Composite membrane with compatible support filaments

Information

  • Patent Grant
  • 9022229
  • Patent Number
    9,022,229
  • Date Filed
    Friday, March 9, 2012
    12 years ago
  • Date Issued
    Tuesday, May 5, 2015
    9 years ago
Abstract
A filtering membrane has a supporting structure comprising filaments and is coated with a dope to produce a polymeric membrane layer. Some or all of the filaments comprise a second polymer that is soluble or swellable in a solvent of the dope. The supporting structure may be braided with yarns. One or more yarns may comprise filaments comprising the second polymer. In one example, a braided tubular support is coated with a dope based on PVDF in NMP. Some or all of the yarns of the braid are made of bi-component core-sheath PET-PVDF filaments. With as few as 4% of the yarns in the braid made of the bicomponent filaments, peel strength and pull force of the membrane is improved relative to a braid made entirely of PET yarns. In experimental examples, unpeelable composite membranes were produced. The membrane may be used, for example, for water or wastewater filtration applications.
Description
FIELD

This specification relates to filtering membranes.


BACKGROUND

The following discussion is not an admission that anything discussed below is common general knowledge or background knowledge of a person skilled in the art.


U.S. Pat. No. 5,472,607 to Mahendran et al. describes a hollow fiber membrane comprising a braided tubular support coated on its outer surface with an asymmetric semipermeable film of polymer. Voids in the braided support are small enough to inhibit substantial penetration of a membrane forming dope. The polymer film extends over less than 33% of the outer portion of the braid's cross-sectional area. In one example, a tubular braid of glass fibers was coated with a dope of polyvinylidene-difluoride (PVDF) in N-methyl-2-pyrrolidone (NMP). The braid had an inner diameter of 1.0 mm and an outer diameter of 1.5 mm. The complete microfiltration (MF) membrane had an outside diameter of 1.58 mm.


U.S. Pat. No. 6,354,444 to Mahendran et al. describes microfiltration (MF) or ultrafiltration (UF) membranes supported on a tubular braid. Various physical characteristics of a preferred braid are described. The braid may be made, for example, from polyesters or nylons. In a comparison test, membranes made of a PVDF in NMP dope coated onto a polyester braid were found to break less frequently than membranes with a glass fiber braid when used in an aerated, immersed microfiltration module.


Membranes generally as described in U.S. Pat. No. 6,354,444 are used in ZeeWeed membrane modules sold by GE Water and Process Technologies. These modules, originally developed by Zenon Environmental Inc., are possibly the most successful immersed membrane products for use in membrane bioreactors (MBR) ever made. However, although the membranes do not break, these membranes still occasionally suffer failures that occur when the membrane coating peels off of the braided support in harsh operating conditions. These delamination failures occur particularly at high stress points where the membranes enter the resin potting blocks. Although the fiber does nor break, delamination causes a breach in the rejection capability of the membrane.


In U.S. Pat. No. 7,807,221, Shinada et al. attempt to provide increased adhesion between a membrane material and a supporting braid by applying the membrane material in two separate coating layers. In U.S. Pat. No. 7,909,177, Lee et al. attempt to increase peeling strength by using fine filaments in the braid and adding stabilizing agents to the membrane dope to avoid forming large macro-void pores near the membrane to braid interface.


INTRODUCTION

The following introduction is intended to introduce the reader to the detailed description and not to limit or define any claimed invention.


This specification describes an alternative supporting structure for a filtering membrane. The supporting structure comprises filaments. The supporting structure is coated with a polymeric membrane layer to produce a supported membrane. The polymeric membrane layer does not completely penetrate through the supporting structure. Some or all of the filaments of the supporting structure comprise a polymer that is soluble or swellable in a solvent of the membrane layer polymer used to make a membrane casting polymer solution, alternatively called dope. The membrane may be used in any filtration application including, for example, drinking water filtration, tertiary filtration or mixed liquor filtration in a membrane bioreactor.


A membrane may be supported on a braided or woven support which has a first supporting polymer and one or more carriers or yarns comprising filaments having a second supporting polymer. The second supporting polymer is soluble or swellable in a solvent of a membrane dope. The second supporting polymer preferably also has a high affinity for a membrane forming polymer. Optionally, the second supporting polymer may be the same as the membrane forming polymer. Optionally, one or more carriers or yarns may consist essentially entirely of filaments comprising the second supporting polymer. The filaments comprising the second supporting polymer may be bi-component filaments of the second supporting polymer and either the first supporting polymer or a third supporting polymer. The support is not fully embedded in the membrane polymer layer.


The detailed description describes, as an example, a braid supported hollow fiber membrane. Polyester (PET) is used to make the braided support because of its high tensile strength. Polyvinylidene difluoride (PVDF) is used for the membrane layer for its excellent chemical resistance. The membrane layer was produced by coating the braid with a dope based on PVDF in N-methyl-2-pyrrolidone (NMP). However, PVDF has low adhesion to polyester and the braid is not fully embedded in the membrane layer. When PET yarns were substituted with yarns made of filaments that comprise PVDF, the peel strength of the membrane improved. More than half of the cross-sectional area of the braid was made of PET and so the membrane retained sufficient tensile strength. However, replacing as little as 4% of the yarns in the braid with a yarn of PET/PVDF core-sheath filaments provided an unpeelable membrane.


Without intending to be limited to any particular theory, the improvement in peel strength appears to be based on two mechanisms. Firstly, the PVDF filaments have a high affinity for the PVDF based dope, which causes enhanced penetration of the dope into the braid along or into the yarn with filaments comprising PVDF. Secondly, the PVDF filaments partially or completely dissolve when exposed to the NMP, which anchors the penetrating dope into the support structure.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a schematic representation of a cross section of a membrane.



FIG. 2 is an enlarged drawing of a portion of the membrane of FIG. 1.



FIG. 3 is a cross-sectional view along a longitudinal axis of a coating nozzle used to produce a hollow fiber membrane.



FIG. 4 is a scanning micrograph of a cross section of part of a yarn made of PET-PVDF core—sheath filaments.



FIGS. 5 to 10 are schematic representations of a braided support in which some or all of the yarns have been substituted with one or more yarns made of PET-PVDF core-sheath filaments.



FIG. 11 is a scanning micrograph of a portion of a hollow fiber membrane coated on a tubular braid having a PET yarn and a PET-PVDF yarn blend.





DETAILED DESCRIPTION


FIG. 1 shows a schematic cross section of a supported membrane 10. The membrane 10 has a supporting structure 12 and a polymeric membrane layer 14. The membrane layer 14 includes an upper region 16 that lies generally on top of the supporting structure 12. Optionally, the membrane layer 14 may also have a penetrating region 18 that is located within the supporting structure 12. The penetrating region 18, if present, may extend through the entire thickness of the supporting structure 12 but preferably extends through one half or less of the thickness of the supporting structure. The membrane 10 in FIG. 1 is a hollow fiber membrane, typically having an outer diameter of about 3 mm or less. Other membranes 10 may be in the form of flat sheets or tubes, the tubes typically having a diameter of about 5 mm or more.



FIG. 2 shows an enlargement of part of the cross section of membrane 10. The supporting structure 12 defines an outer surface 226 and an inside surface 227. Both of the surfaces 226, 227 are irregular and broken up with openings to pores or passages through the supporting structure 12. The support 12 may be between about 0.1 mm and 0.5 mm thick. The upper region 16 of the membrane 10 may be between about 50 microns and 230 microns thick. In the case of a hollow fiber membrane, the inner surface 227 may define a lumen or bore of the membrane 10, which may have a nominal diameter of between about 0.25 mm and 2.3 mm, and the outer diameter of the supporting structure 12 may be between about 0.6 mm and about 2.5 mm.


The supporting structure 12 is made up of filaments 228. Optionally, these filaments may be collected together into yarns 230. The yarns 230 may be collected together into a sheet or tube, for example by braiding. As used herein, the term “braided” and related terms includes knitted and woven structures and their related terms. Alternatively, the supporting structure 12 may be made up of filaments 228 directly as in, for example, a non-woven substrate such as a needle-punched, spun-bond or melt-blown substrate. In the case of a hollow fiber membrane, a braided tube may be made from about 16 to 96 yarns or ends braided at between about 5 and 100 picks per inch.


Spaces, or voids, are present on the outer surface 226 of the supporting structure 12 between adjacent or crossing filaments 228, or between yarns 230 if the filaments 228 are arranged in yarns 230. The voids may have a median or average area that is similar in area to a circular opening with a diameter between about 10 microns and 100 microns. This range may be adjusted to suit the membrane dope. However, voids less than 10 microns in size may interfere with permeate flux through the membranes. Voids larger than 100 microns in size may allow excessive dope penetration, which could result in the membrane lumen being blocked or the membrane layer 14 being thick. A thick membrane layer 14 consumes excessive amounts of membrane dope and may also cause reduced flux. Large voids also tend to coincide with there being fewer filaments 228, which may reduce adhesion between the supporting structure 12 and the membrane layer 14.


In FIG. 2, the membrane layer 14 is asymmetric with an integral skin 234 over a supporting region 235. The skin 234 is a thin layer that is dense or has small pores that define the filtration range of the membrane 10. The nominal pore size may be, for example, between about 10 nm and 1 micron in size, with some pores larger and smaller than the nominal size. The supporting region may contain macrovoids 236. Suitable membrane layers and methods of making them are described, for example, in International Publication Number WO 2010/062454 A1, which is incorporated by reference. Other membrane structures may also be used.


The membrane 10 is produced by casting one or more membrane dopes onto the supporting structure 12. The dope generally comprises a film-forming polymer and a solvent for the polymer, optionally with other additives such as non-solvents, weak non-solvents, and hydrophilic additives. The film-forming polymer forms the membrane layer 14 after it comes out of solution with the solvent.


Suitable film-forming polymers include, for example, polysulfone, polyethersulfone, polyether ether ketone, polyvinyl chloride (PVC), polyvinylidene dichloride (PVDC), chlorinated polyvinylchloride (CPVC), polyvinylidene difluoride (PVDF), polyvinylfluoride (PVF), other fluoro polymers or co-polymers, cellulose acetate, cellulose nitrate, cellulose triacetate, cellulose butyrate, polyacrylonitrile, sulfonated polyether ether ketone, sulfonated polysulfone, sulfonated polyethersulfone, polyimides, polyamides, polymethyl methacrylate, polystyrene, or blends or co-polymers of the above.


Solvents most commonly used in membrane dopes include pentane, hexane, cyclohexane, ethyl acetate, dichloroethane, chloroform, dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), N-ethylpyrrolidone (NET), formamide, triethylphosphate (TEP), y-butyrolactone, e-caprolactam, dimethylsulfoxide (DMSO), tetrahydrofuran (THF), acetone, pyperidine, imidazole, and sulfuric acid.


Generally speaking, the dope is introduced into a casting device, such as a coating nozzle, casting head or casting knife, at a flow rate correlated to the speed of the supporting structure relative to the casting device. The dope flow rate is chosen to provide a desired thickness of the membrane layer 14.


For example, FIG. 3 shows a cross sectional view of a coating nozzle 310 that may be used to form a polymeric membrane film on a tubular braid to produce a hollow fiber membrane. The nozzle 310 comprises an inner barrel 312 having an internal bore 313 through which the tubular support is advanced into an axial bore 314 of a nipple 315. The nipple 315 may be integral with the barrel 312, or may be secured into an end of a separate barrel 312. The bore 314 provides a rounding orifice to help the tubular support to acquire a circular cross-section before it is coated with dope. The rounding orifice may have a diameter in the range of about 1% to 10% less than the nominal diameter of the tubular braid. The barrel 312 is inserted in an outer barrel member 320 having a cylindrical base 325. The outer barrel 320 is provided with an inner axial chamber 322. Dope introduced into a port 321 of the nozzle 310 flows into the chamber 322 and then travels in the direction in which the braid is drawn through the bore 314. As the tubular braid is advanced out of the bore 314, it is coated with dope. The dope coated braid is led into a coagulating bath. In the coagulating bath, the dope solvent is driven out of the dope, for example by a non-solvent induced phase separation (NIPS) or thermally induced phase separation (TIPS) process. In the coagulation bath, the film forming polymer is converted into the membrane layer 14.


In the supporting structure 12, some of the filaments 228 comprise a first polymer and some or all of the filaments 228 comprise a second polymer. Some filaments 228 may be bi-component filaments, for example core—sheath filaments. Bi-component filaments may comprise the first polymer and the second polymer. Alternatively, bi-component filaments may comprise the second polymer and a third polymer. In a bi-component filament 228, the second polymer should be exposed to at least part, and preferably all, of the outer surface of the filament 228.


The first polymer is chosen primarily for its mechanical properties such as strength, ductility or flexibility, or for other considerations such as cost. The second polymer is chosen to be soluble or swellable in a solvent of the membrane dope, for example NMP. The second supporting polymer preferably also has a high affinity for the film forming polymer of the dope. Optionally, the second polymer may be the same as the film forming polymer in the membrane dope. The third polymer, if any, may be chosen for its mechanical properties, for other considerations such as cost, or for its compatibility with the second polymer in a bi-component filament.


The first polymer may be, for example, polyester (PET) or a co-polymer of polyester (coPET). Other possible first polymers include, for example, polyolefin, polyvinyl chloride (PVC), polyamide (PA), polypropylene (PP), polysulfone, polyestersulfone, polyphenylsulfone, polyacrylonitrile, cellulose and derivatives thereof. The second polymer may be PVDF. Other possible second polymers include, for example, polyvinylidene chloride, polyacrylonitrile (PAN) and its copolymers, polysulfone, polyethersulfone, polyphenylsulfone and derivatives thereof. Polymers that are listed both as possible first and second polymers may be suitable for use as homogenous filaments in combination with other filaments of another first polymer.


In a braided supporting structure 12, the filaments 228 are grouped together into yarns 230. Filaments 228 comprising the second polymer can be provided as a yarn 230 made up entirely of bi-component filaments comprising the second polymer or as a yarn of homogenous filaments of the second polymer. Alternatively, bi-component or second polymer filaments 228 can be mixed with filaments of the first polymer in one or more yarns 230. However, it is not clear at the time of writing this specification whether yarns 230 containing a mix of filaments comprising the second polymer and filaments of the first polymer can provide as much peel strength improvement as a yarn 230 made entirely of filaments of the second polymer for the same number of filaments comprising the second polymer. Accordingly, it is presently preferred for the supporting structure 12 to have one or more yarns 230 in which 50% or more, or all, of the filaments 228 are filaments comprising the second polymer.


Although optional, bi-component filaments 228 can have the advantage of decreasing the total amount of the second polymer in the supporting structure for a given surface area of the second polymer. This may be desirable because the second polymer has poor mechanical properties, or for other reasons such as its cost. Between 1 and 100% of the filaments 228 or yarns 230 can be filaments or yarns that comprise the second polymer. However, at least 50% of the cross-sectional area of the support is preferably made of the first polymer. By using bi-component fibers, even if all of the filaments 228 comprise the second polymer, 50% or more of the supporting structure 12 may be made of the first polymer.


In experimental examples, braid supported hollow fiber membranes were made with some or all of the yarns substituted with yarns made of bi-component fibers. Polyester (PET) was used as a first polymer because of its high tensile strength. In a reference membrane, the braid was made from yarns of PET filaments. PVDF was used for the membrane layer, chosen for its excellent chemical resistance. The primary solvent in the membrane dope was NMP. Although successful commercial membranes have been made in this way, PVDF has low adhesion to polyester and there have been some membrane peeling or de-lamination failures in the field. As will be discussed in more detail below, when one or more of the PET yarns were substituted with yarns made of filaments that comprise PVDF, the peel strength of the membrane improved. Less than half of the cross-sectional area of the braid was made of PVDF and so the membrane retained sufficient tensile strength. Replacing as few as 4% of the yarns in the braid with PET-PVDF core-sheath filaments provided an unpeelable membrane.


Each membrane in the experiment was supported on a tubular braid made in a regular braid pattern (one yarn floating over two adjacent yarns) with 24 carriers. The braid had 36-40 picks per inch. Two reference membranes were made using 400 and 460 dtex f96 flat polyester (PET) yarns. Two types of braid were used differing in various dimensions as indicated in FIG. 5. In the experimental membranes, new supporting structures were made in which one or more of the polyester yarns were substituted on the braider with yarns made up of core-sheath PET-PVDF bi-component filaments. The bi-component filaments were made of PVDF-coated PET, with a core diameter of 21 μm and an outer diameter of 26 μm. The substituted yarns were 467 dtex f72 (420 denier yarns made of 72 filaments) made up of bi-component filaments. A cross section of part of the bi-component yarn 400 is shown in FIG. 4. In the bi-component yarn 400 shown, the filaments 406 each have a PET core 404 and a PVDF sheath 402.


In different experiments, 1, 2, 6, 12 and 24 out of 24 carriers were replaced with bi-component filaments giving 4%, 8%, 25%, 50% and 100% replacement rates. The braiding machine had two counter rotating carrier systems. When two or more carriers were replaced in a single carrier system, the replaced carriers were spaced equally around the carrier system and produced a set of parallel helices. When 6 and 12 carriers were replaced, half of the replaced carriers were located on each of the carrier systems to produce a crossing pattern between the bi-component yarns and the PET yarns. The resulting braid structures are shown schematically in FIGS. 5 to 10. In these Figures, a black yarn is a PET-PVDF bi-component yarn on the front side of the braid. A yarn shown with a black border is a bi-component yarn on the back side of the braid. In the cases in which two carriers were replaced (8% substitution) with bi-component yarns, the bi-component yarns, in one case both replaced carriers were on one carrier system to produce a double parallel helical arrangement while in the other case one carrier was replaced on each carrier system to produce a cross-helical arrangement (FIGS. 6 and 7).


A membrane layer was cast on the braid samples using a dope based on PVDF in NMP to produce a loose ultrafiltration or tight microfiltration membrane. The membrane layer could not be peeled from any of the membranes with modified braids having at least one yarn of bi-component filaments. In particular, standard peel strength tests could not be performed because the membrane layer could not be removed from the supporting structure using standard test equipment.


A ‘pull-off’ test was performed after potting membrane samples into a solid block of polyurethane to obtain numerical data. The membrane length in the resin block was 30 mm. Since the polyurethane to membrane adhesion is higher than the membrane layer to supporting structure adhesion, delamination occurs at the boundary between the membrane layer and the supporting structure when a sufficient force is applied to membrane. This allowed the adhesion between the membrane layer and the supporting structure to be quantified by measuring the force required to pull the membrane out of the resin block. The properties of the membranes are summarized in Table 1.









TABLE 1







Composite filtration membrane properties based on two different braid supports



















8%
8%






PVDF/PET yarn % a
0%
4%
double helix
cross helix
25%
50%
100%


















Type 1
Fiber permeability [gfd/psi] b
45
44
n/a
n/a
41
40
32



Defect pressure [psi]
31
31
n/a
n/a
33
7
40



Peel strength, mean load [N] c
0.19
unpeelable
unpeelable
unpeelable
unpeelable
unpeelable
unpeelable



Pull strength, max load [N] d
25
31
n/a
n/a
62
67
93


Type 2
Fiber permeability [gfd/psi] b
36
35
33
34
34
32
29



Defect pressure [psi]
18
23
16
12
16
14
6



Peel strength, mean load [N] c
0.21
unpeelable
unpeelable
unpeelable
unpeelable
unpeelable
unpeelable



Pull strength, max load [N] d
37
44
50
54
81
110
136






a Percentage of PVDF/PET yarn blended in total yarn.




b 95 cm dead-end single fiber representing permeation in a Zeeweed ® 500 filtration module




c 6 mm contact perimeter




d 90 mm2 contact area







As indicated in Table 1, pull strength increased significantly with even one yarn of bi-component filaments. Pull strength continued to increase with more yarns of bi-component filaments. Membrane qualities were generally unchanged at low substitution rates, but permeability began to decline for substitution rates over 25%. However, a membrane with 50% bi-component yarns of the Type 1 pattern still had better permeability than a membrane with a PET braid of the Type 2 pattern.


Without intending to be limited by any particular theory, the improvement in peel strength appears to be based on two mechanisms. Firstly, the PVDF filaments have a high affinity for the PVDF dope, which causes enhanced penetration of the dope into the braid along the PVDF filaments. Secondly, the PVDF filaments partially or completely dissolve when exposed to the NMP which anchors the penetrating dope into the support structure. FIG. 11 shows that the membrane layer 14 of the finished membrane has limited adhesion to a first yarn 410, 230a made of PET filaments 408, 228a while it wets, surrounds and embeds the neighboring outer portion of a second yarn 230b, 400 made of PET-PVDF core-sheath filaments 406, 228b.


Although membranes as described above may be used in various applications, their increased mechanical robustness is particularly useful in immersed membrane bioreactors (MBRs). In MBRs, the membranes are frequently aerated intensely to scour the membranes and the membranes are mounted with excess length between potting headers to encourage them to sway when aerated. This inhibits fouling, but also causes stress where the membrane ends are fixed in the potting heads. Increased peel strength can be expected to reduce the rate of delamination failures of immersed membrane modules used in MBRs and in other harsh operating environments. The membranes described herein may be used in immersed, suction driven, ultrafiltration or microfiltration membrane modules such as ZeeWeed™ 500 series modules made by GE Water and Process Technologies.

Claims
  • 1. An immersed membrane module comprising braid supported hollow fiber membranes, the membranes comprising a braided supporting layer and a membrane layer, the membrane layer comprising PVDF, the supporting layer comprising a plurality of yarns, wherein some of the plurality of yarns are polyester yarns and others of the plurality of yarns comprise PVDF.
  • 2. The immersed membrane module of claim 1 wherein the yarns comprising PVDF are made up essentially entirely of PVDF.
  • 3. An immersed membrane module comprising braid supported hollow fiber membranes, the membranes comprising a braided supporting layer and a membrane layer, the membrane layer comprising PVDF, the supporting layer comprising yarns made at least in part of filaments comprising PVDF wherein the filaments comprising PVDF are bi-component filaments having a PVDF sheath.
  • 4. The immersed membrane module of claim 3 wherein the bi-component filaments have a core of polyester.
US Referenced Citations (164)
Number Name Date Kind
2747649 Reed May 1956 A
2936482 Kilian May 1960 A
3494121 Bohrer Feb 1970 A
3547721 Dietzsch Dec 1970 A
3567666 Berger Mar 1971 A
3615024 Michaels Oct 1971 A
3673028 Pearson Jun 1972 A
3676193 Cooper et al. Jul 1972 A
3705070 Kim Dec 1972 A
3745142 Mahlman Jul 1973 A
3816231 Marshall Jun 1974 A
3849241 Butin et al. Nov 1974 A
3948781 Brun et al. Apr 1976 A
3984328 Brun et al. Oct 1976 A
4020230 Mahoney et al. Apr 1977 A
4029265 Piper Jun 1977 A
4061821 Hayano et al. Dec 1977 A
4115492 Mahoney et al. Sep 1978 A
4247498 Castro Jan 1981 A
4253936 Leysen et al. Mar 1981 A
4274539 Rabeneck et al. Jun 1981 A
4299083 Igel et al. Nov 1981 A
4335193 Doi et al. Jun 1982 A
4340480 Pall et al. Jul 1982 A
4384047 Benzinger et al. May 1983 A
4399035 Nohmi et al. Aug 1983 A
4405688 Lowery et al. Sep 1983 A
4406850 Hills Sep 1983 A
4541981 Lowery et al. Sep 1985 A
4631128 Coplan et al. Dec 1986 A
4664681 Anazawa et al. May 1987 A
4666607 Josefiak et al. May 1987 A
4702836 Mutoh et al. Oct 1987 A
4707265 Barnes, Jr. et al. Nov 1987 A
4741829 Takemura et al. May 1988 A
4764320 Chan et al. Aug 1988 A
4919856 Anazawa et al. Apr 1990 A
4957943 McAllister et al. Sep 1990 A
5011588 Rao et al. Apr 1991 A
5013339 Mahoney et al. May 1991 A
5022990 Doi et al. Jun 1991 A
5032282 Linder et al. Jul 1991 A
5034129 Ten Hove Jul 1991 A
5066401 Muller et al. Nov 1991 A
5139529 Seita et al. Aug 1992 A
5143312 Baurmeister Sep 1992 A
5151191 Sunaoka et al. Sep 1992 A
5168005 Keating Dec 1992 A
5171493 Aptel et al. Dec 1992 A
5209852 Sunaoka et al. May 1993 A
5232597 Eguchi Aug 1993 A
5232642 Kamo et al. Aug 1993 A
5238562 Rogut Aug 1993 A
5240610 Tani et al. Aug 1993 A
5271883 Timmons et al. Dec 1993 A
5284583 Rogut Feb 1994 A
5294338 Kamo et al. Mar 1994 A
5303550 Setzer Apr 1994 A
5328610 Rogut Jul 1994 A
5332498 Rogut Jul 1994 A
5336298 Quinn et al. Aug 1994 A
5374453 Swei et al. Dec 1994 A
5376273 Pacheco et al. Dec 1994 A
5380477 Kent et al. Jan 1995 A
5385777 Higuchi et al. Jan 1995 A
5392588 Morrison Feb 1995 A
5435955 Kamei et al. Jul 1995 A
5470659 Baumgart et al. Nov 1995 A
5472607 Mailvaganam et al. Dec 1995 A
5474680 Eguchi Dec 1995 A
5489406 Beck et al. Feb 1996 A
5497608 Matsumoto et al. Mar 1996 A
5547756 Kamo et al. Aug 1996 A
5582913 Simons Dec 1996 A
5637385 Mizuki et al. Jun 1997 A
5651888 Shimizu et al. Jul 1997 A
5656167 Martz Aug 1997 A
5709735 Midkiff et al. Jan 1998 A
5716689 Rogut Feb 1998 A
5753351 Yoshida et al. May 1998 A
5782959 Yang et al. Jul 1998 A
5783608 Sugo et al. Jul 1998 A
5804128 Ogata et al. Sep 1998 A
5882461 Rogut Mar 1999 A
5888605 Hachisuka et al. Mar 1999 A
5914039 Mahendran et al. Jun 1999 A
5972501 Ohmory et al. Oct 1999 A
6015495 Koo et al. Jan 2000 A
6024872 Mahendran et al. Feb 2000 A
6048641 Ohmory et al. Apr 2000 A
6077376 Katraro et al. Jun 2000 A
6083393 Wu et al. Jul 2000 A
6090731 Pike et al. Jul 2000 A
6114017 Fabbricante et al. Sep 2000 A
6127433 Sugo et al. Oct 2000 A
6183640 Wang Feb 2001 B1
6245239 Cote et al. Jun 2001 B1
6264044 Meyering et al. Jul 2001 B1
6273271 Moya Aug 2001 B1
6280791 Meyering et al. Aug 2001 B1
6354443 Moya Mar 2002 B1
6354444 Mahendran et al. Mar 2002 B1
6454943 Koenhen Sep 2002 B1
6465094 Dugan Oct 2002 B1
6495663 Rothbard et al. Dec 2002 B1
6559192 Maccone et al. May 2003 B2
6562879 Hatsuda et al. May 2003 B1
6592759 Rabie et al. Jul 2003 B2
6635204 Tanaka et al. Oct 2003 B2
6746627 Niu et al. Jun 2004 B2
6792744 Feuerlohn et al. Sep 2004 B2
6802971 Gorsuch et al. Oct 2004 B2
6890435 Ji et al. May 2005 B2
RE39176 Dutt Jul 2006 E
7081273 Ji Jul 2006 B2
7165682 Ji Jan 2007 B1
7172075 Ji Feb 2007 B1
7185597 Phillips et al. Mar 2007 B1
7247238 Mullette et al. Jul 2007 B2
7267872 Lee et al. Sep 2007 B2
7306105 Shinada et al. Dec 2007 B2
7413804 Lee et al. Aug 2008 B2
7441667 Galvin et al. Oct 2008 B2
7563376 Oishi Jul 2009 B2
7776214 Saito et al. Aug 2010 B2
7807221 Shinada et al. Oct 2010 B2
7861869 Beckers et al. Jan 2011 B2
7909177 Lee et al. Mar 2011 B2
20020046970 Murase et al. Apr 2002 A1
20020090690 Eddleman et al. Jul 2002 A1
20020111674 Chouinard et al. Aug 2002 A1
20020155289 Cistone et al. Oct 2002 A1
20030094409 Minegishi et al. May 2003 A1
20030098275 Mahendran et al. May 2003 A1
20030107150 Hamanaka et al. Jun 2003 A1
20030192826 Wang et al. Oct 2003 A1
20030197308 Montoya Oct 2003 A1
20040073300 Chouinard et al. Apr 2004 A1
20040078903 Bruning et al. Apr 2004 A1
20040136894 Yoshizawa et al. Jul 2004 A1
20050124249 Uribarri Jun 2005 A1
20050189292 Ward et al. Sep 2005 A1
20050205488 Shinada et al. Sep 2005 A1
20060000766 Ji Jan 2006 A1
20060175243 Mahendran et al. Aug 2006 A1
20070084794 Morikawa et al. Apr 2007 A1
20070262017 Shinada et al. Nov 2007 A1
20080023125 Arnold et al. Jan 2008 A1
20080210623 McMahon et al. Sep 2008 A1
20080241451 Beckers et al. Oct 2008 A1
20080292823 Lee et al. Nov 2008 A1
20080305290 Lee et al. Dec 2008 A1
20090068428 Shinoda et al. Mar 2009 A1
20090314708 Yeom Dec 2009 A1
20100024631 Lee et al. Feb 2010 A1
20110114553 Teramachi et al. May 2011 A1
20120018371 Cote Jan 2012 A1
20120097604 Cote et al. Apr 2012 A1
20120156485 Palinkas et al. Jun 2012 A1
20120164447 Kohinata Jun 2012 A1
20130153490 Pedersen et al. Jun 2013 A1
20130158007 Mickle et al. Jun 2013 A1
20130168007 Cote et al. Jul 2013 A1
20130233788 Vizvardi et al. Sep 2013 A1
Foreign Referenced Citations (101)
Number Date Country
986422 Mar 1976 CA
2288316 May 2000 CA
2474625 Aug 2003 CA
2478445 Sep 2003 CA
2478831 Sep 2003 CA
2630418 Jun 2007 CA
507012 May 1971 CH
286263 Feb 2000 CZ
4142417 Jun 1992 DE
10211051 Oct 2003 DE
0241995 Oct 1987 EP
0761292 Mar 1997 EP
0819467 Jan 1998 EP
0998972 May 2000 EP
1193292 Apr 2002 EP
1236503 Sep 2002 EP
1424157 Jun 2004 EP
1658889 May 2006 EP
0998972 Apr 2007 EP
2301654 Mar 2011 EP
2301654 Mar 2011 EP
1511581 Feb 1968 FR
2616812 Dec 1988 FR
2336962 Jul 1997 FR
1325672 Aug 1973 GB
1374704 Nov 1974 GB
2041821 Sep 1980 GB
53-039982 Sep 1974 JP
52137026 Nov 1977 JP
53028084 Mar 1978 JP
55137209 Oct 1980 JP
57005914 Jan 1982 JP
57-028139 Feb 1982 JP
58-004810 Jan 1983 JP
58-049408 Mar 1983 JP
58-093734 Jun 1983 JP
59196706 Nov 1984 JP
60137402 Jul 1985 JP
60139815 Jul 1985 JP
61-146811 Jul 1986 JP
62001404 Jan 1987 JP
62019206 Jan 1987 JP
62045318 Feb 1987 JP
62079806 Apr 1987 JP
62-133190 Jun 1987 JP
64-014315 Jan 1989 JP
2107318 Apr 1990 JP
2268816 Nov 1990 JP
04-265132 Sep 1992 JP
4265133 Sep 1992 JP
4293529 Oct 1992 JP
5301031 Nov 1993 JP
06-015152 Jan 1994 JP
06-246139 Sep 1994 JP
6246140 Sep 1994 JP
07-080263 Mar 1995 JP
07-116483 May 1995 JP
7157580 Jun 1995 JP
8165396 Jun 1996 JP
52082682 Jul 1997 JP
10-323546 Dec 1998 JP
11-319519 Nov 1999 JP
11348131 Dec 1999 JP
2000-093768 Apr 2000 JP
2000288365 Oct 2000 JP
2001-062258 Mar 2001 JP
2003320584 Nov 2003 JP
2008-114180 May 2008 JP
20040038473 May 2004 KR
20110089621 Aug 2011 KR
1010458 Apr 2000 NL
200946323 Nov 2009 TW
WO 9323153 Nov 1993 WO
WO 9901207 Jan 1999 WO
2009142279 Nov 1999 WO
WO 0078437 Dec 2000 WO
WO 0234373 May 2002 WO
WO 03059496 Jul 2003 WO
WO 03068374 Aug 2003 WO
WO 03076055 Sep 2003 WO
WO 03076056 Sep 2003 WO
WO 03097221 Nov 2003 WO
WO 2004009221 Jan 2004 WO
WO 2004089520 Oct 2004 WO
WO 2005002712 Jan 2005 WO
2005061081 Jul 2005 WO
2005082503 Sep 2005 WO
2005-113218 Dec 2005 WO
2005118116 Dec 2005 WO
WO 2006053406 May 2006 WO
WO 2006063426 Jun 2006 WO
WO 2007116072 Oct 2007 WO
WO 2008066340 Jun 2008 WO
WO 2009142279 Nov 2009 WO
2010062454 Jun 2010 WO
WO 2010081228 Jul 2010 WO
2010108285 Sep 2010 WO
WO 2010108285 Sep 2010 WO
2010148517 Dec 2010 WO
WO 2010148517 Dec 2010 WO
2012036935 Mar 2012 WO
Non-Patent Literature Citations (62)
Entry
Search Report and Written Opinion from corresponding PCT Application No. PCT/US2013/025110 dated May 13, 2013.
Jie Liu, Pingli Li et al. Preparation of PET threads reinforced PVDF hollow fiber membrane, Desalination, vol. 249, Issue 2, Dec. 15, 2009, pp. 453-457.
Search Report and Written Opinion from PCT/US2011/063332 dated Jul. 31, 2012.
Search Report and Written Opinion from PCT/US2011/050479 dated Nov. 25, 2011.
Caplan et al., Formation of microporous Teflon PFA membranes via thermally induced phase separation, Journal of Membrane Science, 130 (1997) p. 219-237.
Choi et al., Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes, Journal of Membrane Science 284 (2006) p. 406-415.
Choi et al., Modification of Performances of Various Memranes Using MWNTs as a Modifier, Macromol. Symp. 2007, 249-250, p. 610-617.
English language abstact of JP 11-319519 to Nitto Denko Corp, published Nov. 24, 1999.
English language abstract of JP 04-265132 to UBE Ind Ltd, published Sep. 21, 1992.
English language abstract of JP 04265133 to UBE Ind Ltd, published Sep. 21, 1992.
English language abstract of JP 04293529 to UBE Ind Ltd, published Oct. 19, 1992.
English language abstract of JP 06-015152 to Tokuyama Soda Co Ltd, published Jan. 25, 1994.
English language abstract of JP 06-246139 to Dainippon Ink & Chem Inc, published Sep. 6, 1994.
English language abstract of JP 06246140 to Dainippon Ink & Chem Inc, published Sep. 6, 1994.
English language abstract of JP 07-080263 to Mitsubishi Rayon Co Ltd, published Mar. 28, 1995.
English language abstract of JP 07-116483 to Dainippon Ink & Chem Inc, published May 9, 1995.
English language abstract of JP 07157580 to Kawamura Inst of Chem Res Dainippon Ink & Chem Inc, published Jun. 20, 1995.
English language abstract of JP 08165396 to Kurabe Ind Co Ltd, published Jun. 25, 1996.
English language abstract of JP 10-323546 to Nitto Denko Corp, published Dec. 8, 1998.
English language abstract of JP 11-319519 to Nitto Denko Corp published Nov. 24, 1999.
English language abstract of JP 2000-093768 to Nok Corp, published Apr. 4, 2000.
English language abstract of JP 2000288365 to Torary Ind Inc, published Oct. 17, 2000.
English language abstract of JP 2001-062258, to Mitsubishi Rayon Co. Ltd, published Mar. 2001.
English language abstract of JP 2008114180 to Mitsubishi Rayon Co Ltd, published May 22, 2008.
English language abstract of JP 2107318 to Daicel Chem, published Apr. 19, 1990.
English language abstract of JP 2268816 to Mitsubishi Rayon Co, published Nov. 2, 1990.
PCT Search Report dated Jun. 14, 2010 issued in connection with PCT Application No. PCT/CA2010/000469 which was filed on Mar. 26, 2010.
English language abstract of JP 52082682 to Asahi Chemical Ind, published Jul. 11, 1997.
English language abstract of JP 52137026 to Toyobo Co Ltd, published Nov. 16, 1977.
English language abstract of JP 5301031 to Daicel Chem, published Nov. 16, 1993.
English language abstract of JP 53028084 to Nitto Electric Ind Co, published Mar. 15, 1978.
English language abstract of JP 53-039982 to Kunyu, published Sep. 3, 1974.
English language abstract of JP 55137209 to Mitsubishi Rayon Co Ltd, published Oct. 25, 1980.
English language abstract of JP 57005914 to Mitsubishi Rayon Co Ltd, published Jan. 12, 1982.
English language abstract of JP 57-028139 to Asahi Chem Ind Co Ltd, published Feb. 15, 1982.
English language abstract of JP 58-004810 to Toyobo Co Ltd, published Jan. 12, 1983.
English language abstract of JP 58-049408 to Nitto Electric Ind Co Ltd, published Mar. 23, 1983.
English language abstract of JP 58-093734 to Asahi Kasei Kogyo KK, published Jun. 3, 1983.
English language abstract of JP 59196706 to Dainippon Ink & Chem Inc Kawamura Inst of Chem Res, published Nov. 8, 1984.
English language abstract of JP 60137402 to Mitsubishi Rayon Co Ltd, published Jun. 22, 1985.
English language abstract of JP 60139815 to Mitsubishi Rayon Co Ltd, published Jul. 24, 1985.
English language abstract of JP 61-146811 to Ube Ind Ltd, published Jul. 4, 1986.
English language abstract of JP 62001404 to Mitsubishi Rayon Co, published Jan. 7, 1987.
English language abstract of JP 62019206 to Dainippon Ink & Chem Inc, published Jan. 28, 1987.
English language abstract of JP 62045318 to Dainippon Ink & Chem Inc, published Feb. 27, 1987.
English language abstract of JP 62079806 to Ube Ind Ltd, published Apr. 13, 1987.
English language abstract of JP 62-133190 to Toagosei Chem Ind Co Ltd, published Jun. 16, 1987.
English language abstract of JP 64-014315 to Mitsubishi Rayon Co Ltd, published Jan. 18, 1989.
Ramaswamy et al., Fabication of poly (ECTFE) membranes via thermally induced phase separation, Journal of Membrane Science, 210 (2002) p. 175-180.
Lin et al., Microporous PVDF membrane formation by immersion precipitation from water/TEP/PVDF system, Desalination, 145 (2002) p. 25-29.
Lloyd et al., Microporous membrane formation via thermally-induced phase separation. II. Liquid-liquid phase separation, Journal of Membrane Science, 64 (1991) p. 1-11.
Lloyd, Douglas R., Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation, Journal of Membrane Science, 52 (1990) p. 239-261.
Murata Manufacturing Co, English language abstract of JP11348131, published Dec. 21, 1999.
Tsujino, Jiromaru et al., Welding of Flat Copper Braid Wire Specimens Using Ultrasonic Complex Vibration—Direct Machining of Terminal Parts on Flat Braided Wires, Ultrasonics Symposium, IUS 2008. IEEE, Nov. 2-5, 2008.
Elke, English language abstract of EP1424157, published Jun. 2, 2004.
Inoue Shoten KK, English language abstract of JP2003320584, published Nov. 11, 2003.
Sung Cheol, English language abstract of KR20110089621, published Aug. 9, 2011.
Guo-Chang, English language abstract of TW200946323, published Nov. 16, 2009.
Schunk Ultraschalltechnik GMGH, English language abstract of CZ286263, published Feb. 16, 2000.
PCT Search Report and Written Opinion dated Jun. 21, 2013 from PCT Application No. PCT/US2013/026979.
PCT Search Report and Written Opinion dated Mar. 28, 2013 from PCT Application No. PCT/US2012/065648.
PCT Search Report dated Oct. 16, 2013 from PCT Application No. PCT/US2013/053891.
Related Publications (1)
Number Date Country
20130233788 A1 Sep 2013 US