Composite material for producing an electric contact surface, in addition a method for creating a lubricated, corrosion-free electric contact surface

Abstract
A modification of frictional state and surface condition of an electrical contact surface to reduce the insertion forces for establishment of an electrical plug connection and also to achieve protection from oxidation and fretting corrosion is provided. By controlled melting of a contact surface that is applied onto a support material, a lubricant film applied onto the contact surface is diffused, by using a laser, substantially without modification into the liquefied contact surface and resolidified together with the latter, so that the lubricant film is incorporated into the contact surface.
Description


[0001] The present invention relates to a composite material for manufacturing an electrical contact area, comprising a support material and a contact surface applied on the support material; and to a method for producing a low-friction and low-corrosion electrical contact surface.


BACKGROUND INFORMATION

[0002] Contact areas are needed in order to make possible an electrical plug connection between a connector and mating connector, and to conduct current accordingly. In automotive applications in particular, tin, gold, or silver surfaces are used for the surfaces of the electrical contact areas. These are hot-galvanized or electroplated layers in the range of a few micrometers, which are applied onto a support material, for example a circuit board. The layers themselves are characterized by deformability and good electrical conductivity.


[0003] At the interfaces to the usual copper-based alloys, for example bronze, that often serve as the basic material for electrical plug connections, diffusion results in the formation of an intermediate layer that is made of intermetallic compounds, e.g. Cu3Sn or Cu6Sn5. This intermediate layer is harder, and can grow as a function of temperature.


[0004] Also known are numerous alloys based on the elements recited above, for example SnPb, SnAg, SnAgCu, AuCo0.3.



DISADVANTAGES OF THE EXISTING ART

[0005] Tin alloys, in particular, have low hardness and therefore also little wear resistance; as a result, frequent insertion/removal or vehicle- or engine-related vibrations can very easily cause the contact surface to be rubbed through, which in turn means that the plug connection has a tendency toward oxidation, i.e. so-called fretting corrosion. As a result of this rubthrough or the corresponding fretting corrosion, failures of important electrical components can cause disruptions to the operation of a motor vehicle.


[0006] It additionally proves to be disadvantageous that the aforementioned alloys have very high adhesion tendencies, so that the insertion forces that must be applied in order to establish an electrical plug connection are very high. The plastic deformation associated therewith is also too great for many applications. The adhesion can in fact cause the layer to be torn off or transferred, or to become chipped.


[0007] Similar processes can also occur with gold and silver surfaces if the contact surface is rubbed through and the material located therebeneath is correspondingly oxidized.



OBJECT OF THE INVENTION

[0008] It is the object of the invention to avoid the disadvantages recited in the discussion of the existing art by creating a method and a material with which the insertion forces necessary for establishing an electrical plug connection are reduced, and the oxidation processes that occur are minimized.



ACHIEVEMENT OF THE OBJECTIVE

[0009] The object is achieved by creating a composite material which is produced in such a way that lubricant is incorporated into the contact surface.



ADVANTAGES OF THE INVENTION

[0010] The basic idea of the invention is, by way of a modification of frictional state and surface condition, both to reduce the insertion forces for establishment of an electrical plug connection and to achieve protection from oxidation and fretting corrosion.


[0011] It is known from numerous applications that lubricants having specific additives, for example perfluoropolyethers, ester oils, or similar materials, achieve this effect. These additives are applied separately; this represents a certain disadvantage, namely a separate production step, metering control, preparation of the oil, etc. Lubricant incorporation, on the other hand, namely the “freezing” of microscopic oil dispersions into the contact surface, yields the advantage that lubricant molecules are made available at the contact points experiencing wear, so that the desired properties are achieved.


[0012] A further advantage of the invention is the fact that by way of a partially embodied treatment, only individual contact regions can be specifically treated.


[0013] By selecting a suitable material, it is possible to ensure that only a brief melting of the surface is produced, in particular, as a result of the laser treatment, preferably a Nd:YAG laser. During this melting operation, the lubricant that had previously wetted the surface to be treated diffuses into the contact surface. Switching off the laser causes the contact surface to solidify again, and to assume almost its original state. The lubricant molecules themselves have become embedded in the fluid structure, however, and said fluid structure solidifies together with the melted surface, so that a portion of the lubricant is now embedded (incorporated) within the contact surface.


[0014] It is specifically the excellent slip property which ensures that as a result of the insertion operation, the connector slides along the slide contact and does not remove material at the very first insertion operation and thus provoke corresponding corrosion.


[0015] Further advantageous embodiments of the invention are evident from the description below, the claims, and the drawings.







DRAWINGS

[0016] In the drawings:


[0017]
FIG. 1 is a schematic view of a first method step of the method according to the present invention;


[0018]
FIG. 2 is a schematic view of the method according to the present invention after completion of the first and second processing procedure.







DESCRIPTION OF AN EXEMPLARY EMBODIMENT

[0019]
FIG. 1 depicts a support material 1 on which a contact surface 2, for example tin, is applied.


[0020] Prior to the actual processing procedure for producing a low-friction, low-corrosion electrical contact surface 2′, contact surface 2 is equipped with a lubricant film 3. As an alternative to this, provision is made for immersing support material 1, together with contact surface 2, into a bath.


[0021] Brief melting of the contact surface is accomplished, in the exemplified embodiment depicted here, by way of a pulsed laser, preferably a Nd:YAG laser. The corresponding light waves 4 are depicted schematically in FIG. 1. The light waves of the pulsed laser penetrate through lubricant film 3 almost without modification, and melt contact surface 2. Temperatures between 200 and 400° C. are achieved and liquefy the metallic contact surface 2; as a result of this aggregate state, lubricant film 3 penetrates into the almost-liquid contact surface 2 and mixes with it.


[0022] As a result of the pulsing (power level, duration) of the Nd:YAG laser, which is to be adapted to the coating material, the melting occurs in controlled fashion, so that immediately after the end of the corresponding pulses, contact surface 2 solidifies together with the lubricant already diffused into the liquid contact surface, and the corresponding situation as shown in FIG. 2 is thus achieved. The new contact surface 2′ on support material 1 thus corresponds to a micro- or nanodispersion of metallic layer and lubricant.


Claims
  • 1-8. (Canceled).
  • 9. A method for producing a low-friction and low-corrosion electrical contact surface, comprising: applying a lubricant film onto the contact surface, thereby wetting the contact surface; and briefly melting the contact surface, the brief melting causing the lubricant film to be incorporated, substantially without modification, into the contact surface; wherein the contact surface solidifies after the brief melting.
  • 10. The method as recited in claim 9, wherein a laser is used to briefly melt the contact surface.
  • 11. The method as recited in claim 10, wherein the lubricant film is an oil dispersion.
  • 12. The method as recited in claim 10, wherein the lubricant includes additives.
  • 13. The method as recited in claim 10, wherein the laser is a Nd:YAG laser.
  • 14. The method as recited in claim 13, wherein the laser is pulsed.
  • 15. A composite material for manufacturing an electrical contact area, comprising: a support material; and a contact surface applied onto the support material; and a lubricant film applied on the contact surface and incorporated into the contact surface by a process of melting and resolidification.
  • 16. The composite material as recited in claim 15, wherein the contact surface includes tin.
  • 17. The composite material as recited in claim 15, wherein the lubricant film is an oil dispersion.
Priority Claims (1)
Number Date Country Kind
102 24 693.9 Jun 2002 DE
PCT Information
Filing Document Filing Date Country Kind
PCT/DE03/00424 2/13/2003 WO