Claims
- 1. A polyolefin resin composition comprising:
- (a) a polyolefin selected from the group consisting of polyethylene, polypropylene, poly(4-methylpentene-1), ethylene/vinyl acetate copolymer, ethylene/ethylacrylate copolymer, and ethylene/propylene/diene copolymer modified with from 0.05 to 0.8 parts by weight per 100 parts by weight of the polyolefin, of a grafted unsaturated carboxylic acid;
- (b) no more than 10 weight %, based on the weight of said modified polyolefin, of a polyfunctional epoxide, polyfunctional amine, polyfunctional isocyanate or mixtures thereof with the proviso that the amount of any given polyfunctional agent is within the range of 0.03 to 5 wt. %; and
- (c) from 5 to 400 wt. % of a reinforcing material, based on the weight of the modified polyolefin, of (i) a fibrous material selected from the group of glass fibers, carbon fibers, graphite fibers, aromatic polyamide fibers, silicon carbide fibers, polysulfone fibers, polyether ketone fibers, alumina fibers, potassium titanate fibers, asbestos fibers, boron fibers or metal fibers; or (ii) powdery or flaky materials selected from the group consisting of glass flakes, talc, mica, kaolin, clay, diatomaceous earth, calcium carbonate, calcium sulfate, magnesium oxide, carbon black, titanium oxide, powdered metal, alumina, graphite, white carbon, wollastonite, molybdenum disulfide and tungsten disulfide.
- 2. The composition of claim 1, wherein the modified polyolefin is prepared by reacting a polyolefin and said unsaturated carboxylic acid in the presence of at least one catalyst selected from the group consisting of ketal peroxides and dialkyl peroxides which have a decomposition temperature necessary for attaining the half life of 10 hours of at least 80.degree. C.
- 3. The composition of claim 1, wherein the modified polyolefin is prepared by reacting a polyolefin and said unsaturated carboxylic acid in the presence of a mixed catalyst system comprising at least one member selected from the group consisting of ketal peroxides and dialkyl peroxides which have a decomposition temperature necessary for obtaining the half life of 10 hours of at least 80.degree. C., and benzoyl peroxide.
- 4. The polyolefin resin composition of claim 3, wherein the weight ratio of said at least one member selected from the group consisting of ketal peroxides and dialkyl peroxides to benzoyl peroxide in the mixed catalyst system is 1/10 to 1/1.
- 5. The polyolefin resin composition of claim 1, wherein the modified polyolefin is prepared by heat-melting the unsaturated carboxylic acid, the polyolefin, and the polyfunctional compound in the presence of a peroxide type catalyst.
- 6. The composition of claim 5, wherein the modified polyolefin is prepared by extruding the reactants which form the same from an extruder type reactor.
- 7. The polyolefin resin composition of claim 2, wherein the ketal or dialkyl peroxide catalyst is at least one member selected from the group consisting of 1,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(t-butylperoxy)cyclohexane, n-butyl 4,4-bis(t-butylperoxy)valerate, 2,2-bis(t-butylperoxy)butane, 2,2-bis(t-butylperoxy)octane, di-t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide .about.,.about.'-bis(t-butylperoxyisopropyl)benzene, and 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3.
- 8. The composition of claim 3, wherein the modified polyolefin is in the form of spherulites of a size of 50.mu. or less.
- 9. The composition of claim 1, wherein the polyfunctional compound is a polyepoxide having an isocyanurate or cyanurate ring.
- 10. The composition of claim 1, wherein the improvement ratio of the strength of a molded product prepared from a composition consisting of the modified polyolefin and said reinforcing material to that of a molded product prepared from a polyolefin resin composition consisting of an unmodified polyolefin and said reinforcing material is at least 1.5.
- 11. The composition of claim 1, wherein said polyfunctional epoxide is a bisphenol A epoxy compound, a bisphenol F epoxy compound, an aliphatic ether epoxy compound, a novolak epoxide or an isocyanurate epoxide.
- 12. The composition of claim 1, wherein said polyfunctional amine is hexamethylene diamine, tetramethylene diamine, methaxylene diamine, diamino diphenylmethane, diaminodiphenyl sulfone, 3,3'-diaminobenzidine, isophthalic acid hydrazide, diamino diphenyl ether, nanomethylenediamine or diethylenetetramine.
- 13. The composition of claim 1, wherein said polyfunctional isocyanate is tetramethylene diisocyanate, toluidine diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate or a polyisocyanate obtained by extending a diisocyanate compound with a chain extending agent.
- 14. A polyolefin resin composition comprising:
- (a) a polyolefin selected from the group consisting of polyethylene, polypropylene, poly(4-methylpentene-1), ethylene/vinyl acetate copolymer, ethylene/ethylacrylate copolymer, and ethylene/propylene/diene copolymer modified with from 0.05 to 0.8 parts by weight per 100 parts by weight of the polyolefin, of a grafted unsaturated carboxylic acid;
- (b) no more than 10 weight %, based on the weight of said modified polyolefin, of a polyfunctional epoxide, polyfunctional amine, polyfunctional isocyanate or mixtures thereof with the proviso that the amount of any given polyfunctional agent is within the range of 0.03 to 5 wt. %; and
- (c) from 5 to 400 wt. % of a reinforcing material, based on the weight of the modified polyolefin, of (i) an inorganic fiber or (ii) at least one member selected from the group consisting of glass flakes, talc, calcium carbonate, magnesium oxide, clay, mica and carbon black or (iii) an aromatic polyamide fiber.
- 15. The composition of claim 14, wherein the reinforcing material is carbon fiber.
Priority Claims (3)
Number |
Date |
Country |
Kind |
56-212583 |
Dec 1981 |
JPX |
|
57-87779 |
May 1982 |
JPX |
|
57-87780 |
May 1982 |
JPX |
|
CROSS REFERENCE TO THE RELATED APPLICATION
This is a continuation-in-part application of application Ser. No. 450,378 filed on Dec. 16, 1982, now pending.
US Referenced Citations (5)
Foreign Referenced Citations (2)
Number |
Date |
Country |
53-111805 |
Sep 1978 |
JPX |
7211749 |
Mar 1973 |
NLX |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
450378 |
Dec 1982 |
|