This application claims priority under 35 USC §119 to United Kingdom Patent Application No. 1006011.9 filed on Apr. 10, 2010.
This invention relates to methods of producing composite mouldings.
The moulding of composites is carried out by many different processes, amongst which is the vacuum infusion process, with which the present invention is primarily concerned.
In the vacuum infusion process, a rigid mould having a smooth border flange (normally disposed horizontally) is laid up with dry fibre reinforcement, i.e. a reinforcement pack, within the borders. The dry reinforcement fibre may be in mat form, a woven cloth or a multi-axial cloth or a combination of any as a reinforcement pack. The reinforcement pack is positioned so that it does not encroach upon the border so that a counter membrane mould of similar size and shape can be laid over the reinforcement pack and made to seal around the peripheral fibre-free border so that a vacuum can be applied to the underside of the membrane whereby the membrane is forced down upon the reinforcement pack by the outside atmospheric air pressure.
Once the rigid mould, the reinforcement pack and the membrane are vacuum-tight as described above, a resin mixture is infused through strategically placed vacuum-secure pipe connections in the membrane into the reinforcement pack in order to flow into and fill all the dry reinforcement under the membrane.
Reusable membranes designed for the infusion process are normally formed from an elastomeric mouldable material or sheets of various different materials. For example, catalyst-cured or platinum-cured silicones may be used. These are either sprayed or brush-applied and allowed to cure onto a matching mould surface. is Also, pre-made silicone sheets may be used, which are tailored to fit the mould size and shape and are joined together with appropriate adhesive systems or vulcanising methods. Other systems use polyurethane polymers in liquid form which are brushed or sprayed onto a matching mould and allowed to cure before being removed and used as a reusable infusion membrane.
Various methods are used to aid the distribution of resin under the film membrane. For example, spiral-wrap plastic strips or elastomeric profiles in strip form may be used to provide an easy path for the resin over a specific length and to provide a feeding face which allows the resin to feed to the top face of the reinforcement pack. These strips or profiles can be considered as forming resin feeding channels.
It is an object of the present invention to provide an improved method of producing composite mouldings.
It is also an object of the present invention to provide an improved vacuum infusion moulding process.
According to a first aspect of the present invention there is provided a method of producing a composite moulding in which an elastomeric resin flow channel is placed on a mould surface with a is membrane extending over the resin flow channel and the mould, the resin flow channel having a fibrous layer on the surface thereof covered by the membrane, and in which vacuum is applied to the space within the membrane to draw the membrane into sealing engagement with the mould.
After the membrane has been drawn into sealing engagement with the mould, the resin is fed along the channel into the mould.
According to a second aspect of the present invention there is provided a vacuum infusion moulding process which includes the use of an elastomeric resin flow channel having a fibrous layer on its presented surface, which surface is covered by a membrane.
The membrane and resin flow channel are preferably reusable to provide significant cost savings.
The resin flow channel element 1 and the membrane 5 are assembled together to form a reusable composite membrane as shown in section in
It will be appreciated that, once the resin cures and becomes hardened, the reusable membrane 5 can be removed from the cured laminate and, because of the flexible nature of the resin flow channel element 1 and its releasable bonding to the membrane 5, the resin flow channel element 1 can also be removed from the cured laminate. Any resin which remained in the flow channel interior shapes 3 and 4 can also be removed.
It is to be noted that, during this removal operation, the resin flow channel element 1 and the reusable membrane 5 will remain as one due to the bonding system described above.
While there have been shown and described and pointed out fundamental novel features of the invention as applied to preferred embodiments thereof, it will be understood that various omissions and substitutions and changes in the form and details of the devices and methods described may be made by those skilled in the art without departing from the spirit of the invention. For example, it is expressly intended that all combinations of those elements and/or method steps which perform substantially the same function in substantially the same way to achieve the same results are within the scope of the invention. Moreover, it should be recognized that structures and/or elements and/or method steps shown and/or described in connection with any disclosed form or embodiment of the invention may be incorporated in any other disclosed or described or suggested form or embodiment as a general matter of design choice. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto. Furthermore, in the claims means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures. Thus although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts, a nail and a screw may be equivalent structures.
Number | Date | Country | Kind |
---|---|---|---|
1006011.9 | Apr 2010 | GB | national |