The present invention relates generally to surgery, and more particularly to medical textiles for medical devices such as sutures, suture tape, sutures with anchors, suture tape with anchors, methods of making sutures, methods of suturing, and generally methods for fixation of tissues.
Medical textiles such as sutures are ubiquitous in the field of surgery. Sutures are typically made from non-resorbable materials such as ultra-high molecular weight polyester (UHMWPE) fibers, as well as polypropylene, nylon, and derivatives thereof. While providing the requisite biocompatibility and strength, these materials must be removed or will remain in place in the patient owing to their non-resorbable nature.
Hyaluronic acid is a naturally occurring non-sulphated glycosaminoglycan consisting of a linear sequence of D-glucuronic acid and N-acetyl-D-glucosamine. It is present in connective tissue, in the synovial fluid of articular joints and in the vitreous humor of the eye. Hyaluronic acid is important in many biological processes such as tissue hydration, cell differentiation, cell behavior and tissue repair. In recent years a hyaluronan polymer-based scaffold has shown surprising properties in the field of tissue engineering. See U.S. Pat. No. 5,939,323 “Hyaluronan Based Biodegradable Scaffolds for Tissue Repair” issued Aug. 17, 1999, and U.S. Pat. No. 6,872,819 “Biomaterials Containing Hyaluronic Acid Derivatives in the Form of Three-Dimensional Structures Free From Cellular Components or Products Thereof for the In Vivo Regeneration of Tissue Cells” issued Mar. 29, 2005. A semisynthetic insoluble polymer has been obtained by the hyaluronic acid esterification with benzyl alcohol. See PCT/EP97/04684 published as WO98/08876 on Mar. 5, 1998 (Fidia Advanced Biopolymers—F.A.B Abano Terme, Italy). The disclosures of these documents are incorporated fully by reference.
Products including hyaluronic acid esterified with benzyl alcohol are sold under the trademark HYAFF11® and are manufactured by Anika Therapeutics S.R.L., Padua Italy. The HYAFF11® composition is biocompatible, completely biodegradable, soluble in dimethylsulfoxide (DMSO), exhibits good stability to hydrolysis, forms contact angle measurements and presents a strong ability to interact with polar molecules. HYAFF11® fibers comprise partially-to-fully esterified hyaluronic acid pendent polymer. This process increases the hydrophobicity of the hyaluronic acid such that it can be produced into non-tissue soluble fiber with a controlled rate of bioresorption. A variety of different chemical compositions of this material can be produced to affect residence time, hydrophilicity, and strength.
A composite medical textile includes a plurality of bioresorbable hyaluronan-based fibers and a plurality of non-resorbable fibers. The bioresorbable hyaluronan-based fibers and the non-resorbable fibers can be joined together by at least one selected from the group consisting of braided, knitted, adhered, intermeshed, weaved, interlocked, twisted, and heat set. The medical textile can include from 10% to 98% non-resorbable fibers, based on the weight of the non-resorbable fibers to the total weight of the non-resorbable suture fibers and bioresorbable hyaluronan-based polymer fibers.
The hyaluronan-based fibers can include at least one selected from the group consisting of hyaluronic acid, sodium hyaluronate, and esters of hyaluronic acid. The esters of hyaluronic acid can include benzyl esters of hyaluronic acid.
The non-resorbable fibers can include at least one selected from the group consisting of ultra-high molecular weight polyethylene (UHMWPE), polypropylene, polyethylene terephthalate (PET), polyethylene, polytetrafluoroethylene (Teflon), Dacron, steel, polybutester, polyamide, polyester, polyurethane, nylons, silk, and cotton.
The medical textile can further include bioresorbable fibers comprising at least one selected from the group consisting of collagen, polylactic acid (PLA), polyglycolic acid (PGA), polylactic-co-glycolic acid (PLGA), polycaprolactone (PCL), polydioxanone (PDO), polyhydroxybutyrate (PHB), polyhydroxyvalerate (PHV), Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), alginate, chitosan, chitin, polylysine, fibrin, pectin, dextran, carrageenan, chondroitin sulfate, agar, gelatin, gellan gum, silk, and butyric acid.
The hyaluronan-based bioresorbable polymer fibers can be prepared by at least one selected from the group consisting of ring spinning, air-jet spinning, open-end spinning, mule spinning, wet spinning, dry spinning, electrospinning, pneumatospinning, pultrusion, and extrusion. The extrusion can be at least one selected from the group consisting of solvent exchange extrusion, precipitation extrusion, phase exchange extrusion, and phase change extrusion.
The bioresorbable hyaluronan-based fiber can include at least one selected from the group consisting of mono- and multifilaments. The composite medical textile can have a diameter of from 25 μm to about 5000 μm.
The composite medical textile can include at least one active agent. The active agent can be an antimicrobial agent. The antimicrobial agent can include at least one selected from the group consisting of Minocycline/Rifampicin, 5-Fluoro Uracil, Silver, Silver sulfadiazine, Penicillins, Tetracyclines, Cephalosporins, Cefazolins, Cefuroximes, Cefotoxins, Cefotaximines, Ceftazidimes, Cefalexins, Cefiximes, Carbapenems, Chlorhexidine, Triclosan, Levoflaxacin, Vancomycin, Imipenem, Cilastatin, Meropenem, Ciprofloxacin, Azithromycin, Clarithromycin, Sulfonamids, aminoglycosides, Quinolones, Lincomycins, Macrolides, Sulfonamides, and Glycopeptides.
The active agent can be an analgesic. The analgesic can include at least one selected from the group consisting of Lidocaine, Bupivacaine, amylocaine, articaine, benzocaine, benzonatate, butacaine, butanilicaine, chloroprocaine, cinchocaine, cyclomethycaine, eucaine, ibuprofen, naproxen, paclitaxel, warfarin, heparin, tetracaine, dexamethasone, and ropivocaine.
The active agent can include a vasoconstrictive agent. The vasoconstrictive agent can include at least one selected from the group consisting of epinephrine, alpha-adrenoreceptor antagonists, vasopressin analogues, norepinephrine, phenylephrine, dopamine, dobutamine, serotonin agonists, and triptans.
At least one of the non-resorbable fibers and the bioresorbable hyaluronan-based fibers can be wetted with the active agent. At least one of the non-resorbable fibers and the bioresorbable hyaluronan-based fibers can be coated with the active agent. At least one of the non-resorbable fibers and the bioresorbable hyaluronan-based fibers can have the active agent embedded within the fibers.
The composite medical textile can be circular in cross section. The composite medical textile can be a tape and can have a cross section comprising at least one selected from the group consisting of rounded rectangular, marquise, oblong and oval.
A method of making a medical textile can include the steps of providing a plurality of non-resorbable fibers, and providing a plurality of bioresorbable hyaluronan-based fibers. The non-resorbable fibers and the bioresorbable hyaluronan-based fibers are joined into a composite medical textile. The medical textile can include from 20% to 80% bioresorbable hyaluronan-based fibers, based on the total number of non-resorbable fibers and bioresorbable hyaluronan-based fibers.
The composite medical textile can further comprise an active agent, the active agent comprising at least one selected from the group consisting of antimicrobial agents, analgesic agents, and vasoconstrictive agents. The method can include the step of coating the active agent onto at least one selected from the group consisting of the bioresorbable hyaluronan-based fibers and the non-resorbable fibers. The coating step can include at least one selected from the group consisting of a dip, brush, spray, or curtain coating process.
The active agent can be impregnated into at least one selected from the group consisting of the bioresorbable hyaluronan-based fibers and the non-resorbable fibers by passing the extruded fiber through a solution containing the active agent. The active agent can be impregnated into at least one selected from the group consisting of the bioresorbable hyaluronan-based fibers and the non-resorbable fibers by co-extrusion, wherein a fiber precursor and the active agent are combined into a homogeneous mixture and co-extruded into a fiber. At least one of the bioresorbable hyaluronan-based fibers and the non-resorbable fibers can be wetted with the active agent.
A method for repairing a portion of a mammalian body can include the steps of providing a composite medical textile which comprises a plurality of non-resorbable fibers and a plurality of bioresorbable hyaluronan-based fibers, and connecting the textile between two tissue portions of the mammalian body. The tissue portions can include at least one selected from the group consisting of bony tissue and soft tissue. The medical textile can be a suture, and the method can further include the step of manipulating the suture in a suturing process to suture the tissue portions of the mammalian body. The method can also include the step of seeding the medical textile with stem cells.
A medical device according to the invention can include a plurality of bioresorbable hyaluronan-based fibers and a plurality of non-resorbable fibers. The medical device can be an orthopedic attachment system which comprises at least one flexible connector comprising bioresorbable hyaluronan-based fibers joined with a plurality of non-resorbable fibers, and at least one orthopedic attachment device. The medical device can be tubes, membranes, non-woven fabrics, gauzes, sponges, and/or sutures. The medical device can be a tissue scaffold.
There are shown in the drawings embodiments that are presently preferred it being understood that the invention is not limited to the arrangements and instrumentalities shown, wherein:
A composite medical textile such as a suture according to the invention includes a plurality of bioresorbable hyaluronan-based fibers interlocked with a plurality of non-resorbable fibers. A plurality of different kinds of hyaluronan-based fibers can be used with a plurality of different kinds of bioresorbable fibers. The term “hyaluronan-based” as used herein encompasses fiber materials that can include at least one selected from the group consisting of hyaluronic acid, sodium hyaluronate, and benzyl esters of hyaluronic acid, such as but not limited to the benzyl ester derivative of hyaluronic acid sold as HYAFF®. Other esters of hyaluronic acid with aliphatic, araliphatic, cycloaliphatic or heterocyclic alcohols, in which are esterified all (so-called “total esters”) or only a part (so-called “partial esters”) of the carboxylic groups of the hyaluronic acid are also possible. Crosslinked hyaluronic acid-based fibers that are cross-linked with such compounds as bis(ethylcarbodiimide)(BCDI), formaldehyde and other aldehydes, (1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide)(EDC), dicyclohexylcarbodiimide)(DCC) or other carbodiimide crosslinking agents, and click chemistry, can also be used. All of the above are hyaluronan-based materials as used herein. Combinations of hyaluronan-based materials are also possible.
The hyaluronan-based material can be the sodium salt of hyaluronic acid, sodium hyaluronate, but the acid will usually also be present to some degree. Sometimes up to 3% or more of the acid or conjugate is present. The acid will also be present to some degree with HYAFF® materials. The degree of substitution of HYAFF® materials varies between approximately 50 and approximately 100%. The degree of substitution of the hyaluronic acid can be 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98, 99 and 100%, and can be within a range of any high value and low value selected from these values. The remaining functional groups are either all acid, all base, or a mix of acid and base. Blends of fibers having different degrees of substitution are also possible, and crosslinked hyaluronic acid. The total benzyl esterified form, named HYAFF11®p100, can be used. HYAFF11® p80 and HYAFF11® p75 is partially esterified and can also be used (Anika Therapeutics S.R.L., Padua Italy).
The individual fiber dimensions can vary. The deniers (D, g/9000 m) of the non-resorbable and hyaluronan-based bioresorbable fibers can vary from 250 to 100,000 D. The denier range can be from 500 to 15,000 D. Some bioresorbable fibers are from 540 to 720 D. The deniers of the non-resorbable fibers and the hyaluronan-based bioresorbable fibers can be, independently, 250, 300, 400, 500, 750, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000, 13000, 14000, 15000, 16000, 17000, 18000, 19000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, and 100000 D, and can be within a range of any high value and low value selected from these values. Individual fibers of specific deniers can be combined in a composite suture arrangement of multi-filament, multi-denier bundles.
The diameter of the individual non-resorbable and hyaluronan-based bioresorbable fibers can be from 15-250 μm. The diameter can be from 50-60 μm. The diameter of the non-resorbable and hyaluronan-based bioresorbable fibers can be, independently, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, and 250 μm, and can be within a range of any high value and low value selected from these values. Individual fibers of specific diameters can be combined in a composite suture arrangement of multi-diameter fibers.
The weight proportion of non-resorbable fibers to the total weight of the non-resorbable fibers and the bioresorbable hyaluronan-based fibers can be 10%-98%. The weight proportion of non-resorbable fibers to the total weight of the non-resorbable fibers and the bioresorbable hyaluronan-based fibers can be from 30%-80%. The weight proportion of non-resorbable fibers to the total weight of the non-resorbable fibers and the bioresorbable hyaluronan-based fibers can be 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, and 98%, and can be within a range of any high value and low value selected from these values.
A composite suture made from the medical textile of the invention comprising both the non-resorbable fibers and the bioresorbable hyaluronan-based fibers can have different dimensions. Typical suture is commonly from United States Pharmacopeia (USP) sizes USP 3-0 to USP 5. The composite suture can have a size range of from 100 to 5000 μm, more specifically 25 to 750 μm. A common size is from 50 to 65 μm. Some special use suture can be up to 5000 μm. The composite suture can have a diameter of 25, 50, 75, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, 3000, 3250, 3500, 3750, 4000, 4250, 4500, 4750, and 5000 μm, and can be within a range of any high value and low value selected from these values. It is common that suture dimensions will vary slightly due to small variations in fiber dimensions and assembly conditions, and accordingly the above sizes can be considered as averages.
The number of fibers in the suture composite can vary. The suture composite can have 25 to 10,000 total individual fibers, including both the bioresorbable fiber strands and the hyaluronan-based bioresorbable fiber strands. The number of total fiber strands can be from 150 to 6000 individual fiber strands. The total number of fiber strands can be 25, 50, 75, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, and 10000 strands, and can be within a range of any high value and low value selected from these values.
The number proportion of non-resorbable suture fibers to bioresorbable hyaluronan-based polymer fibers in the composite suture can vary. The composite suture can include from 20% to 80% bioresorbable hyaluronan-based polymer fibers, based on the total number of non-resorbable suture fibers and bioresorbable hyaluronan-based polymer fibers. The composite suture can include 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, or 80% bioresorbable hyaluronan-based polymer fibers, based on the total number of non-resorbable suture fibers and bioresorbable hyaluronan-based polymer fibers. The number proportion of bioresorbable hyaluronan-based polymer fibers, based on the total number of non-resorbable suture fibers and bioresorbable hyaluronan-based polymer fibers, can be within a range of any high value and low value selected from these values.
The medical textile can have a straight tensile strength of from 15 to 800 N. The medical textile can have a straight tensile strength of 15, 20, 25, 30, 35, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400, 420, 440, 460, 480, 500, 520, 540, 560, 580, 600, 620, 640, 660, 680, 700, 720, 740, 760, 780, and 800 N, and can be within a range of any high value and low value selected from these values.
The medical textile when formed as a suture can have a knot pull strength of from 40 to 300 N. The knot pull strength can be 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, and 300 N, and can be within a range of any high value and low value selected from these values.
The bioresorbable fibers can resorb within about 2-8 months. The time for resorption of the bioresorbable fibers can be 2, 3, 4, 5, 6, 7, or 8 months, or within a range of any high value and low value selected from these values.
The non-resorbable fibers can be formed from different materials. The non-resorbable fibers can comprise ultra-high molecular weight polyethylene (UHMWPE). The material of the non-resorbable suture fiber can also include polypropylene, polyethylene terephthalate, polyethylene, polytetrafluoroethylene (Teflon), Dacron, steel, polybutester, polyamide, polyester, polyurethane, nylon and its derivatives, silk and cotton. Combinations of non-resorbable materials are also possible.
The hyaluronan-based bioresorbable polymer fibers can be prepared by different processes. The hyaluronan-based bioresorbable fibers can prepared by at least one selected from the group consisting of ring spinning, air-jet spinning, open-end spinning, mule spinning, wet spinning, dry spinning, electrospinning, pneumatospinning, pultrusion, and extrusion. The extrusion process can be at least one selected from the group consisting of solvent exchange extrusion, precipitation extrusion, phase exchange extrusion, and phase change extrusion. Other processes are possible. The hyaluronan-based bioresorbable fibers can be monofilaments, and can be multifilaments.
Additional bioresorbable fibers can be used with the hyaluronan-based bioresorbable fibers. Such additional bioresorbable fibers include bioresorbable polymer fiber comprising at least one of collagen, polylactic acid (PLA), polyglycolic acid (PGA), polylactic-co-glycolic acid (PLGA), polycaprolactone (PCL), polydioxanone (PDO), polyhydroxybutyrate (PHB), polyhydroxyvalerate (PHV), Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), alginate, chitosan, chitin, polylysine, fibrin, pectin, dextran, carrageenan, chondroitin sulfate, agar, gelatin, gellan gum, silk, and/or butyric acid.
The composite suture of the invention can also include at least one active agent. Many different kinds of active agents are possible. The active agent can be an antimicrobial agent. The antimicrobial agent can include at least one selected from the group consisting of Minocycline/Rifampicin, 5-Fluoro Uracil, Silver, Silver sulfadiazine, Penicillins, Tetracyclines, Cephalosporins, Cefazolins, Cefuroximes, Cefotoxins, Cefotaximines, Ceftazidimes, Cefalexins, Cefiximes, Carbapenems, Chlorhexidine, Triclosan, Levoflaxacin, Vancomycin, Imipenem, Cilastatin, Meropenem, Ciprofloxacin, Azithromycin, Clarithromycin, Sulfonamids, aminoglycosides, Quinolones, Lincomycins, Macrolides, Sulfonamides, and Glycopeptides.
The active agent can be an analgesic. The analgesic can be at least one selected from the group consisting of Lidocaine, Bupivacaine, amylocaine, articaine, aspirin, benzocaine, benzonatate, butacaine, butanilicaine, chloroprocaine, clopidogrel, cinchocaine, cyclomethycaine, eucaine, ibuprofen, naproxen, paclitaxel, warfarin, heparin, tetracaine, dexamethasone, and ropivocaine.
The active agent can be a vasoconstrictive agent. The vasoconstrictive agent can include at least one selected from the group consisting of epinephrine, alpha-adrenoreceptor antagonists, vasopressin analogues, norepinephrine, phenylephrine, dopamine, dobutamine, serotonin agonists, and triptans.
The active agent can be included in the composite suture by different processes. The active agent can be applied to at least one of the non-resorbable fibers and the bioresorbable hyaluronan-based fibers by wetting with the active agent. The active agent can be applied to at least one of the non-resorbable fibers and the bioresorbable hyaluronan-based fibers by coating with the active agent. The active agent can be applied to at least one of the non-resorbable fibers and the bioresorbable hyaluronan-based fibers by embedding the active agent into the fiber during the extrusion of the fiber. The active agent can be chemically or ionically cross-linked or grafted to the surface of at least one of the non-resorbable fibers and the bioresorbable hyaluronan-based fibers.
The coating step can be performed by any suitable process. The coating step can be at least one selected from the group consisting of a dip, brush, spray, or curtain coating process.
The active agent can be impregnated into at least one selected from the group consisting of the bioresorbable hyaluronan-based fibers and the non-resorbable fibers by passing the extruded fiber through a solution containing the active agent. The impregnating step can be by co-extrusion, wherein a fiber precursor and the active agent are combined into a homogeneous mixture and co-extruded into a fiber.
The composite suture can have different cross-sectional shapes. The composite suture can be circular in cross section. The composite suture can be a tape and have a cross section comprising at least one selected from the group consisting of rounded rectangular, marquise, oblong and oval. A method of making a suture fiber can include the step of providing a plurality of non-resorbable fibers and a plurality of bioresorbable hyaluronan-based fibers. The non-resorbable fibers and the bioresorbable hyaluronan-based fibers are interlocked into a composite suture. The joining of the bioresorbable hyaluronan-based fibers and the non-resorbable fibers can be by any suitable process. Examples of suitable processes include twisting, weaving, braiding, knitting, adhering and heat treating.
The medical textile of the invention can take many different textile forms. The bioresorbable hyaluronan-based fibers and non-resorbable fibers can be knitted, twisted, braided, non-woven or other forms of textile construction for combining diverse fibers. Braided suture can for example contain bioresorbable hyaluronan-based fibers, non-resorbable fibers, and one or more additional fibers, which can be bioresorbable fibers and/or non-resorbable fibers. Braided suture can contain a core filament such as bioresorbable hyaluronan-based fibers and an outer braided sheath of one or more polymers. Braided suture can be coated with a bioresorbable hyaluronan-based film. Braided or woven suture can contain bioresorbable hyaluronan-based fibers and at least one other fiber, which can be another bioresorbable hyaluronan-based fiber and/or a non-resorbable fiber. Other medical textile constructions of bioresorbable hyaluronan-based fibers and non-resorbable fibers are possible.
The medical textiles of the invention can be used in conjunction with multiple types of fixation devices, known in the field of orthopedics for repairing damaged soft tissue. These fixation devices can be bone screws, bone screws with washers, suture anchors, suture buttons and the like; used to create, repair or augment tissue connection sites relevant to orthopedic procedures. These connection sites can be comprised of bone-to-bone tissue connections, as typically seen in ligament injuries; tissue-to-bone connections, as typically seen in tendon or ligament injuries; and tissue-to-tissue connections, as typically seen within tendon, ligament, or muscle injuries. The medical textiles used in conjunction with these fixation devices may take the form of sutures or suture tapes of different constructions and sizes.
The medical textiles of the invention can be fashioned so that they are packaged and provided to the surgeon user directly coupled to these fixation devices, or they can be fashioned using splicing or knotting techniques within the textile so that they could be packaged and provided to the surgeon user for use with separately packaged fixation devices.
The medical textile can also be used to make scaffolds. Scaffolds made with the medical textiles of the invention will provide requisite initial and long-term strength by the presence of both hyaluronan-based bioresorbable fibers and non-resorbable fibers and will allow for cell growth into and around the scaffold. Scaffold devices include tubes, membranes, non-woven fabrics, gauzes, and sponges.
Braided surgical sutures have been shown to cause more trauma (abrasion, tearing, cutting, etc.) to soft tissue than monofilament suture. Kowalsky M S, Dellenbaugh S G, Erlichman D B, et al., “Evaluation of suture abrasion against rotator cuff tendon and proximal humerus bone” Arthroscopy. 2008; 24:329-334. It is also known in the medical field that a lubricant coating on braided sutures reduces the friction as well as the tissue drag which can lead to tearing and trauma on soft tissue; however many lubricant coatings are either short-lived in vivo or are composed of potentially toxic materials. The use of conventional resorbable polymers (e.g., PLA, PGA, PCL, PDO, PHBV, etc.) in a composite braided suture structure will degrade by hydrolysis into smaller molecules and/or their respective monomers. The use of esterified hyaluronic acid such as HYAFF11® (Anika Therapeutics S.R.L., Padua Italy) in a composite braided structure will degrade into benzyl alcohol and high molecular weight hyaluronic acid (HA) over time in vivo. HA is a naturally occurring polysaccharide with unique viscoelastic and rheological properties; it serves as a lubricating agent on articular tissues and prevents mechanical damage. Its viscoelasticity has been shown to be responsible for protecting, lubricating, and stabilizing cells and tissue layers during joint movement. Goa, Karen L., and Paul Benfield. “Hyaluronic acid.” Drugs 47.3 (1994): 536-566. Furthermore, high molecular weight HA has been shown to provide an anti-inflammatory response in addition to improved lubrication properties in tendon lesions. Necas, J. B. L. B. P., et al. “Hyaluronic acid (hyaluronan): a review.” Veterinarni medicina 53.8 (2008): 397-411.
In the embodiment of a composite braided, woven, or twisted medical textile such as suture or suture tape comprising of esterified HA (such as HYAFF11® p100 Anika Therapeutics S.R.L., Padua Italy) fibers and non-absorbable polymer (e.g., UHMWPE) fibers, the Hyaff material will provide a slow release of a self-lubrication agent (high MW HA) to the braided suture structure. The release of HA over time will provide a self-replenishing supply of lubricant that will reduce abrasion and soft tissue trauma as well as reduce the inflammatory response, which could improve the healing response of the repaired soft tissue.
Hyaluronic acid (HA) is a naturally occurring polysaccharide that is an important component of extra-cellular matrix (ECM); it interacts with binding proteins, proteoglycan, growth factors and other active molecules and contributes to the regulation of water balance. HA is present in all adult joint tissues, including synovial fluid and its rheological properties in solution make it an ideal a lubricant for protecting articular cartilage. Furthermore, HA acts as scavenger molecule for free radicals, inhibits leukocyte and macrophage migration, and helps regulate fibroblast proliferation. Besides all these properties, HA is recognized by some cell receptors such as CD44, regulating the adhesion, differentiation, angiogenesis and modulating the inflammation. For these and other biological properties, HA represents an optimal candidate as a biomaterial to produce scaffolds; however, its water solubility, rapid resorption, and short residence time in the tissue, limit its possible application. Campoccia D. et al., Biomaterials, 19 (1998) 2101-2127. Different HA chemical modification techniques have been used to improve the physical and mechanical properties. One of the most promising materials for tissue engineering and regenerative medicine is the benzyl ester derivative of hyaluronan (HYAFF11®). One of the main advantages of HYAFF11® based scaffold is the degree of cell adhesiveness even without any coating or treatment with different molecules, generally required by other biomaterials such as polyglycolide and polylactide. The total benzyl esterified form of HYAFF11®p100 is sufficiently stable in an aqueous environment, maintaining its structural integrity, so it is easy to handle and does not contract as some collagen-based materials. Campoccia D. et al., Biomaterials, 19 (1998) 2101-2127. HYAFF11®p100 can be processed to obtain several types of devices such as tubes, membranes, non-woven fabrics, gauzes, and sponges. All these scaffolds are highly biocompatible. In the human body they do not elicit any adverse reactions and are resorbed by the host tissues. Vindigni V. et al., Int. J. Mol. Sci., 10, (2009) 2972-2985. HYAFF11® scaffolds have been shown to be suitable supports for the attachment, growth, and proliferation of mammalian cells. Human preadipocytes can be successfully and reproducibly inoculated and cultured on HYAFF11®-based three-dimensional scaffolds where there was clear evidence that adipocyte precursor cells placed on this material were able to undergo full maturation into adipocytes. Halbleib, M. et al., Biomaterials, 24, (2003) 3125-3132. Additionally, human hepatocytes, dermal fibroblasts and keratinocytes, chondrocytes, Schwann cells, bone marrow derived mesenchymal stem cells and adipose tissue derived mesenchymal stem cells have been successfully cultured in HYAFF11® meshes. Vindigni V. et al., Int. J. Mol. Sci., 10, (2009) 2972-2985. Furthermore, HYAFF11® scaffolds support the adhesion, migration and proliferation of rMSCs, as well as the synthesis and delivery of extracellular matrix components under static culture conditions without any chemical induction. The high retention rate and viability of the seeded cells as well as their fine modality of interaction with the substrate suggest that such scaffolds could be potentially useful when wide tissue defects are to be repaired as in the case of cartilage repair, wound healing and large vessel replacement. Pasquinelli G. et al., J. Anat., 213 (2008) 520-530.
Many different configurations of hyaluronan-based bioresorbable fibers and non-resorbable fibers are possible in medical textiles according to the invention.
A method for repairing a portion of a mammalian body can include the step of providing a composite medical textile comprising a plurality of non-resorbable fibers and a plurality of bioresorbable hyaluronan-based fibers. The composite medical textile is manipulated to connect two tissue locations of a patient body, or possibly to connect a medical device to a portion of the patient body. In one embodiment, a composite suture according to the invention is provided and a suturing process is used to suture portions of the mammalian body. The medical textiles of the invention can be used in many different processes, such as connecting and repairing soft tissue and bony tissue, soft tissue augmentation, and stabilizing tissue of the joint. This method would allow for sufficient mechanical fixation and load carrying capability to allow the patient to begin nearly immediate post-operative rehabilitation activities to provide for an accelerated return to activity and minimize the potential for loss of motion or scarring following the surgical repair.
The tensile strength of composite Hyaff/UHMWPE suture and competitor products was evaluated by performing Knot-Pull testing according to USP <881>Tensile Strength. Suture samples were each cut to ˜20 cm in length, then placed in 50 mL 1× Phosphate Buffered Saline (PBS) at 37 C for: 1 hour (t=0), t days, 14 days, and 135 days to simulate physiological conditions. Peak knot pull strength was evaluated on a Mark X uniaxial tensile tester with a 5-cm gauge length tested at 100 mm/min crosshead speed. N=3 samples were tested for each group and the average±standard deviation is shown in
The invention as shown in the drawings and described in detail herein disclose arrangements of elements of particular construction and configuration for illustrating preferred embodiments of structure and method of operation of the present invention. It is to be understood however, that elements of different construction and configuration and other arrangements thereof, other than those illustrated and described may be employed in accordance with the spirit of the invention, and such changes, alternations and modifications as would occur to those skilled in the art are considered to be within the scope of this invention as broadly defined in the appended claims. In addition, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting. All references cited herein are hereby fully incorporated by reference.
This application claims priority to U.S. Provisional Patent Application No. 63/043,517 filed on Jun. 24, 2020, entitled “COMPOSITE SUTURE WITH NON-RESORBABLE FIBERS AND BIORESORBABLE HYALURONAN-BASED FIBERS”, the entire disclosure of which incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63043517 | Jun 2020 | US |