This invention relates to composite cards comprising a laminate of a printable opaque magnetic sheet and a cardstock material printable on both sides. Said cards containing a securely hidden message, and a removable souvenir magnet, suitable for instant win contests, sales promotions, educational or marketing message purposes, games, and lotteries; and to processes of manufacturing said cards.
Instant win lotteries, contests and promotions have been in use for over 30 years. The most ubiquitous in present usage, being the “scratch and win” card. This card consists of a printed cardstock material, where the hidden message is concealed by a layer of removable latex ink. The user scratches the removable layer with a coin or fingernail exposing the underlying message.
The scratch and win cards have in-use limitations of requiring a solid surface to place the card on to scratch off the latex, as well as the undesirable residue left under fingernails or on counter tops by scratching. Due to the inherently frangible property of the latex layer, it is also vulnerable to unanticipated abrasive removal by handling, movement in a clothing pocket or in mail system when applied to a postcard. In addition these cards are susceptible to being compromised by lightly scratching with a pin or other methods to reveal identification of the prize message below. Due to the thin and less than total opacity of the latex layer, the cards are often necessarily laminated with metallic foil to avoid the hidden message being visible under a strong light, adding an extra cost and complexity to the product.
Flexible magnetic sheeting has been in use for over 50 years to produce advertising specialty items commonly referred to as “refrigerator magnets. These are used in both home and business environments and provide a long-lasting, effective, advertising medium when stuck to a metal surface, such as a refrigerator door, school locker, filing cabinet and the like.
Traditionally, the magnetic sheeting has been manufactured as a thin, calendared sheet of rubber or plastic containing strontium ferrite powder. The magnetization has normally been accomplished at the time of manufacture and consists of imparting a multi-pole array to provide a coercive (magnetic) force primarily to one side of the sheet. This magnetic material is sold in rolls or master sheets to advertising specialty converters who print them with an advertising message and then die cut into shapes for the advertiser. Printing was originally done by silk screening onto a vinyl surfaced sheet bonded to the magnetic polymer material. A subsequent process that became more popular was offset process printing onto a separate paper sheet and bonding the printed paper sheet to the magnetic sheet. This has been replaced to a large extent now by inkjet and digital printing due to the superior economy of digital printing for shorter production runs and the high quality now associated with digital printing. The printed paper has often been laminated with a clear thin polymer film or UV light-cured clear polymer coating for appearance and smudge resistance prior to bonding to the magnetic sheet. The traditional thickness of flexible magnetic sheeting is 0.3 mm to 0.75 mm thick. After printing the sheet is then die cut, into many smaller pieces from a size of 5 cm×5 cm upwards, in conventional or decorative shapes.
These magnets often contain advertising messages, and/or may be made in the shape and printed image of a souvenir or collectible item of interest to the end-user. In use they also are capable of holding up sheets of paper for reference by the end user. Given the practical and convenient use of these magnets, they are often kept and used for a long period of time, benefiting the advertiser with a long-lasting message and end-user with a decorative, item fulfilling a practical need.
One of the goals of an advertiser is to minimize the cost to have these magnets made, printed and delivered to the end-user. To minimize the cost of delivery, direct mail has been a desired choice, with automated “machinable” mail which can be scanned with automatic bar code reading equipment being the lowest cost. In addition, avoiding multiple steps in production, or complex or manual fabrication keeps costs lower. The simplest mail piece configuration, a postcard avoids the labour and material costs to fold, stuff, and seal and address envelopes and may qualify for lower mass mailing rates.
Another goal is to maximize the probability of the end user reading, and being motivated to keep the magnetic advertising piece, in that way increasing the probability of a purchase or use of the advertising or message, and a higher return on the advertising investment. Increasingly this involves being able to personalize the message to make it relevant to the end-user. With digital printing, unlike offset process or silk screening, it is feasible to have each mail piece unique in its content and images. Databases with information on demographics, past purchasing habits, household income, or such details as presence/absence of children or pets are widely utilized by advertisers. They are incorporated into variable data software in the digital printing process. In addition advertisers can direct end-users to personalized website addresses to enter contests or purchase services.
To obtain problem-free personalization it is advantageous not to have multiple pieces to assemble and in the case of magnets, to avoid trying to sort the die cut magnet pieces to match up the names with an envelope or insert.
With the above factors and the significant weight of the magnet, and the postal sorting problems of the inherent coercive force it has been difficult to achieve low cost mailings with magnets that were effective advertising mediums.
One example of an attempt to overcome these issues is provided in U.S. Pat. No. 5,458,282, issued Oct. 17, 1995 to Crane Productions Inc. Here a magnetic sheet is bonded to one end of a postcard, which is perforated to allow the magnetic portion to be removed. The limitation with the teaching of this example of prior art is that it leaves a magnet force facing outward, potentially jamming sortation equipment, the rough perforated edge to the magnet, the dual thickness affecting stacking of the finished product, and the loss of advertising space taken up by the face of the plain brown magnetic sheet.
An improvement on this prior art by the same inventor, Martin, in U.S. Pat. No. 5,676,307, issued Oct. 14, 1997 to Crane Productions Inc., provides for a tape to be applied to the back of the postcard along the edge of the magnet sheet. This “ramp” is claimed to reduce mailing problems by making the stacking of the cards easier by reducing the sharp “bump” at the edge of the magnetic sheet adhered to the postcard which made the machine stacking of the postcard problematic.
In another patent by Martin, U.S. Pat. No. 6,024,278, issued Feb. 15, 2000 to Crane Productions, Inc. a mailable envelope containing coupons is described. In this prior art a cardstock envelope is constructed with a magnetic sheet on the front, said sheet having a printed face containing postal indicia and address information. In this envelope, coupons are placed with the magnetic sheet holding it to the metal surface. The limitation of this prior art is the cost of assembling a complex multiple part piece and the mailing weight involved.
In U.S. Pat. No. 6,153,280, issued Nov. 28, 2000 to Magnet, LLC, discloses the use of a magnetic strip applied to the back of a postcard, which is internally perforated to allow a portion of the magnetic backed portion to be removed. This has the continuing problem of not being automated mail compatible, and has the same issue as the aforesaid prior art with the unattractive brown magnetic face taking up a significant portion of one side of the card.
U.S. Pat. No. 6,986,953, issued Jan. 17, 2006 to Ward/Kraft Inc., describes a one-side only printed magnetic sheet consisting of a printable paper surface, bonded to a pre-magnetized magnetic sheet layer which is bonded with a frangible adhesive across its complete surface to a non-printed release layer. This sheet is printed with souvenir photos or other remembrances on the removable portions. The resultant sheet after the detachable elements have been removed, retains adhesive residue resulting from the frangible coating, which may be sticky.
To seek another method, U.S. Pat. No. 7,063,258, issued Jun. 20, 2006 to Dan Karolewicz, provides for a small annular magnetic shape glued to the back of a card to provide it with the ability to hold itself to a metal surface. This non-planar combination is placed in an envelope for bulk mailing. This prior art has the limitation of rendering the card non-planar like the two earlier instances noted above, and requiring an envelope for mailing.
In common commercial use today, magnetic postcard mailers are marketed with a conventional cardstock postcard on which a printed magnetic shape has been placed and then held in place with an overlying clear laminate film. The magnet is released by using a sharp point or by bursting through a perforated line in the film around the magnet. Due to the loose nature of the printed magnets being dropped onto the cardstock, the magnet generally must be a generic non-personalized one. This method limits the personalization possible, and requires multiple processes to manufacture cards and magnets separately and then bond the two together.
Also, in commercial use by advertisers, is the practice of creating a generic or personalized magnet in the shape of a credit card and then placing this with a removable adhesive securing it onto a folded letter, or card or pamphlet, which is then placed into an addressed window or plain envelope. This magnetic shape may be constructed of a thin magnetic paper laminate to minimize weight. However this still entails the costly issue of being able to match separately produced magnets with a personalized ad or letter and the fact that the removable advertisement piece, the magnet, is hidden inside an envelope, reducing the odds of its use as a refrigerator magnet.
The term “advertisers” as used in this specification takes its usual commercial meaning, but its meaning is not limited to private enterprises seeking to encourage business such as retailers, restaurants, real estate companies, manufacturers or distributors, as examples. The term may also apply to any level of government or other public sector or non-profit organizations, such as social services organizations, city governments, schools, institutions, sports teams, charitable foundations, cultural or religious organization as examples.
Given the limitations of the prior art, there still remains a need for an innovative and effective way of creating multipurpose magnetic cards. The present invention overcomes these limitations of the prior art by:
A magnetic card product with most or all of these advancements would offer significant advantages and overcome the limitations of the prior art as described above.
The present invention in one aspect comprises a composite magnetic card as hereinafter defined combined with the advantages of a long lasting collectible refrigerator magnet.
Thus, the present invention in one aspect offers novel and superior instant win and promotional cards with superior user appeal, ease of use, security, and with the souvenir removable magnet. The card is novel in providing three features in one card—one or more removable souvenir magnets, the hidden prize or reward message, and advertising messages on the face of the redemption portion of the card.
In a further aspect, this invention offers the established business and end use benefits of both an instant win card and a collectible refrigerator magnet.
In its simplest form, the card contains a flat flexible laminated magnet sheet detachable from a paper cardstock in selected area. In some embodiments, preferably, this composite card is laminated or coated with a polymer on both sides, which protects the magnet, enhances the perceived value of the card.
Further, surprisingly, I have discovered that it is possible in one embodiment to not require an adhesive-frangible or otherwise between the removable magnetic portion and the remainder of the card. I have found that if the magnetic layer is die cut to the desired shape for the shaped detachable portion but leaving non-cut suitably located intermittent portions integral with the magnetic material to be retained to the card, that avoidance of use of an adhesive can be achieved. Non-use of an adhesive results in the card after the desired detachable portion has been detached in the newly visible region not being sticky by residual adhesive and, most preferably, having a clear surface viewable by a recipient to better see any data or design present thereon.
Accordingly, in one aspect, the invention provides a composite magnetic card for bearing printed data comprising
(a) a first planar sheet of paper cardstock having a first face and second face;
(b) a second planar sheet comprising a laminate of magnetic material and a paper layer, having a first face and a second face and defining at least one detachable portion defined by a die cut while having suitably located portions integrally retained to non-detachable magnetic material of said second planar sheet;
wherein said first sheet first face is sufficiently and suitably adhered with an adhesive to said second sheet first face to retain said detachable portion of said second sheet to said first sheet but wherein said adhesive is not disposed at first selected locations between said first sheet and said second sheet within said card.
The cards may bear printed data or designations on the first or second or on both faces of the first sheet either directly thereon or on or under the outer polymer surface of a polymer/cardstock laminate.
Similarly, the second sheet comprising the magnetic material may bear printed data or designations directly on its first face; or its second face directly or on or under an outer polymer surface laminate.
Thus, in this aspect, the invention consists of a multi-layer composite card with printable surfaces, optionally, on both sides, and having on one side a magnetic portion defining a desired shape or shapes removable from the card.
The first layer of the composite card is a paper or plastic sheet bonded to the middle layer by means of a permanent adhesive applied solely in the areas outside the magnet cutout. The middle layer is a magnetic sheet, magnetized with its multi-pole pattern of magnetic force on its face adjacent to the first layer. The magnetic layer is bonded to the third layer with a permanent adhesive over its complete surface. Alternatively, the magnetic layer is a magnetizable coating which has been applied to the third layer. The third layer may be constructed from any suitable material, including but not limited to paper, metallic and plastic sheets. Alternatively this layer may not be a separate sheet adhesively bonded to the magnetic layer but a liquid applied polymer coating which is receptive to printed images and text.
In one embodiment, printing is preferably done on both faces of the first layer, the outer print face bearing an advertising or information message, with the inner face bearing a prize or reward message and security identification numbers. The magnetic layer may be printed on its magnetic face for security or advertising purposes. The third layer is printed on its outer face with decorative images or messages for the removable magnet and the retained portion.
A die cut may be made that extends through the third layer and through the magnetic layer, but not through or substantially into the first layer. The die cut when made, is controlled in depth and by use of strategically located non-cut parts, the magnetic piece is retained until it is removed by the end-user.
The magnetizing of the magnetic layer may be done at the time of its manufacture, or in a preferred embodiment of this invention, it may be magnetized during the construction of the finished product. By magnetizing during the printing and die cutting process, the degree and configuration of magnetization may be chosen. In addition, a security pattern may be embedded by creating unique magnetizing patterns, viewable by means of a magnetic field viewer or electronic magnetic reader to minimize the possibility of counterfeiting.
The cards as hereinabove defined preferably further comprise distinctive magnetic field identification means.
In preferred embodiments, the invention provides a card as hereinabove defined wherein the magnetic material provides the card with portions having a plurality of pitches of magnetic field strength.
In further embodiments, the invention provides a card as hereinabove defined wherein the magnetic material provides the card with portions having a plurality of various distances between magnetic force lines and an imparted distinctive magnetic pattern.
Preferably, the card has magnetic material that provides a distinctive pattern of magnetization across the card.
The die cut shape or shapes in the interior portion of the card may be of any regular geometric or fanciful shape. The card so described may contain a multiple number of such shapes, with one or more of these shapes being a non-retained partially die-cut shape hiding a unique verification number or award qualifier that tears upon removal, revealing tell-tale signs of tampering.
Accordingly, in preferred embodiments, the invention provides a card as hereinabove defined further comprising tamper-evidence means comprising the die-cut having a die-cut line so shaped as to provide the suitably located portions integrally retained to said non-detachable magnetic material.
In further preferred embodiments, the invention provides a card as hereinabove defined wherein the die-cut line is of a zig-zag shape.
In further preferred embodiments, the invention provides a card as hereinabove defined further comprising the detachable portion having inner portions adhered with the adhesive at second selected locations between the first sheet and the second sheet within the card.
The card as described above is preferably cut from two similar sized printed master sheets (press sheets), which may contain space for many cards. In another alternate embodiment the first layer of cardstock is printed on both sides, yielding a message to the end-user, when the magnetic portion is removed.
The printing may be accomplished by means of the many printing processes in use, for example; silkscreen, offset, letterpress, inkjet, gravure, flexographic or laser digital. The use of a digital process enables variable data to be used to full advantage, particularly in placing varying prize or award messages under the removable magnet.
In a further aspect the invention provides a process a process of making a composite magnetic card comprising
(a) feeding
(b) printing desired designations on said first material first printable face and on said second material first printable face by said press;
(c) registering said sheet of first material with said sheet of second material in juxtaposition with each of said second faces facing each other;
(d) selectively applying an adhesive to effect adhesive bonding of said sheet of first material to said sheet of second material at said second faces to produce said composite magnetic card, but not at first selected locations between said first sheet and said second sheet within said card.
The process preferably further comprises printing desired designations on a second material second face.
The card and/or its removable magnetic piece, if included, may be of any imaginative shape and size that fulfills the needs of the advertiser, and acceptable as a postcard if mailed. This may be rectangular, for example, in the shape of common objects, such as a house or automobile, or a fanciful shape.
The cards according to and of use in the practice of the invention may be used, for example, but are not so limited selected from the group consisting of an advertising card, flyer, postcard suitable for mailing, lottery card, contest card, instant win, game card, educational information card, and the like, and business card.
In order that the invention may be better understood, preferred embodiments will now be described, by way of example only, with reference to the accompanying drawings wherein:
Thus, the invention provides a new and advantageous composite magnetic card which is suitable for distribution or mass mailing to end-users. It is to be understood that the description terminology does not limit the uses of the invention.
With reference to the drawings in more detail,
The reverse side of card 10, as shown in
There is a gap in the die cut at suitable locations 27, for example, which enables detachable portion 24 to remain integrally formed with the non-detachable magnetic material adhered to sheet 11, until its facile removal is desired by recipient. Thus, the uncovered surface of sheet 11 has no adhesive residue and is clear for satisfactory viewing.
The spacing and location of these gaps is determined by the shape, and the degree of tamper-evident security required. An advertising card with common low value prize, such as a discount off a future purchase would require little security for example. A varying and high value prize in a lottery would require a more tamper-evident design, and such designs are shown in detail in
As shown in
The reverse side of card 10, as shown in
Second face 34 of cardstock sheet 11 is bonded to first face 36 of magnetic layer 32 with a layer of adhesive 38 over selected locations only. This adhesive layer may be of any suitable adhesive e.g. a water based EVA (ethylene-vinyl acetate), acrylic or a heat-activated hot melt polymer. The permanent non-removable adhesive is applied to and bonds together with those selected portions 33 of sheet 11 where magnetic material 32 is not to be detached from card 10 as shown in
Magnetic layer 32 consists of a calendared rubber or other flexible polymer material 32 having ferrite additives, which can be readily magnetized. Sheet 32 is preferably of a thickness of 0.15 mm to 0.3 mm and is commercially available. In the practise of the invention, it is preferably utilized in a non-magnetized form which facilitates its processing through printing presses containing steel rollers, trays and guides, in the size of the master sheet for print imaging or as a roll, bonded on its whole surface at face 40 to an inner face 42 of paper 44 by adhesive 46.
Adhesive 46 may be applied by the magnetic sheet manufacturer or applied by the advertising specialty or printing converter. The adhesive is most preferably of a permanent nature providing a contiguous bond between the two layers.
Material 44 is composed of any suitable material which most commonly would be paper, cardstock, synthetic paper, plastic film, a liquid applied printable polymer layer, or a metallic plastic film and having a suitable printable surface 22. The thickness and weight of this layer will preferably be the minimum needed to provide sufficient opacity and print quality. In the case of paper stock this minimum would be in the order of a 50 lb. (75 gm/sq.m) paper stock. A clear polymer layer 29 is, in this embodiment, optionally, laminated or coated with a clear protective liquid to layer 44. Cuts 26 are imparted by die cutting, the sharp steel rules of which cut through layers 44, 46 and 32 but not 11. Short gaps in the steel rule at selected locations do not cut layers 44, 46 and 32 or cut at a lesser depth. In this way, removable magnetic piece 24 is temporarily retained but easily detached from cardstock sheet 11 by bending card 10 to a small degree, gripping the removable portion and pulling it free.
In
In
In
In the example, the pitch of the adjacent poles have been changed, as shown as P1 to P5, thus imparting a unique and easily verifiable pattern. This is accomplished by varying with metal spacers the distance between the annular magnets used in the magnetizing machine, wherein a series of these magnets placed on a rotating shaft, where the sheet passes in direction “P”, causes the magnetization of the magnetic sheet on its face 36.
In another alternative enhancement, shown again in
Thus, the removable magnetic portion becomes itself the redemption piece, allowing an automated machine based identification and issuance of prizes or awards in lotteries, contests and rewards. This aspect of the present invention would be extremely advantageous due to the ongoing incidence of fraud from those responsible for selling and redeeming prior art instant win cards.
In an alternative embodiment for the cards postcard application, shown in
In
A new and most advantageous of the cards according to this invention is that it allows, for the first time, the use of variable data from a digital press on a magnetic advertising substrate without the necessity of having to die cut the piece separate from the mailing enclosure or card, which, thus, avoids all the sorting and mismatching issues. In
The personalized data such as name, address and variable images for each recipient on both sides of the card is simply shown as a number 60, 62, 64, 66, 68 and 70, in this embodiment, wherein each number relates to a separate recipient. As an example, the recipients could be vacation travel prospects and the text and images would not only have their addresses but an offer for a type of vacation that may appeal to them based on past purchases, as illustrated in
Instant win cards have been prone to various methods of fraud and tampering. In one prevalent method the retail merchant or distributor of the cards prior to sale or distribution attempts to “peek” at them to identify the biggest winning cards. The present invention offers some unique opportunities to prevent tampering.
In another method, in magnet section “B”, wider gaps of between 0.4 mm and up to 2 mm as typical values, shown as 101, will cause the magnet to tear in a random, fashion, yet will still remain integral enough to expose the prize or winning code. In section “C” a zig-zag die with gaps 103 will create a non-replaceable, non-disguisable, visible tear in the areas adjacent to the die cut lines of the removal, detachable portion. In a practical example the keepsake souvenir magnet may have a small number of relatively small gaps of say 0.4 mm, yielding a smooth, aesthetically pleasing finished shape. The high value prizes may then utilize the underlying adhesive spots 96, 97 or a pattern as described above for sections “B”, and “C”.
A practical manufacturing process of producing a card according to the invention is shown in
Cardstock 11, and composite of magnetic material sheet 32 and a printable layer or coating 44, with its face 22 upwards, each having the same master sheet area dimensions are fed from feed trays 102 and 104, respectively, by conveyers 106 and 108, respectively, to digital printing press 73 in turn. The printing software is programmed such that sheet 11 is fed first and followed by composite sheet 32 and 44, and each is imaged on the top face with the correct layout and location of images through the digital printing heads 77.
Sheet 11 then passes through a duplexer 74 contained in the machine to flip it over so that it exits press 70, with the printed face down. The same duplexer may also be used to image the other side of cardstock 11 if so desired. In addition, the second side of composite sheet 32 and 44 may also be printed if a print receptive surface is available. Such a process may be carried out with the invention in commercial digital printing machines, such as, for example, Konica Minolta C6500® or HP Indigo® or Xerox IGen®.
Upon exiting printing press 73, sheets 11, and composite sheet 32 and 44, are directed towards either an upper or lower conveyor by a paddle 75 which, transfers cardstock 11 to lower conveyor 76 for adhesive pattern application 78, and composite sheet 32 and 44, to upper conveyor 80 to be magnetized 82. After this, a registration mechanism 84 holds lower sheet 11 in place momentarily, while upper composite sheet 32 and 44 proceeds down ramp 85 and is registered with its leading edge. The two attached sheets are then sent through pressure roller 86 to ensure a solid wrinkle free bond. Subsequently, the bonded composite sheet is placed in die cutter 88 which cuts out card 10 to provide it with its removable magnetic piece 24, of, essentially, the desired shape but leaving sufficient and suitably located minor uncut portions remaining integrally with the remaining magnetic material to hold the detachable portion to card 10. This is accomplished through striking the composite with die assembly 91 in which die knives 90 which cut on the perimeter of the removable portion 24 partially through the composite and by knives 89 which cut through completely and define the size and shape of card 10.
Rather than using a die cutter the individual cards may also be cut from the master sheet by means of a guillotine as well.
In
The cards according to the invention may also be produced on a sheet-fed offset ink process press, or ink jet printers instead of the digital press. In addition, the process could be carried out with sheet materials being fed and printed in a roll form, and with magnetic sheet 32 being bonded to a face sheet or being coated with a liquid polymer having a printable surface, in situ rather than being supplied pre-bonded. As well an intermediate polymer film laminating section or a liquid UV light cured section could apply protective films as shown as layers 29 and/or 35 in
In
Although this disclosure has described and illustrated certain preferred embodiments of the invention, it is to be understood that the invention is not restricted to those particular embodiments. Rather, the invention includes all embodiments which are functional or mechanical equivalence of the specific embodiments and features that have been described and illustrated.
This application is the National Stage of International Application No. PCT/CA2008/000249, filed on Feb. 8, 2008 which is continuation-in-part of U.S. application Ser. No. 11/707,998, filed on Feb. 20, 2007, now U.S. Pat. No. 7,707,758, which is hereby incorporated by reference into this specification.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA2008/000249 | 2/8/2008 | WO | 00 | 7/24/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/101315 | 8/28/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3230650 | Orkin | Jan 1966 | A |
5284365 | Stuart | Feb 1994 | A |
5458282 | Martin | Oct 1995 | A |
5736212 | Fischer | Apr 1998 | A |
6153279 | Charley | Nov 2000 | A |
6217405 | Burrows | Apr 2001 | B1 |
6508904 | Charley | Jan 2003 | B1 |
6773181 | Crum | Aug 2004 | B2 |
6824135 | Stancik | Nov 2004 | B2 |
6986953 | Crum | Jan 2006 | B2 |
7225568 | Rizzo et al. | Jun 2007 | B1 |
7293701 | Halbur et al. | Nov 2007 | B2 |
7707758 | Stagg | May 2010 | B2 |
20020130511 | Thompson et al. | Sep 2002 | A1 |
20030049403 | Crum | Mar 2003 | A1 |
20030049404 | Mercer et al. | Mar 2003 | A1 |
20030067159 | Ritchie et al. | Apr 2003 | A1 |
20030070338 | Roshkoff | Apr 2003 | A1 |
20030077465 | Boudouris et al. | Apr 2003 | A1 |
20030090103 | Becker | May 2003 | A1 |
20040247366 | Crum | Dec 2004 | A1 |
20050040640 | Becker | Feb 2005 | A1 |
20050163980 | Crum | Jul 2005 | A1 |
20060036492 | Becker | Feb 2006 | A1 |
20060037221 | Reynolds | Feb 2006 | A1 |
20060087112 | Ritchie et al. | Apr 2006 | A1 |
20060151340 | Meister | Jul 2006 | A1 |
20060248765 | Bodinet | Nov 2006 | A1 |
20070029789 | Lowry et al. | Feb 2007 | A1 |
20070256342 | Marquardt et al. | Nov 2007 | A1 |
20080173702 | Meister | Jul 2008 | A1 |
20080196284 | Stagg | Aug 2008 | A1 |
20080217907 | Dean et al. | Sep 2008 | A1 |
20090193629 | Suenaga | Aug 2009 | A1 |
Number | Date | Country |
---|---|---|
2322347 | Apr 2002 | CA |
2351142 | Dec 2002 | CA |
Number | Date | Country | |
---|---|---|---|
20100096465 A1 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11707998 | Feb 2007 | US |
Child | 12524384 | US |