1. Field of the Invention
This invention relates to switch-mode power converters and more specifically to an improved magnetic core structure that reduces the fringing flux and winding eddy current losses by eliminating the air gap.
2. Description of the Related Art
Switch-mode power converters are key components in many military and commercial systems for the conversion, control and conditioning of electrical power and they often govern size and performance. Power density, efficiency and reliability are key metrics used to evaluate power converters. Transformers and inductors used within these power converters constitute a significant percentage of their volume and weight, hence determine their power density, specific power, efficiency and reliability.
Gapping of magnetic cores is standard practice for inductor assemblies to provide localized energy storage and prevent core saturation. The air gap can withstand very high magnetic fields, hence supports the applied magnetomotive force almost entirely and provides local energy storage. Due to its low permeability compared to the core material, the air gap increases the overall magnetic reluctance of the core thereby maintaining the flux and the flux density below the saturation limits of the core material. The high permeability core material provides a path for the closure of the magnetic flux lines and also houses the winding turns to generate the required magnetomotive force in the core.
Integrated magnetics provides a technique to combine multiple inductors and/or transformers in a single magnetic core. It is amenable to interleaved current multiplier topologies where the input or output current is shared between multiple inductors. Integrated magnetics offers several advantages such as improved power density and reduced cost due to elimination of discrete magnetic components, reduced switching ripple in inductor currents over a discrete implementation and higher efficiency due to reduced magnetic core and copper losses. Planar magnetics, where transformer and inductor windings are synthesized as copper traces on a multi-layer printed circuit board (PCB) offer several advantages, especially for low-power dc—dc converter applications, such as low converter profile, improved power density and reliability, reduced cost, and close coupling between the windings.
The integrated magnetics assembly 10 shown in
As shown in
Inductance is primarily determined by the core reluctance and the number of turns. Since the relative permeability of air is negligible compared to that of the core material, the reluctance, along the inductive flux path, of an E-core with a gapped center leg is dominated by that of the air gap. One limitation on the cross sectional area of the center leg and hence of the air gap is fringing flux. Like bright light from one room leaking under a door into a dark second room, a portion of the flux from the air gap 32 spills onto the width of the core window 36 and impinges on the planar windings therein. This is schematically illustrated in
Loss of inductance due to fringing flux results in increased switching ripple and hence higher I2R losses in the windings and the semiconductor devices. In addition, a higher output capacitance is required to accommodate the higher inductor current ripple resulting in reduced power density.
The present invention provides a magnetic core that reduces the fringing flux resulting in lower eddy current losses for both planar and vertical winding structures and reduces inductance loss while preventing core saturation.
This is accomplished with a composite core without an air gap, formed of two materials, one with high permeability and the second with lower permeability than the first material and high saturation flux density to provide energy storage. The composite core is configured such that the low permeability, high saturation material is located where the magnetic flux accumulates from the high permeability sections of the core. The low permeability and high saturation flux density of the magnetic material allows it to withstand high magnetic fields without saturation and provide localized energy storage similar to an air gap.
The presence of magnetic material having relatively high permeability as compared to air in the space where the air gap would have existed does a better job of keeping the flux confined within the core thereby preventing fringing flux from spilling out onto the winding arrangement. Introduction of the low permeability material with a finite saturation flux density to replace the air gap requires careful design of the complete core to ensure that the flux density at each section of the core, in response to the applied magnetic field, does not exceed the saturation limit of the corresponding material used to synthesize that section.
The permeabilities of the two materials that form the composite core should differ significantly to ensure that the energy is stored primarily in the low permeability section of the core. A typical permeability ratio between the two materials is about 20:1, while a ratio of 10:1 is adequate to achieve satisfactory performance. A wide variation in permeability results in the applied magnetomotive force to be almost entirely supported in the low permeability section of the composite core.
The composite core may be configured in any number of ways to implement winding structures for integrated magnetics in both isolated and non-isolated power converters. The core may be synthesized through conventional “E-I” or “E—E” structures or custom structures such as coupled toroids and matrix integrated magnetics (MIM) structures such as a “+”, “radial” or “Extended-E”. In non-isolated converters using integrated magnetics where multiple inductors share one core, the base, top plate and/or the center leg or portions thereof may be formed from the low permeability material. In isolated converter topologies using integrated magnetics where one magnetic core is shared between multiple transformers and inductors, a high permeability path for the transformer component of the flux has to be made available thereby allowing all or a portion of only the center leg to be formed of the low permeability material.
These and other features and advantages of the invention will be apparent to those skilled in the art from the following detailed description of preferred embodiments, taken together with the accompanying drawings, in which:
a and 2b, as described above are perspective and section views of a planar magnetic structure using conventional horizontal windings;
a and 6b are section views of a composite core from a conventional E-I structure showing the confinement of the magnetic flux within the core volume for both planar and vertical winding arrangements;
a through 7b are section views of a composite “EI” core for use in isolated and non-isolated power converters;
a through 8c are section views of alternate composite E-I cores for use in isolated or non-isolated power converter;
a through 9c are section views of additional composite E-I cores for use in non-isolated power converters; and
a and 10b are perspective views of “+” and “Extended-E” matrix integrated magnetics (MIM) cores.
The present invention provides a magnetic core that reduces the fringing flux for both planar and vertical winding structures thereby lowering eddy current losses and loss of inductance.
Although air is an ideal gapping material from the perspective of preventing core saturation since it can support very high magnetic fields, it results in fringing flux due to its very low permeability compared to that of core materials. Air has a relative permeability of one and does not saturate. In other words its saturation flux density is infinite. When the flux encounters an air gap in its magnetic path, a portion spills out of the air gap and impinges on the planar winding assembly inducing undesirable eddy currents. The fringing flux results in loss of inductance, which results in increased switching ripple leading to higher losses in the windings and semiconductor devices.
The ideal material would have both an infinite saturation flux density to prevent core saturation and a high permeability to produce a desired inductance for a given number of windings thereby suppressing fringing flux. Unfortunately this ideal material does not exist.
As illustrated schematically in
The presence of magnetic material 54 with higher permeability than air in the space where the air gap would have existed keeps the flux confined within the core thereby preventing fringing flux from spilling out into the winding arrangement. Introduction of the low permeability material 54 with a finite saturation flux density to replace the air gap requires careful design of the complete core assembly to ensure that the flux density at each section of the core, in response to the applied magnetic field, does not exceed the saturation limit of the corresponding material used to synthesize that section of the core. Examples of high permeability materials 52 include ferrites, laminated silicon steel and Metglas. Permeability of ferrites is in the 700–2000 range while that of silicon steel and Metglas laminations can be as high as 10,000. Examples of low permeability materials 54 include powdered iron, magnetic nanocomposites and powdered permalloy. The saturation flux density of ferrites is in the 350–450 mT range, while that of laminated silicon steel and Metglas and low permeability materials such as powdered iron, magnetic nanocomposites and powdered permalloy is in the 1–2 T range.
The permeabilities of the two materials that form the composite core should differ significantly to ensure that the energy is stored primarily in the low permeability section of the core. A typical permeability ratio between the two materials is about 20:1 while a ratio is 10:1 is adequate to achieve satisfactory performance. A wide variation in permeability results in the applied magnetomotive force to be almost entirely supported in the low permeability section of the composite core thereby allowing localized energy storage.
All else being equal, the volume of low permeability material 54 is necessarily greater than that of the air gap to compensate for its higher relative permeability and finite saturation flux density. As a result, this composite core configuration balances the requirements of reducing fringing flux to lower eddy current losses and reduce loss of inductance while preventing core saturation without necessarily increasing either the height or width of the core or the number of winding turns.
The composite core 50 is configured such that the low permeability, high saturation material 54 is located where the flux accumulates from the high permeability sections 52. For the E-core structure shown in
As shown in
As shown in
If, for example, the low permeability material 54 is used in the center leg of an E-core to replace the air gap therein, a first-order estimate of the height of the low permeability material, is determined by the height of the air gap it is replacing, the relative permeability of the material and cross sectional area of the center leg. Assuming constant cross section and constant number of windings, the estimate is the height of the air gap multiplied by the relative permeability of the material. Since the permeabilities are significantly different, the reluctance of the composite core is determined primarily by that of the low permeability section. Hence, increase in height of the low permeability section of the center leg can be accommodated by proportionally reducing the height of the high permeability section thereby maintaining the overall height of the core constant. The final composite core design including core geometry and dimensions, choice of materials and their corresponding volume fractions and physical location in the core and, number of turns must be determined through a detailed optimization process to achieve the required performance while minimizing overall core volume and weight.
The composite core may be configured in any number of ways to implement a particular winding structure for both isolated and non-isolated power converters. For example, the core may be a conventional “E-I” as illustrated above or a conventional “E—E” structure. Alternately, the core may be formed as a coupled toroid or a matrix integrated magnetics (MIM) structure such as a “rectangular”, “radial” or “Extended-E”. The MIM core structures are detailed in copending patent applications entitled ““Core Structure”, filed Apr. 18, 2002” and “Extended E Matrix Integrated Magnetics (MIM) Core” filed Aug. 19, 2004, which are incorporated by reference. The MIM core provides for ultra-low profile magnetics, resulting in better core utilization, larger inductance, improved efficiency and lower losses over conventional E-core designs. The MIM core can also be configured in a cellular arrangement in a multi-phase configuration to effectively produce output voltages with reduced ripple or in multiple output converters.
As shown in
As shown in
While several illustrative embodiments of the invention have been shown and described, numerous variations and alternate embodiments will occur to those skilled in the art. Such variations and alternate embodiments are contemplated, and can be made without departing from the spirit and scope of the invention as defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3433998 | Wolber | Mar 1969 | A |
3622868 | Todt | Nov 1971 | A |
5126714 | Johnson | Jun 1992 | A |
5134771 | Lee et al. | Aug 1992 | A |
5335163 | Seiersen | Aug 1994 | A |
5784266 | Chen | Jul 1998 | A |
6348848 | Herbert | Feb 2002 | B1 |
6362986 | Schultz et al. | Mar 2002 | B1 |
6549436 | Sun | Apr 2003 | B1 |
20020114172 | Webb et al. | Aug 2002 | A1 |
Number | Date | Country |
---|---|---|
3215911 | Sep 1991 | JP |