Composite material and current collector for battery

Information

  • Patent Grant
  • 7033703
  • Patent Number
    7,033,703
  • Date Filed
    Friday, December 20, 2002
    22 years ago
  • Date Issued
    Tuesday, April 25, 2006
    18 years ago
Abstract
A composite material including a first carbon foam structure including a network of pores and a second carbon foam structure including a network of pores. An intermediate bonding structure is disposed at least in part between the first and second carbon foam structures.
Description
TECHNICAL FIELD

This invention relates generally to a composite material and, more particularly, to a composite material current collector for an energy storage device.


BACKGROUND

Lead acid batteries are known to include at least one positive current collector, at least one negative current collector, and an electrolytic solution including, for example, sulfuric acid (H2SO4) and distilled water. Ordinarily, both the positive and negative current collectors in a lead acid battery are constructed from lead. The role of these lead current collectors is to transfer electric current to and from the battery terminals during the discharge and charging processes. Storage and release of electrical energy in lead acid batteries is enabled by chemical reactions that occur in a paste disposed on the current collectors. The positive and negative current collectors, once coated with this paste, are referred to as positive and negative plates, respectively. A notable limitation on the durability of lead acid batteries is corrosion of the lead current collector of the positive plate.


The rate of corrosion of the lead current collector is a major factor in determining the life of the lead acid battery. Once the sulfuric acid electrolyte is added to the battery and the battery is charged, the current collector of each positive plate is continually subjected to corrosion due to its exposure to sulfuric acid and to the anodic potentials of the positive plate. One of the most damaging effects of this corrosion of the positive plate current collector is volume expansion. Particularly, as the lead current collector corrodes, lead dioxide is formed from the lead source metal of the current collector. This lead dioxide corrosion product has a greater volume than the lead source material consumed to create the lead dioxide. Corrosion of the lead source material and the ensuing increase in volume of the lead dioxide corrosion product is known as volume expansion.


Volume expansion induces mechanical stresses on the current collector that deform and stretch the current collector. At a total volume increase of the current collector of approximately 4% to 7%, the current collector may fracture. As a result, battery capacity drops, and eventually, the battery will reach the end of its service life. Additionally, at advanced stages of corrosion, internal shorting within the current collector and rupture of the cell case can occur. Both of these corrosion effects may lead to failure of one or more of the cells within the battery.


One method of extending the service life of a lead acid battery is to increase the corrosion resistance of the current collector of the positive plate. Several methods have been proposed for inhibiting the corrosion process in lead acid batteries. Because carbon does not oxidize at the temperatures at which lead acid batteries generally operate, some of these methods have involved using carbon in various forms to slow or prevent the detrimental corrosion process in lead acid batteries. For example, U.S. Pat. No. 5,512,390 (hereinafter the '390 patent) discloses a lead acid battery that includes current collectors made from graphite plates instead of lead. The graphite plates have sufficient conductivity to function as current collectors, and they are more corrosion resistant than lead. Substituting graphite plates for the lead current collectors may, therefore, lengthen the life of a lead acid battery.


While the battery of the '390 patent may potentially offer a lengthened service life as a result of reduced corrosion at the positive plate, the graphite plates of the '390 patent are problematic. For example, the graphite plates of the '390 patent are dense, flat sheets of material each having a relatively small amount of surface area. Unlike lead electrode plates of a conventional lead acid battery, which are generally patterned into a grid-like structure to increase the available surface area of the plates, the graphite plates of the '390 patent are smooth sheets with no patterning. In lead acid batteries, an increase in surface area of the current collector may increase the specific energy of the battery and, therefore, may translate into improved battery performance. More surface area on the current collectors may also lead to a reduction in the time required for charging and discharging of the battery. The relatively small surface area of the graphite plates of the '390 patent results in poorly performing batteries that have slow charging speeds.


Additionally, the graphite plates of the '390 patent lack the toughness of lead current collectors. The dense graphite plates of the '390 patent are brittle and may fracture when subjected to physical shock or vibration. Such physical shock and vibration commonly occur in vehicular applications, for example. Any fracturing of the graphite plates would lead to the same problems caused by volume expansion of ordinary lead current collectors. Therefore, despite offering an increased resistance to corrosion compared to conventional lead current collectors, the brittle nature of the graphite plates of the '390 patent could actually result in battery service lives shorter than those possible through use of ordinary lead current collectors.


SUMMARY OF THE INVENTION

One aspect of the present invention includes a composite material. The composite material includes a first carbon foam structure including a network of pores and a second carbon foam structure including a network of pores. An intermediate bonding structure is disposed at least in part between the first and second carbon foam structures.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate exemplary embodiments of the invention and, together with the written description, serve to explain the principles of the invention. In the drawings:



FIG. 1 is a cross-sectional view of a composite material in accordance with an exemplary embodiment of the present invention;



FIG. 2A is a plan view of a current collector in accordance with an exemplary embodiment of the present invention;



FIG. 2B is a cross-sectional view of the current collector of FIG. 2A taken along the line 2A;



FIG. 3A is a plan view of another current collector in accordance with an exemplary embodiment of the present invention;



FIG. 3B is a cross-sectional view of the current collector of FIG. 3A taken along the line 3B;



FIG. 4 is a diagrammatic cut-away representation of a battery in accordance with an exemplary embodiment of the present invention.





DETAILED DESCRIPTION

In the following description, reference is made to the accompanying drawings that form a part thereof, and in which is shown by way of illustration specific exemplary embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that changes may be made without departing from the scope of the present invention. The following description is, therefore, not to be taken in a limited sense. Wherever possible, the same reference numbers are used throughout the drawings to refer to the same or like parts.


As shown in FIG. 1, according to one embodiment of the invention, composite material 10 includes two layers of porous carbon foam 11, 13. A intermediate bonding material 12 is disposed between carbon foam layers 11 and 13. Bonding material 12 attaches carbon foam layers 11 and 13 together and provides structural support for composite material 10.


The carbon foam used to form carbon foam layers 11 and 13 of composite material 10 is electrically conductive. In certain forms, the carbon foam may offer sheet resistivity values of less than about 1 ohm/cm. In still other forms, the carbon foam may have sheet resistivity values of less than about 0.75 ohm/cm. The electrical conductivity of carbon foam layers 111 and 13 allows composite material 10 to be used in a variety of applications such as, for example, current collectors in batteries.


The carbon foam used to form carbon foam layers 11 and 13 of composite material 10 is also resistant to corrosion. In general, carbon oxidizes only at very high temperatures and will resist corrosion even in corrosive environments. The carbon foam used in composite material 10 retains this corrosion resistance, and therefore, composite material 10 may be used, for example, in the corrosive environment of a lead acid battery.


Additionally, carbon foam layers 11 and 13 are lightweight due to the presence of a network of pores 14. In one embodiment of the invention, for example, the carbon foam may include a total porosity value of at least about 60%. In other words, at least 60% of the volume of carbon foam layers 11 and 13 is included within pores 14. Moreover, the carbon foam may have an open porosity value of at least about 90%. In other words, at least 90% of pores 14 are open to adjacent pores such that the network of pores 14 forms a substantially open network. This open network of pores 14 may result in a density of less than about 0.6 gm/cm3 for each of carbon foam layers 11 and 13. Further, the average pore size of the carbon foam may be between about 0.25 mm and about 2.0 mm, although other sizes may also be possible.


In addition to carbon foam, graphite foam may also be used to form composite material 10. One such graphite foam, under the trade name PocoFoam™, is available from Poco Graphite, Inc. The density and pore structure of graphite foam may be similar to carbon foam. A primary difference between graphite foam and carbon foam is the orientation of the carbon atoms that make up the structural elements of the foam. For example, in carbon foam, the carbon may be primarily amorphous. In graphite foam, however, much of the carbon is ordered into a graphite, layered structure. Because of the ordered nature of the graphite structure, graphite foam offers higher conductivity than carbon foam. PocoFoaM™ graphite foam exhibits electrical resistivity values of between about 100 μΩ/cm and about 400 μΩ/cm.


In composite material 10, bonding material 12 is disposed between carbon foam layers 11 and 13. Bonding material 12 attaches carbon foam layers 11 and 13 together by permeating at least some of pores 14 of carbon foam layer 11 and at least some of pores 14 of carbon foam layer 13. In an exemplary embodiment, bonding material 12 permeates the pores of carbon foam layer 11 by a depth equal to or greater than an average pore size of layer 11. Similarly, in the exemplary embodiment, bonding material 12 may permeate the pores of carbon foam layer 13 by a depth equal to or greater than an average pore size of layer 13. The depth of permeation of bonding material 12 into carbon foam layers 11 and 13 is not limited to depths of at least the average pore size of layers 11 and 13. Rather, a suitable bond may be created with a penetration depth sufficient to include at least one carbon structure (e.g., elements bordering a pore) within foam layers 11 and 13. The permeation of bonding material 12 into carbon foam layers 11 and 13 is represented in FIG. 1 by permeation zones 15 and 16, respectively.


A variety of materials may be used as bonding material 12. Bonding material 12 may include an electrically insulating material including a polymer. For example, in one embodiment, bonding material 12 may include polypropylene. In yet another embodiment, bonding material 12 may include any of a wide range of epoxies. In still another embodiment, an electrically conductive material may be used as bonding material 12. Such electrically conductive materials may include, for example, various metals and electrically conductive polymers.


To make the composite material of one embodiment of the present invention, a bonding material may be applied to a sheet of carbon foam material. Next, a second sheet of carbon foam material may be placed on the bonding material to form a stacked structure. If the bonding material is applied as a solid, such as in the case of most polymers and metals, then heat may be applied to the stacked structure to soften and/or melt the bonding material. Softening and/or melting of the bonding material encourages permeation of the bonding material into the pores of the carbon foam. In addition to heat, pressure can also be applied to the stacked structure. The application of external pressure may aid in forcing the bonding material to permeate the pores of the carbon foam. In an exemplary embodiment of the present invention, heat and pressure are applied simultaneously. In certain situations, however, heat may be applied exclusive of pressure. In still other situations, the application of heat may occur separate from the application of pressure.


In instances where the bonding material is applied as a liquid, such as an epoxy, for example, the bonding material may permeate the pores of each of the two sheets of carbon foam without the need for applying heat or pressure. Nevertheless, even in the case of bonding materials applied as a liquid, the application of heat and/or pressure, either together or individually, may facilitate permeation of the bonding material into the pores of the carbon foam by reducing the viscosity of the bonding material.



FIGS. 2A and 2B illustrate a current collector 20 that includes the composite material of one embodiment of the present invention. As shown in FIGS. 2A and 2B, current collector 20 includes carbon foam layers 11 and 13 bonded together by a conductive bonding material 22. Bonding material 22 permeates at least some of the pores of the carbon foam layers 11 and 13. Further, bonding material 22 may permeate the pores of carbon foam layers 11 and 13 by a depth equal to or greater than an average pore size of layers 11 and 13, respectively.


An electrical connection element 21 is disposed within bonding material 22 and provides an external, electrical connection for current collector 20. Electrical connection element 21 includes a tab 31 that extends beyond an edge of either or both of carbon foam layers 11 and 13. Electrical connection element 21 also includes at least one electrically conductive portion (not shown) that extends within current collector 20. Electrical connection element 21 may be formed using various different conductive materials, such as but not limited to metals, suitable for providing an electrical connection to either or both of carbon foam layers 11 and 13.


In the exemplary embodiment shown in FIGS. 2A and 2B, bonding material 22 of current collector 20 is an electrically conductive material. For example, bonding material 22 may include a metal or an electrically conductive polymer. Because bonding material 22 is electrically conductive, an external electrical connection to current collector 20 may be made using only one electrical connection element 21. Particularly, tab 31 can make electrical contact to both carbon foam layers 11 and 13 through bonding material 22.



FIGS. 3A and 3B illustrate another current collector 40 including the composite material of the present invention. As shown in FIGS. 3A and 3B, current collector 40 includes carbon foam layers 11 and 13 bonded together by a bonding material 42. Similar to the bonding material of composite material 10, bonding material 42 permeates at least some of the pores of the carbon foam layers 11 and 13. Further, bonding material 42 may permeate the pores of carbon foam layers 11 and 13 by a depth equal to or greater than an average pore size of layers 11 and 13, respectively.


In the exemplary embodiment shown in FIGS. 3A and 3B, bonding material 42 is an electrically insulating material. Because bonding material 42 is electrically insulating, an external electrical connection to current collector 40 may be made using two electrical connection elements 21. Particularly, when making current collector 40, a first electrical connection element 21 may be disposed on, for example, carbon foam layer 11. Then, bonding material 42 is applied to both the first electrical connection element and to carbon foam layer 11. Because electrically insulating bonding material 42 coats the first electrical connection element 21, an additional electrical connection element may be required to make contact with carbon foam layer 13, which is applied to the bonding material 42 to create a stacked structure. Therefore, prior to placing carbon foam layer 13 on bonding material 42, a second electrical connection element 21 may be placed on bonding material 42. The second electrical connection element 21 provides an external electrical contact with carbon foam layer 13.


Accordingly, two electrical connection elements 21 are shown in FIG. 3B. Each resides at an interface between bonding material 42 and carbon foam layers 11 and 13, respectively. Electrical connection elements 21 may be configured with some open space or porosity so as not interfere with permeation of bonding material 42 into the pores of the respective carbon foam layers.


While the exemplary embodiment of the present invention illustrated in FIG. 3B includes two electrical connection elements 21, electrical connections to the carbon foam layers 11 and 13 may be accomplished through alternative configurations. For example, a single electrical connection element 21 may be configured such that electrically conductive portions 33 make electrical contact to both carbon foam layers 11 and 13. For example, conductive portions 33 may be arranged such that some of the conductive portions contact foam layer 11 and other conductive portions contact foam layer 13. Alternatively, electrical connection element 21 may be sized with a sufficient thickness relative to the thickness of bonding material 42 such that a single connection element 21 may contact both foam layers 11 and 13. In these exemplary instances, one electrical connection element 21 would be sufficient.



FIG. 4 illustrates a battery 100 in accordance with an exemplary embodiment of the present invention. Battery 100 includes a housing 110 and terminals 120, which are external to housing 110. At least one cell 130 is disposed within housing 110. While only one cell 130 is necessary, multiple cells may be connected in series to provide a desired total potential of battery 100.


Each cell 130 may be composed of alternating positive and negative plates immersed in an electrolytic solution including, for example, sulfuric acid and distilled water. Both the positive and negative plates include a current collector packed with a paste material, including, for example, an oxide of lead. As noted above, FIGS. 2A, 2B, 3A, and 3B illustrate current collectors 20 and 40 according to exemplary embodiments of the present invention that may be used to form the positive and/or negative plates of battery 100. Chemical reactions in the paste disposed on the current collectors of the battery enable storage and release of energy. The composition of this paste, and not the material selected for the current collector, determines whether a given current collector functions as either a positive or a negative plate.


To create the positive and negative plates of battery 100, a chemically active paste is applied to current collectors 20, 40 such that the chemically active paste penetrates the network of pores in the carbon foam of the current collector. Initially, the chemically active paste that is applied to the current collectors 20, 40 of both the positive and negative plates may be substantially the same in terms of chemical composition. For example, the paste may include lead oxide (PbO). Other oxides of lead may also be suitable. The paste may also include various additives including, for example, varying percentages of free lead, structural fibers, conductive materials, carbon, and extenders to accommodate volume changes over the life of the battery. In practice, the constituents of the chemically active paste may be mixed with a small amount of sulfuric acid and water to form a paste that may be disposed within pores 14 of the current collectors 20, 40.


Once the paste has been deposited on current collectors 20, 40 the positive and negative plates are formed. To create a positive plate, current collectors 20, 40 including lead oxide paste, for example, are subjected to a curing process. This curing process may include exposing the pasted current collectors 20, 40 to elevated temperature and humidity to encourage growth of lead sulfate crystals within the paste. To create the negative plate, current collectors 20, 40 including the lead oxide paste may be left “as is”, with the exception of an optional step of drying.


When the positive and negative plates have been assembled together to form the cells of a battery 100 (shown in FIG. 4), battery 100 is subjected to a charging (i.e., formation) process. During this charging process, the cured paste of the positive plate is electrically driven to lead dioxide (PbO2), and the paste of the negative plate is converted to sponge lead. Conversely, during subsequent discharge of the battery 100, the pastes of both positive and negative plates convert toward lead sulfate.


Industrial Applicability


The composite material of the present invention is useful in any of a wide variety of applications where materials with corrosion resistance, high surface area, electrical conductivity, or low weight would be desirable. In one possible application, the composite material of the present invention may serve as a current collector in a battery, such as a lead acid battery, for example. Current collectors may support the chemically active components of the battery and promote the flow of current between terminals of the battery.


Because current collectors 20, 40 include carbon foam, these current collectors resist corrosion even when exposed to sulfuric acid and to the anodic potentials of the positive plate in a lead acid battery. As a result, the battery may offer a significantly longer service life as compared to batteries without carbon foam current collectors.


The carbon foam includes a network of pores, which provides a large amount of surface area for each current collector 20, 40. Current collectors composed of carbon foam may exhibit more than 2000 times the amount of surface area provided by conventional lead current collectors. The large amount of surface area associated with current collectors 20, 40 translates into batteries having large specific energy values. For example, because of the open cell, porous network and relatively small pore size of the carbon foam materials, the chemically active paste of the positive and negative plates is intimately integrated with the conductive carbon material of current collectors 20, 40. Therefore, electrons produced in the chemically active paste at a particular reaction site must travel only a short distance through the paste before encountering the conductive carbon foam of current collectors 20, 40. This current may then be carried by the electrically conductive portion 33 of the electrical connection element 21, for example.


As a result, batteries with carbon foam current collectors 20, 40 may offer improved specific energy and power values. In other words, these batteries, when placed under a load, may sustain their voltage above a predetermined threshold value for a longer time than some conventional batteries, including those having either lead current collectors or graphite plate current collectors. Also, these batteries may discharge more quickly than batteries including either lead current collectors or graphite plate current collectors.


The increased specific power values offered by batteries of the present invention may also translate into reduced charging times. Therefore, the batteries may be suitable for applications in which charging energy is available for only a limited amount of time. For instance, in vehicles, a great deal of energy is lost during ordinary braking. This braking energy may be recaptured and used to charge a battery of, for example, a hybrid vehicle. The braking energy, however, is available only for a short period of time (i.e., while braking is occurring). In view of their reduced charging times, the batteries of the present invention may provide an efficient means for storing such braking energy.


The porous nature of the carbon foam current collectors also creates an improved substrate for retaining the chemically active paste of the energy storage device. By impregnating the paste into pores of the carbon foam current collectors, the paste is less likely to separate from the current collectors. This property is important in vehicle and other applications where vibration is common.


Further, by including carbon foam current collectors having a density of less than about 0.6 g/cm3, a battery may weigh substantially less that batteries including either lead current collectors or graphite plate current collectors. Other aspects and features of the present invention can be obtained from a study of the drawings, the disclosure, and the appended claims.

Claims
  • 1. A current collector for a battery, comprising: a first carbon foam structure including a network of pores;a first electrical connection element coupled with the first carbon foam structure;an intermediate bonding structure coupled with the first electrical connection element and the first carbon foam structure; anda second carbon foam structure, including a network of pores, coupled with the intermediate bonding structure.
  • 2. The current collector of claim 1, wherein the intermediate bonding structure comprises an electrically conductive material.
  • 3. The current collector of claim 2, wherein the first electrical connection element comprises a tab that extends beyond an edge of at least one of the first carbon foam structure and the second carbon foam structure, the tab being electrically coupled with both the first and second carbon foam structures.
  • 4. The current collector of claim 1, wherein the intermediate bonding structure comprises an insulating material.
  • 5. The current collector of claim 4, further comprising a second electrical connection element disposed between the intermediate bonding structure and the second carbon foam structure.
  • 6. The current collector of claim 5, wherein the first and second electrical connection elements each comprise an electrically conductive tab and at least one electrically conductive portion extending from the tab.
  • 7. The current collector of claim 6, wherein the tab of the first electrical connection element is electrically coupled with the first carbon foam structure, and the tab of the second electrical connection element is electrically coupled with the second carbon foam structure.
  • 8. The current collector of claim 6, wherein the at least one electrically conductive portion comprises a metal.
  • 9. The current collector of claim 1, wherein at least one of the first and second carbon foam structures comprises graphite foam.
  • 10. The current collector of claim 1, wherein at least one of the first and second carbon foam structures has a total porosity value of at least about 60%.
  • 11. The current collector of claim 1, wherein at least one of the first and second carbon foam structures has an open porosity value of at least about 90%.
  • 12. The current collector of claim 1, wherein each of the first and second carbon foam structures has an average pore size of between about 0.25 mm and about 2.0 mm.
  • 13. The current collector of claim 1, wherein the intermediate bonding structure permeates at least some of the pores of the first carbon foam structure and at least some of the pores of the second carbon foam structure.
  • 14. The current collector of claim 1, wherein the intermediate bonding structure permeates the pores of the first carbon foam structure by a depth equal to or greater than an average pore size of the first carbon foam structure.
  • 15. The current collector of claim 1, wherein the intermediate bonding structure permeates the pores of the second carbon foam structure by a depth equal to or greater than an average pore size of the second carbon foam structure.
  • 16. The current collector of claim 1, wherein the intermediate bonding structure comprises a polymer.
  • 17. The current collector of claim 16, wherein the intermediate bonding structure comprises polypropylene.
  • 18. The current collector of claim 1, wherein the intermediate bonding structure comprises a metal.
  • 19. A battery comprising: a housing;a positive terminal and a negative terminal;at least one cell disposed within the housing and including at least one positive plate and at least one negative plate connected to the positive terminal and negative terminal, respectively; andan electrolytic solution filling a volume between the positive and negative plates;wherein the at least one positive plate further includes a first carbon foam structure including a network of pores;a first electrical connection element coupled with the first carbon foam element;an intermediate bonding structure coupled with the first electrical connection element and the first carbon foam structure;a second carbon foam structure, including a network of pores, coupled with the intermediate bonding structure; anda chemically active paste disposed on the first and second carbon foam structures such that the chemically active paste penetrates at least some of the pores of both the first and second carbon foam structures.
  • 20. The battery of claim 19, wherein the intermediate bonding structure permeates at least some of the pores of the first carbon foam structure and at least some of the pores of the second carbon foam structure.
  • 21. The battery of claim 20, wherein the intermediate bonding structure permeates the pores of the first carbon foam structure by a depth equal to or greater than an average pore size of the first carbon foam structure.
  • 22. The battery of claim 20, wherein the intermediate bonding structure permeates the pores of the second carbon foam structure by a depth equal to or greater than an average pore size of the second carbon foam structure.
  • 23. The battery claim 19, wherein at least one of the first and second carbon foam structures comprises graphite foam.
  • 24. The battery of claim 19, wherein at least one of the first and second carbon foam structures has a total porosity value of at least about 60%.
  • 25. The battery of claim 19, wherein at least one of the first and second carbon foam structures has an open porosity value of at least about 90%.
  • 26. The battery of claim 19, wherein each of the first and second carbon foam structures has an average pore size of between about 0.25 mm and about 2.0 mm.
  • 27. A lead acid battery comprising: a housing;a positive terminal and a negative terminal external to the housing;a plurality of cells connected in series between the positive terminal and the negative terminal;a plurality of positive plates and a plurality of negative plates disposed in alternating series within each of the plurality of cells; andan electrolytic solution disposed within the housing and filling a volume between adjacent pairs of positive and negative plates;wherein both the plurality of positive plates and the plurality of negative plates further include a multi-layered structure comprising a first carbon foam structure including a network of pores;a first electrical connection element coupled with the first carbon foam structure;an intermediate bonding structure coupled with the first electrical connection element and the first carbon foam structure;a second carbon foam structure, including a network of pores, coupled with the intermediate bonding structure; anda chemically active paste disposed on the first and second carbon foam structures such that the chemically active paste penetrates at least some of the pores of both the first and second carbon foam structures.
US Referenced Citations (133)
Number Name Date Kind
1285660 Ford Nov 1918 A
2620369 Daniel Dec 1952 A
2658099 Basset Nov 1953 A
2843649 Louis Jul 1958 A
3021379 Jackel Feb 1962 A
3188242 Kordesch et al. Jun 1965 A
3442717 Horn et al. May 1969 A
3510359 Selover, Jr. et al. May 1970 A
3565694 Chireau Feb 1971 A
3597829 Wagner et al. Aug 1971 A
3635676 Sands Jan 1972 A
3832426 Malthouse et al. Aug 1974 A
3833424 Louis et al. Sep 1974 A
3857913 Crow et al. Dec 1974 A
3960770 Raley, Jr. et al. Jun 1976 A
4011374 Kaun Mar 1977 A
4086404 Vissers et al. Apr 1978 A
4098967 Biddick et al. Jul 1978 A
4125676 Maricle et al. Nov 1978 A
4134192 Parkinson et al. Jan 1979 A
4152825 Bruneau May 1979 A
4188464 Adams et al. Feb 1980 A
4224392 Oswin Sep 1980 A
4275130 Rippel et al. Jun 1981 A
4339322 Balko et al. Jul 1982 A
4363857 Mix Dec 1982 A
4374186 McCartney et al. Feb 1983 A
4485156 Tokunaga Nov 1984 A
4566877 Pazdej et al. Jan 1986 A
4717633 Hauser Jan 1988 A
4749451 Naarmann Jun 1988 A
4758473 Herscovici et al. Jul 1988 A
4832870 Clough et al. May 1989 A
4865931 McCullough, Jr. et al. Sep 1989 A
4900643 Eskra et al. Feb 1990 A
5017446 Reichman et al. May 1991 A
5106709 Tekkanat et al. Apr 1992 A
5162172 Kaun Nov 1992 A
5200281 Leap et al. Apr 1993 A
5208003 Simandl et al. May 1993 A
5223352 Pitts et al. Jun 1993 A
5229228 Doniat et al. Jul 1993 A
5260855 Kaschmitter et al. Nov 1993 A
5268395 Simandl et al. Dec 1993 A
5300272 Simandl et al. Apr 1994 A
5348817 Rao et al. Sep 1994 A
5374490 Aldecoa Dec 1994 A
5393619 Mayer et al. Feb 1995 A
5395709 Bowker et al. Mar 1995 A
5402306 Mayer et al. Mar 1995 A
5411818 Barlow et al. May 1995 A
5426006 Delnick et al. Jun 1995 A
5429893 Thomas Jul 1995 A
5441824 Rippel Aug 1995 A
5474621 Barnard Dec 1995 A
5498489 Dasgupta et al. Mar 1996 A
5508131 Bowen et al. Apr 1996 A
5512390 Obushenko Apr 1996 A
5529971 Kaschmitter et al. Jun 1996 A
5538810 Kaun Jul 1996 A
5543247 Pulley et al. Aug 1996 A
5563007 Young et al. Oct 1996 A
5569563 Ovshinsky et al. Oct 1996 A
5580676 Honda et al. Dec 1996 A
5593797 Brecht Jan 1997 A
5595840 Henning et al. Jan 1997 A
5626977 Mayer et al. May 1997 A
5636437 Kaschmitter et al. Jun 1997 A
5643684 Tsubouchi et al. Jul 1997 A
5667909 Rodriguez et al. Sep 1997 A
5677075 Fujita Oct 1997 A
5705259 Mrotek et al. Jan 1998 A
5712054 Kejha Jan 1998 A
5723232 Yamada et al. Mar 1998 A
5738907 Vaccaro et al. Apr 1998 A
5766797 Crespi et al. Jun 1998 A
5882621 Doddapaneni et al. Mar 1999 A
5888469 Stiller et al. Mar 1999 A
5898564 Mayer et al. Apr 1999 A
5932185 Pekala et al. Aug 1999 A
5955215 Kurzweil et al. Sep 1999 A
5993996 Firsich Nov 1999 A
6001761 Hata et al. Dec 1999 A
6033506 Klett Mar 2000 A
6037032 Klett et al. Mar 2000 A
6045943 Nowaczyk Apr 2000 A
6060198 Snaper May 2000 A
6077464 Murdie et al. Jun 2000 A
6077623 Grosvenor et al. Jun 2000 A
6103149 Stankiewicz Aug 2000 A
6117592 Hoshino et al. Sep 2000 A
6127061 Shun et al. Oct 2000 A
6146780 Cisar et al. Nov 2000 A
6183854 Stiller et al. Feb 2001 B1
6193871 Coates et al. Feb 2001 B1
6217841 Grindatto et al. Apr 2001 B1
6241957 Stiller et al. Jun 2001 B1
6245461 Smith et al. Jun 2001 B1
6248467 Wilson et al. Jun 2001 B1
6258473 Spillman et al. Jul 2001 B1
6261485 Klett Jul 2001 B1
6287721 Xie et al. Sep 2001 B1
6296746 Broman et al. Oct 2001 B1
6316148 Timmons et al. Nov 2001 B1
6319627 Snyder et al. Nov 2001 B1
6323160 Murdie et al. Nov 2001 B1
6332990 Mayer et al. Dec 2001 B1
6346226 Stiller et al. Feb 2002 B1
6379845 Inazawa et al. Apr 2002 B1
6383687 Gibbons et al. May 2002 B1
6387343 Klett May 2002 B1
6395423 Kawakami et al. May 2002 B1
6399149 Klett et al. Jun 2002 B1
6438964 Giblin Aug 2002 B1
6500401 Reznek et al. Dec 2002 B1
6528204 Hikmet et al. Mar 2003 B1
6566004 Fly et al. May 2003 B1
6569559 Rouillard et al. May 2003 B1
6576365 Meitav et al. Jun 2003 B1
6605390 Moore et al. Aug 2003 B1
6631073 Sakata et al. Oct 2003 B1
20010019800 Herreyre et al. Sep 2001 A1
20020027066 Kanno et al. Mar 2002 A1
20020061436 Inagaki et al. May 2002 A1
20020081478 Busenbender Jun 2002 A1
20020114990 Fly et al. Aug 2002 A1
20020136680 Kanno et al. Sep 2002 A1
20020150822 Marlow et al. Oct 2002 A1
20030003343 Cisar et al. Jan 2003 A1
20030099884 Chiang et al. May 2003 A1
20030104280 Venkatesan et al. Jun 2003 A1
20030108785 Wu et al. Jun 2003 A1
20040002006 Kelley et al. Jan 2004 A1
Foreign Referenced Citations (21)
Number Date Country
0 555 978 Aug 1993 EP
1225160 Jul 2002 EP
18590 Jan 1910 GB
61270205 Nov 1986 JP
63057649 Mar 1988 JP
6418982 Jan 1989 JP
2002220217 Aug 2002 JP
WO 9506002 Mar 1995 WO
WO 9802382 Jan 1998 WO
WO 9827023 Jun 1998 WO
WO 9911585 Mar 1999 WO
WO 9911586 Mar 1999 WO
WO 9961549 Dec 1999 WO
WO 9964223 Dec 1999 WO
WO 0016418 Mar 2000 WO
WO 0043314 Jul 2000 WO
WO 0166490 Sep 2001 WO
WO 0218271 Mar 2002 WO
WO 0218272 Mar 2002 WO
WO 02094533 Nov 2002 WO
WO 03028130 Apr 2003 WO
Related Publications (1)
Number Date Country
20040121237 A1 Jun 2004 US