060256415 | Holmes et al. | Nov 2006 | A1 |
20070115686 | Tyberghien | May 2007 | A1 |
20070289119 | Lee et al. | Dec 2007 | A1 |
20080037124 | Ohmi et al. | Feb 2008 | A1 |
20080080055 | Lightfoot et al. | Apr 2008 | A1 |
20080084709 | Li et al. | Apr 2008 | A1 |
20080123366 | Yang et al. | May 2008 | A1 |
20080180956 | Gruhlke et al. | Jul 2008 | A1 |
20080227036 | Matsushita et al. | Sep 2008 | A1 |
20080304287 | Chiang et al. | Dec 2008 | A1 |
20090046362 | Guo et al. | Feb 2009 | A1 |
20090097273 | Chang | Apr 2009 | A1 |
20090161048 | Satake et al. | Jun 2009 | A1 |
20090213464 | Kurachi et al. | Aug 2009 | A1 |
20090243126 | Washiya et al. | Oct 2009 | A1 |
20100104807 | Chiu et al. | Apr 2010 | A1 |
20100118407 | Huff | May 2010 | A1 |
20100296025 | Gourlay | Nov 2010 | A1 |
20110064915 | Chang et al. | Mar 2011 | A1 |
20110141765 | Chang et al. | Jun 2011 | A1 |
20110188264 | Lin | Aug 2011 | A1 |
20120038140 | Dhome et al. | Feb 2012 | A1 |
20120043679 | Chen et al. | Feb 2012 | A1 |
20120070639 | Chuang et al. | Mar 2012 | A1 |
20120139403 | Johnston et al. | Jun 2012 | A1 |
20120194054 | Johnston et al. | Aug 2012 | A1 |
20120286436 | Chen et al. | Nov 2012 | A1 |
20130027975 | Chiang et al. | Jan 2013 | A1 |
20130063826 | Hoffmuller et al. | Mar 2013 | A1 |
20130155722 | Lin et al. | Jun 2013 | A1 |
20140110371 | Maki et al. | Apr 2014 | A1 |
20140185304 | Hsiao et al. | Jul 2014 | A1 |
20140248458 | Sherman et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
07161216 | Jun 1995 | JP |
201224541 | Jun 2012 | TW |
WO 03086959 | Oct 2003 | WO |
Entry |
---|
English Abstract of JP 07-161216 (Sep. 27, 2014). |
Number | Date | Country | |
---|---|---|---|
20140116607 A1 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
61720995 | Oct 2012 | US |