Composite oxide having n-type thermoelectric characteristics

Abstract
The present invention provides a complex oxide having a composition represented by the formula Ln1-xMxNiOy; wherein Ln is a lanthanide, M is at least one element selected from the group consisting of Na, K, Li, Zn, Pb, Ba, Ca, Al, Bi, and rare earth elements being not the same as Ln; and 0≦x≦0.8; and 2.7≦y≦3.3, or the formula (Ln1-xMx)2NiOy; wherein Ln is a lanthanide, M is at least one element selected from the group consisting of Na, K, Li, Zn, Pb, Ba, Ca, Al, Bi, and rare earth elements being not the same as Ln; 0≦x≦0.8; and 3.6≦y≦4.4, the complex oxide having a negative Seebeck coefficient at 100° C. or higher. The complex oxide of the invention has a negative Seebeck coefficient and low electrical resistivity and also has excellent heat resistance, chemical durability, etc., and thus can be effectively utilized as an n-type thermoelectric material in air at high temperatures.
Description
TECHNICAL FIELD

The present invention relates to a complex oxide capable of achieving high performance as an n-type thermoelectric material, and an n-type thermoelectric material using the complex oxide.


BACKGROUND ART

In Japan, only 30% of the primary energy supply is used as effective energy, with about 70% being eventually lost to the atmosphere as heat. The heat generated by combustion in industrial plants, garbage-incineration facilities or the like is lost to the atmosphere without conversion into other energy. In this way, a vast amount of thermal energy is wastefully discarded, while acquiring only a small amount of energy by combustion of fossil fuels or other means.


To increase the proportion of energy to be utilized, the thermal energy currently lost to the atmosphere should be effectively used. For this purpose, thermoelectric conversion, which directly converts thermal energy to electrical energy, is an effective means. Thermoelectric conversion, which utilizes the Seebeck effect, is an energy conversion method for generating electricity by creating a difference in temperature between both ends of a thermoelectric material to produce a difference in electric potential. In such a method for generating electricity utilizing thermoelectric conversion, i.e., thermoelectric generation, electricity is generated simply by setting one end of a thermoelectric material at a location heated to a high temperature by waste heat, and the other end in the atmosphere (room temperature) and connecting conductive wires to both ends. This method entirely eliminates the need for moving parts such as the motors or turbines generally required for electric power generation. As a consequence, the method is economical and can be carried out without generating gases by combustion. Moreover, the method can continuously generate electricity until the thermoelectric material has deteriorated.


Therefore, thermoelectric generation is expected to play a role in the resolution of future energy problems. To realize thermoelectric generation, large amounts of a thermoelectric material that has a high thermoelectric conversion efficiency and excellent heat resistance, chemical durability, etc. will be required.


CoO2-based layered oxides such as Ca3Co4O9 have been reported as substances that achieve excellent thermoelectric performance in air at high temperatures. However, all such oxides have p-type thermoelectric properties, and are materials with a positive Seebeck coefficient, i.e., materials in which the portion located at the high-temperature side has a low electric potential.


To produce a thermoelectric module using thermoelectric conversion, usually not only a p-type thermoelectric material but also an n-type thermoelectric material are needed. However, n-type thermoelectric materials that have excellent heat resistance, chemical durability, etc., and have a high thermoelectric conversion efficiency have not yet been found. Therefore, thermoelectric generation using waste heat has not yet become practical.


In such circumstances, the development of n-type thermoelectric materials is greatly desired that are composed of low toxic and abundantly available elements, have excellent heat resistance, chemical durability, etc., and have a high thermoelectric conversion efficiency.




BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows X-ray diffraction patterns of the complex oxides obtained in Examples 1 and 541.



FIG. 2 schematically shows the crystal structures of complex oxides 1 and 2.



FIG. 3 is a view schematically showing a thermoelectric module comprising the complex oxide of the invention as a thermoelectric material.



FIG. 4 is a graph showing the temperature dependency of the Seebeck coefficient of the sintered complex oxides prepared in Examples 1 and 541.



FIG. 5 is a graph showing the temperature dependency of the electrical resistivity of the sintered complex oxides prepared in Examples 1 and 541.




DISCLOSURE OF THE INVENTION

The present invention has been made to solve the above problems. A principal object of the invention is to provide a novel material that achieves excellent performance as an n-type thermoelectric material.


The present inventors conducted extensive research to achieve the above object and found that a complex oxide having a specific composition comprising a lanthanide, Ni and O as essential elements and partially substituted by specific elements has a negative Seebeck coefficient and a low electrical resistivity, thus possessing excellent properties as an n-type thermoelectric material. The invention has been accomplished based on this finding.


The present invention provides the following complex oxides and n-type thermoelectric materials using the complex oxides.


1. A complex oxide having a composition represented by the formula Ln1-xMxNiOy; wherein Ln is a lanthanide, M is at least one element selected from the group consisting of Na, K, Li, Zn, Pb, Ba, Ca, Al, Bi, and rare earth elements being not the same as Ln; and O≦x≦0.8; and 2.7≦y≦3.3, the complex oxide having a negative Seebeck coefficient at 100° C. or higher.


2. A complex oxide having a composition represented by the formula Ln1-xMxNiOy; wherein Ln is a lanthanide, M is at least one element selected from the group consisting of Na, K, Li, Zn, Pb, Ba, Ca, Al, Bi, and rare earth elements being not the same as Ln; 0≦x≦0.8; and 2.7≦y≦3.3, the complex oxide having an electrical resistivity of 1 Ωcm or less at 100° C. or higher.


3. A complex oxide having a composition represented by the formula (Ln1-xMx)2NiOy; wherein Ln is a lanthanide, M is at least one element selected from the group consisting of Na, K, Li, Zn, Pb, Ba, Ca, Al, Bi, and rare earth elements being not the same as Ln; 0≦x≦0.8; and 3.6≦y≦4.4, the complex oxide having a negative Seebeck coefficient at 100° C. or higher.


4. A complex oxide having a composition represented by the formula (Ln1-xMx)2NiOy; wherein Ln is a lanthanide, M is at least one element selected from the group consisting of Na, K, Li, Zn, Pb, Ba, Ca, Al, Bi, and rare earth elements being not the same as Ln; 0≦x≦0.8, and 3.6≦y≦4.4, the complex oxide having an electrical resistivity of 1 Ωcm or less at 100° C. or higher.


5. An n-type thermoelectric material comprising the complex oxide of any one of Items 1 to 4.


6. A thermoelectric module comprising the n-type thermoelectric material of Item 5.


The complex oxide of the invention is a complex oxide whose composition is represented by the formula Ln1-xMxNiOy (hereinafter referred to as “complex oxide 1”), or a complex oxide whose composition is represented by the formula (Ln1-xMx)2NiOy (hereinafter referred to as “complex oxide 2”).


In complex oxides 1 and 2, Ln is a lanthanide and preferably is Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, or Lu. Among the above-mentioned lanthanides, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, etc., are more preferable because such elements can easily provide a single-phase sample with no impurities.


In complex oxides 1 and 2, M is at least one element selected from the group consisting of Na, K, Li, Zn, Pb, Ba, Ca, Al, Bi, and rare earth elements being not the same as Ln. Specific examples of rare earth elements include Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu, etc. In particular, M is preferably at least one element selected from the group consisting of Na, K, Li, Zn, Pb, Ba, Ca, Al, Bi, Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Er because these elements can easily provide a single-phase sample with no impurities. M partially replaces the Ln sites, and is not the same rare earth element as Ln.


In complex oxide 1 represented by the formula Ln1-xMxNiOy, x is a value of not less than 0 and not more than 0.8 and y is a value of not less than 2.7 and not more than 3.3.


In complex oxide 2 represented by the formula (Ln1-xMx)2NiOy, x is a value of not less than 0 and not more than 0.8 and y is a value of not less than 3.6 and not more than 4.4.


Complex oxides 1 and 2 have a negative Seebeck coefficient and exhibit properties as n-type thermoelectric materials in that when a difference in temperature is created between both ends of the oxide material, the electric potential generated by the thermoelectromotive force is higher at the high-temperature side than at the low-temperature side. More specifically, complex oxides 1 and 2 have a negative Seebeck coefficient at 100° C. or higher.


Furthermore, complex oxides 1 and 2 have good electrical conductivity and low electrical resistivity, and more specifically, an electrical resistivity of 1 Ωcm or less at 100° C. or higher, in particular 100° C. to 700° C.



FIG. 1 shows an X-ray diffraction pattern of the complex oxide obtained in Example 1 given below, i.e., one embodiment of complex oxide 1. FIG. 1 also shows an X-ray diffraction pattern of the complex oxide obtained in Example 541 given below, i.e., one embodiment of complex oxide 2.


The X-ray diffraction patterns, although showing the presence of small amounts of impurities, clearly indicate that complex oxide 1 has a perovskite-type crystal structure and complex oxide 2 has a so-called layered perovskite-type structure, thus being a perovskite-related material.



FIG. 2 schematically shows the crystal structures of complex oxides 1 and 2. As shown in FIG. 2, complex oxide 1 has a perovskite-type ANiO3 structure and complex oxide 2 has a layered perovskite-type A2NiO4 structure in both of which the A sites are occupied by Ln which may be partially substituted by M.


Complex oxides 1 and 2 can be prepared by mixing the starting materials in such a proportion so as to have the same metal component ratio as the desired complex oxide, followed by sintering. More specifically, the starting materials are mixed to have the same Ln/M/Ni metal component ratio as in the formula Ln1-xMxNiOy or (Ln1-xMx)2NiOy, wherein Ln, M, x, and y are as defined above and the resulting mixture is sintered to provide the desired complex oxide.


The starting materials are not limited insofar as they can produce oxides when sintered. Examples of usable materials include metals, oxides, compounds (such as carbonates), and the like. Examples of usable sources of Nd include neodymium oxide (Nd2O3), neodymium carbonate (Nd2(CO3)3), neodymium nitrate (Nd(NO3)3), neodymium chloride (NdCl3), neodymium hydroxide (Nd(OH)3), alkoxides, such as trimethoxy neodymium (Nd(OCH3)3), triethoxy neodymium (Nd(OC2H5)3), tripropoxy neodymium (Nd(OC3H7)3), etc.


Examples of usable sources of Ni are nickel oxide (NiO), nickel nitrate (Ni(NO3)2), nickel chloride (NiCl2), nickel hydroxide (Ni(OH)2), alkoxides such as dimethoxy nickel (Ni(OCH3)2), diethoxy nickel (Ni(OC2H5)2) and dipropoxy nickel (Ni(OC3H7)2), and the like. Similarly, examples of usable sources of other elements are oxides, chlorides, carbonates, nitrates, hydroxides, alkoxides and the like. Compounds containing two or more constituent elements of the complex oxide of the invention are also usable.


The sintering temperature and sintering time are not limited insofar as the desired complex oxide can be produced under such conditions. For example, the sintering may be performed at about 850° C. to about 1000° C. for about 20 to about 40 hours. When carbonates, organic compounds or the like are used as starting materials, the starting materials are preferably decomposed by calcination prior to sintering, and then sintered to give the desired complex oxide. For example, when carbonates are used as starting materials, they may be calcined at about 600° C. to about 800° C. for about 10 hours, and then sintered under the above-mentioned conditions.


Sintering means are not limited and any desired means such as electric furnaces and gas furnaces may be used. Usually, sintering may be conducted in an oxidizing atmosphere with a partial pressure of oxygen of about 1% or higher, such as in an oxygen stream or in air. When the starting materials contain a sufficient amount of oxygen, sintering in, for example, an inert atmosphere is also possible.


The amount of oxygen in a complex oxide to be produced can be controlled by adjusting the partial pressure of oxygen during sintering, sintering temperature, sintering time, etc. The higher the partial pressure of oxygen is, the higher the oxygen ratio in the above formulae can be.


The thus obtained complex oxides 1 and 2 of the invention have negative Seebeck coefficients and low electrical resistivities, i.e., an electrical resistivity of 1 Ωcm or less at 100° C. or higher, so that the oxides exhibit excellent thermoelectric conversion capabilities as n-type thermoelectric materials. Furthermore, the complex oxides have good heat resistance and chemical durability and are composed of elements of low toxicity and therefore highly practical as thermoelectric materials.


Complex oxides 1 and 2 of the invention with the above-mentioned properties can be effectively used as n-type thermoelectric materials in air at high temperatures.



FIG. 3 is a view schematically showing a thermoelectric module produced using a thermoelectric material comprising a complex oxide of the invention as its n-type thermoelectric elements. The thermoelectric module has a structure similar to conventional thermoelectric modules and comprises a high-temperature side substrate, a low-temperature side substrate, p-type thermoelectric materials, n-type thermoelectric materials, electrodes, and conductive wires. In such a module, the complex oxide of the invention is used as an n-type thermoelectric material.


The complex oxides of the invention have negative Seebeck coefficients and low electrical resistivities and also have excellent heat resistance, chemical durability, etc.


The complex oxides of the invention with such properties can be effectively utilized as n-type thermoelectric materials in air at high temperatures, whereas such use is impossible with conventional intermetallic compounds. Accordingly, by incorporating the complex oxides of the invention as n-type thermoelectric elements into thermoelectric system, it becomes possible to effectively utilize thermal energy conventionally lost to the atmosphere.


BEST MODE FOR CARRYING OUT THE INVENTION

Examples are given below to illustrate the invention in further detail.


EXAMPLE 1

Using neodymium oxide (Nd2O3) as a source of Nd and nickel oxide (NiO) as a source of Ni, these starting materials were well mixed at a Nd:Ni ratio (element ratio) of 1.0:1.0. The mixture was molded by pressing, followed by sintering in an oxygen stream at 920° C. for 40 hours to prepare a complex oxide.


The complex oxide thus obtained had a composition represented by the formula NdNiO3.1.



FIG. 4 is a graph showing the temperature dependency of the Seebeck coefficient (S) of the obtained complex oxide over the temperature range of 100° C. to 700° C. It is apparent from FIG. 4 that the complex oxide has a negative Seebeck coefficient at 100° C. or higher, thus being confirmed to be an n-type thermoelectric material in which the high-temperature side has a high electric potential.


In all the Examples described below, the Seebeck coefficient at 100° C. or higher was negative.



FIG. 5 is a graph showing the temperature dependency of the electrical resistivity of the complex oxide. FIG. 5 demonstrates that the complex oxide shows a low electrical resistivity, i.e., an electrical resistivity of about 1 Ωcm or less over the temperature range of 100° C. to 700° C.


In all the Examples described below, the electrical resistivity was 1 Ωcm or less over the temperature range of 100° C. to 700° C.


EXAMPLES 2-1080

Starting materials were mixed at the element ratios shown in Tables 1 to 42, and the same procedure as in Example 1 was then conducted to provide complex oxides.


The sintering temperature was controlled within the range of 850° C. to 920° C. according to the desired complex oxide.


The complex oxides obtained in Examples 1 to 540 had a perovskite-type LnNiO3 structure in which the Ln sites may be partially substituted by M, whereas those obtained in Examples 541 to 1080 had a layered perovskite-type Ln2NiO4 structure in which the Ln sites may be partially substituted by M.


Tables 1 to 42 below show the element ratios of the obtained complex oxides, their Seebeck coefficients at 700° C., and their electrical resistivities at 700° C.


With respect to the sintered complex oxide obtained in Example 541, the temperature dependency of the Seebeck coefficient (S) and the temperature dependency of the electrical resistivity over the temperature range of 100° C. to 700° C. are shown in FIG. 4 and FIG. 5, respectively.

TABLE 1Ln1−xMxNiOySeebeckElectricalcoefficientresistivityat 700° C.at 700° C.No.LnMLn:M:Ni:O(μVK−1)(mΩcm)1Nd1:0:1:3.1−8182NdNa0.99:0.01:1:2.9−15303NdNa0.2:0.8:1:2.7−8434NdK0.99:0.01:1:2.9−10145NdK0.2:0.8:1:2.8−12406NdLi0.99:0.01:1:3.0−21307NdLi0.2:0.8:1:2.7−5458NdZn0.99:0.01:1:2.9−3279NdZn0.2:0.8:1:3.1−122410NdPb0.99:0.01:1:2.9−101411NdPb0.2:0.8:1:2.7−182012NdBa0.99:0.01:1:3.0−101913NdBa0.2:0.8:1:2.8−81914NdCa0.99:0.01:1:2.9−83015NdCa0.2:0.8:1:2.8−92416NdAl0.99:0.01:1:3.3−72217NdAl0.2:0.8:1:3.3−83018NdBi0.99:0.01:1:3.2−104119NdBi0.2:0.8:1:3.3−82920NdY0.99:0.01:1:2.9−53421NdY0.2:0.8:1:3.0−102722NdLa0.99:0.01:1:3.0−203223NdLa0.2:0.8:1:3.1−151924NdCe0.99:0.01:1:3.3−83025NdCe0.2:0.8:1:3.3−44226NdPr0.99:0.01:1:3.0−112827NdPr0.2:0.8:1:3.1−172428NdSm0.99:0.01:1:2.9−52729NdSm0.2:0.8:1:3.0−103130NdEu0.99:0.01:1:3.1−845









TABLE 2










Ln1−xMxNiOy
















Seebeck
Electrical






coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
Ln:M:Ni:O
(μVK−1)
(mΩcm)















31
Nd
Eu
0.2:0.8:1:3.2
−6
36


32
Nd
Gd
0.99:0.01:1:2.9
−7
24


33
Nd
Gd
0.2:0.8:1:3.0
−8
35


34
Nd
Tb
0.99:0.01:1:2.8
−10
30


35
Nd
Tb
0.2:0.8:1:3.0
−10
45


36
Nd
Dy
0.99:0.01:1:2.9
−9
33


37
Nd
Dy
0.2:0.8:1:3.1
−10
24


38
Nd
Ho
0.99:0.01:1:3.1
−11
19


39
Nd
Ho
0.2:0.8:1:3.3
−12
31


40
Nd
Er
0.99:0.01:1:3.2
−18
45


41
Nd
Er
0.2:0.8:1:3.3
−20
33


42
Nd
Tm
0.99:0.01:1:3.0
−15
30


43
Nd
Tm
0.2:0.8:1:3.0
−5
19


44
Nd
Lu
0.99:0.01:1:3.1
−6
27


45
Nd
Lu
0.2:0.8:1:3.2
−5
31


46
Ce

1:0:1:3.1
−10
45


47
Ce
Na
0.99:0.01:1:2.9
−10
36


48
Ce
Na
0.2:0.8:1:2.7
−15
24


49
Ce
K
0.99:0.01:1:2.8
−12
35


50
Ce
K
0.2:0.8:1:2.8
−20
30


51
Ce
Li
0.99:0.01:1:2.9
−7
45


52
Ce
Li
0.2:0.8:1:2.7
−8
33


53
Ce
Zn
0.99:0.01:1:3.1
−5
24


54
Ce
Zn
0.2:0.8:1:3.3
−12
19


55
Ce
Pb
0.99:0.01:1:2.9
−10
31


56
Ce
Pb
0.2:0.8:1:2.8
−18
45


57
Ce
Ba
0.99:0.01:1:2.9
−12
33
















TABLE 3










Ln1−xMxNiOy
















Seebeck
Electrical






coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
Ln:M:Ni:O
(μVK−1)
(mΩcm)















58
Ce
Ba
0.2:0.8:1:2.7
−6
30


59
Ce
Ca
0.99:0.01:1:3.0
−8
19


60
Ce
Ca
0.2:0.8:1:3.1
−5
31


61
Ce
Al
0.99:0.01:1:3.3
−10
45


62
Ce
Al
0.2:0.8:1:3.3
−8
36


63
Ce
Bi
0.99:0.01:1:2.9
−4
24


64
Ce
Bi
0.2:0.8:1:2.9
−10
35


65
Ce
Y
0.99:0.01:1:2.9
−12
30


66
Ce
Y
0.2:0.8:1:3.0
−8
45


67
Ce
La
0.99:0.01:1:3.0
−6
47


68
Ce
La
0.2:0.8:1:3.1
−4
18


69
Ce
Pr
0.99:0.01:1:3.0
−11
30


70
Ce
Pr
0.2:0.8:1:3.2
−4
43


71
Ce
Nd
0.99:0.01:1:3.3
−8
14


72
Ce
Nd
0.2:0.8:1:3.3
−9
40


73
Ce
Sm
0.99:0.01:1:3.1
−15
30


74
Ce
Sm
0.2:0.8:1:3.2
−17
45


75
Ce
Eu
0.99:0.01:1:2.9
−8
27


76
Ce
Eu
0.2:0.8:1:3.2
−7
24


77
Ce
Gd
0.99:0.01:1:3.1
−6
14


78
Ce
Gd
0.2:0.8:1:3.2
−18
20


79
Ce
Tb
0.99:0.01:1:3.2
−8
19


80
Ce
Tb
02:0.8:1:3.3
−20
19


81
Ce
Dy
0.99:0.01:1:2.9
−15
30


82
Ce
Dy
0.2:0.8:1:3.0
−12
24


83
Ce
Ho
0.99:0.01:1:3.3
−8
22
















TABLE 4










Ln1−xMxNiOy
















Seebeck
Electrical






coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
Ln:M:Ni:O
(μVK−1)
(mΩcm)















84
Ce
Ho
0.2:0.8:1:3.2
−5
30


85
Ce
Er
0.99:0.01:1:3.1
−5
41


86
Ce
Er
0.2:0.8:1:3.2
−8
29


87
Ce
Tm
0.99:0.01:1:2.9
−7
34


88
Ce
Tm
0.2:0.8:1:3.3
−11
27


89
Ce
Lu
0.99:0.01:1:3.1
−13
49


90
Ce
Lu
0.2:0.8:1:3.2
−15
29


91
Pr

1:0:1:3.1
−10
34


92
Pr
Na
0.99:0.01:1:2.7
−12
27


93
Pr
Na
0.2:0.8:1:2.9
−6
32


94
Pr
K
0.99:0.01:1:3.0
−8
19


95
Pr
K
0.2:0.8:1:2.9
−10
30


96
Pr
Li
0.99:0.01:1:2.9
−12
42


97
Pr
Li
0.2:0.8:1:2.7
−20
28


98
Pr
Zn
0.99:0.01:1:3.1
−22
24


99
Pr
Zn
0.2:0.8:1:3.3
−12
27


100
Pr
Pb
0.99:0.01:1:2.9
−8
31


101
Pr
Pb
0.2:0.8:1:2.7
−18
45


102
Pr
Ba
0.99:0.01:1:3.0
−12
36


103
Pr
Ba
0.2:0.8:1:2.7
−5
24


104
Pr
Ca
0.99:0.01:1:2.9
−8
35


105
Pr
Ca
0.2:0.8:1:2.7
−6
30


106
Pr
Al
0.99:0.01:1:3.3
−9
45


107
Pr
Al
0.2:0.8:1:3.3
−12
33


108
Pr
Bi
0.99:0.01:1:3.3
−5
24


109
Pr
Bi
0.2:0.8:1:3.3
−21
19
















TABLE 5










Ln1−xMxNiOy
















Seebeck
Electrical






coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
Ln:M:Ni:O
(μVK−1)
(mΩcm)















110
Pr
Y
0.99:0.01:1:3.0
−20
31


111
Pr
Y
0.2:0.8:1:3.1
−5
45


112
Pr
La
0.99:0.01:1:2.9
−8
33


113
Pr
La
0.2:0.8:1:3.1
−12
30


114
Pr
Ce
0.99:0.01:1:3.2
−20
19


115
Pr
Ce
0.2:0.8:1:3.3
−8
27


116
Pr
Nd
0.99:0.01:1:3.0
−5
31


117
Pr
Nd
0.2:0.8:1:3.1
−8
45


118
Pr
Sm
0.99:0.01:1:3.3
−10
36


119
Pr
Sm
0.2:0.8:1:2.9
−6
24


120
Pr
Eu
0.99:0.01:1:3.1
−6
35


121
Pr
Eu
0.2:0.8:1:3.1
−8
30


122
Pr
Gd
0.99:0.01:1:2.9
−12
45


123
Pr
Gd
0.2:0.8:1:3.0
−10
33


124
Pr
Tb
0.99:0.01:1:3.2
−8
24


125
Pr
Tb
0.2:0.8:1:3.3
−6
19


126
Pr
Dy
0.99:0.01:1:3.1
−12
31


127
Pr
Dy
0.2:0.8:1:3.2
−13
33


128
Pr
Ho
0.99:0.01:1:3.1
−8
30


129
Pr
Ho
0.2:0.8:1:3.3
−9
19


130
Pr
Er
0.99:0.01:1:2.9
−20
31


131
Pr
Er
0.2:0.8:1:3.0
−5
45


132
Pr
Tm
0.99:0.01:1:3.1
−12
36


133
Pr
Tm
0.2:0.8:1:3.2
−11
24


134
Pr
Lu
0.99:0.01:1:3.0
−6
35


135
Pr
Lu
0.2:0.8:1:3.1
−12
30


136
Sm

1:0:1:3.1
−10
45
















TABLE 6










Ln1−xMxNiOy
















Seebeck
Electrical






coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
Ln:M:Ni:O
(μVK−1)
(mΩcm)















137
Sm
Na
0.99:0.01:1:2.9
−15
47


138
Sm
Na
0.2:0.8:1:2.7
−8
18


139
Sm
K
0.99:0.01:1:2.9
−10
30


140
Sm
K
0.2:0.8:1:2.8
−12
43


141
Sm
Li
0.99:0.01:1:3.0
−21
14


142
Sm
Li
0.2:0.8:1:2.7
−5
40


143
Sm
Zn
0.99:0.01:1:2.9
−3
30


144
Sm
Zn
0.2:0.8:1:3.1
−12
45


145
Sm
Pb
0.99:0.01:1:2.9
−10
27


146
Sm
Pb
0.2:0.8:1:2.7
−18
24


147
Sm
Ba
0.99:0.01:1:3.0
−10
14


148
Sm
Ba
0.2:0.8:1:2.8
−8
20


149
Sm
Ca
0.99:0.01:1:2.9
−8
19


150
Sm
Ca
0.2:0.8:1:2.8
−9
19


151
Sm
Al
0.99:0.01:1:3.3
−7
30


152
Sm
Al
0.2:0.8:1:3.3
−8
24


153
Sm
Bi
0.99:0.01:1:3.2
−10
22


154
Sm
Bi
0.2:0.8:1:3.3
−8
30


155
Sm
Y
0.99:0.01:1:2.9
−5
41


156
Sm
Y
0.2:0.8:1:3.0
−10
29


157
Sm
La
0.99:0.01:1:3.0
−20
34


158
Sm
La
0.2:0.8:1:3.1
−15
27


159
Sm
La
0.99:0.01:1:3.3
−8
49


160
Sm
Ce
0.2:0.8:1:3.3
−4
33


161
Sm
Pr
0.99:0.01:1:3.0
−11
30


162
Sm
Pr
0.2:0.8:1:3.1
−17
19
















TABLE 7










Ln1−xMxNiOy
















Seebeck
Electrical






coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
Ln:M:Ni:O
(μVK−1)
(mΩcm)















163
Sm
Nd
0.99:0.01:1:2.9
−5
62


164
Sm
Nd
0.2:0.8:1:3.0
−10
71


165
Sm
Eu
0.99:0.01:1:3.1
−8
45


166
Sm
Eu
0.2:0.8:1:3.2
−6
31


167
Sm
Gd
0.99:0.01:1:2.9
−7
45


168
Sm
Gd
0.2:0.8:1:3.0
−8
36


169
Sm
Tb
0.99:0.01:1:2.8
−10
24


170
Sm
Tb
0.2:0.8:1:3.0
−10
35


171
Sm
Dy
0.99:0.01:1:2.9
−9
30


172
Sm
Dy
0.2:0.8:1:3.1
−10
45


173
Sm
Ho
0.99:0.01:1:3.1
−11
33


174
Sm
Ho
0.2:0.8:1:3.3
−12
24


175
Sm
Er
0.99:0.01:1:3.2
−18
19


176
Sm
Er
0.2:0.8:1:3.3
−20
31


177
Sm
Tm
0.99:0.01:1:3.0
−15
45


178
Sm
Tm
0.2:0.8:1:3.0
−5
33


179
Sm
Lu
0.99:0.01:1:3.1
−6
30


180
Sm
Lu
0.2:0.8:1:3.2
−5
19


181
Eu

1:0:1:3.1
−10
27


182
Eu
Na
0.99:0.01:1:2.7
−12
31


183
Eu
Na
0.2:0.8:1:2.9
−6
45


184
Eu
K
0.99:0.01:1:3.0
−8
36


185
Eu
K
0.2:0.8:1:2.9
−10
24


186
Eu
Li
0.99:0.01:1:2.9
−12
35


187
Eu
Li
0.2:0.8:1:2.7
−20
30


188
Eu
Zn
0.99:0.01:1:3.1
−22
45


189
Eu
Zn
0.2:0.8:1:3.3
−12
33
















TABLE 8










Ln1−xMxNiOy
















Seebeck
Electrical






coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
Ln:M:Ni:O
(μVK−1)
(mΩcm)















190
Eu
Pb
0.99:0.01:1:2.9
−8
24


191
Eu
Pb
0.2:0.8:1:2.7
−18
19


192
Eu
Ba
0.99:0.01:1:3.0
−12
31


193
Eu
Ba
0.2:0.8:1:2.7
−5
45


194
Eu
Ca
0.99:0.01:1:2.9
−8
33


195
Eu
Ca
0.2:0.8:1:2.7
−6
30


196
Eu
Al
0.99:0.01:1:3.3
−9
19


197
Eu
Al
0.2:0.8:1:3.3
−12
31


198
Eu
Bi
0.99:0.01:1:3.3
−5
30


199
Eu
Bi
0.2:0.8:1:3.3
−21
45


200
Eu
Y
0.99:0.01:1:3.0
−20
33


201
Eu
Y
0.2:0.8:1:3.1
−5
24


202
Eu
La
0.99:0.01:1:2.9
−8
19


203
Eu
La
0.2:0.8:1:3.1
−12
31


204
Eu
Ce
0.99:0.01:1:3.2
−20
33


205
Eu
Ce
0.2:0.8:1:3.3
−8
30


206
Eu
Pr
0.99:0.01:1:3.0
−5
19


207
Eu
Pr
0.2:0.8:1:3.1
−8
31


208
Eu
Nd
0.99:0.01:1:3.3
−10
45


209
Eu
Nd
0.2:0.8:1:2.9
−6
36


210
Eu
Sm
0.99:0.01:1:3.1
−6
24


211
Eu
Sm
0.2:0.8:1:3.1
−8
35


212
Eu
Gd
0.99:0.01:1:2.9
−12
30


213
Eu
Gd
0.2:0.8:1:3.0
−10
45


214
Eu
Tb
0.99:0.01:1:3.2
−8
47


215
Eu
Tb
0.2:0.8:1:3.3
−6
18
















TABLE 9










Ln1−xMxNiOy
















Seebeck
Electrical






coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
Ln:M:Ni:O
(μVK−1)
(mΩcm)















216
Eu
Dy
0.99:0.01:1:3.1
−12
30


217
Eu
Dy
0.2:0.8:1:3.2
−13
43


218
Eu
Ho
0.99:0.01:1:3.1
−8
14


219
Eu
Ho
0.2:0.8:1:3.3
−9
40


220
Eu
Er
0.99:0.01:1:2.9
−20
30


221
Eu
Er
0.2:0.8:1:3.0
−5
45


222
Eu
Tm
0.99:0.01:1:3.1
−12
27


223
Eu
Tm
0.2:0.8:1:3.2
−11
24


224
Eu
Lu
0.99:0.01:1:3.0
−6
14


225
Eu
Lu
0.2:0.8:1:3.1
−12
20


226
Gd

1:0:1:3.1
−10
19


227
Gd
Na
0.99:0.01:1:2.9
−10
19


228
Gd
Na
0.2:0.8:1:2.7
−15
30


229
Gd
K
0.99:0.01:1:2.9
−12
24


230
Gd
K
0.2:0.8:1:2.8
−20
22


231
Gd
Li
0.99:0.01:1:3.0
−7
30


232
Gd
Li
0.2:0.8:1:2.7
−8
41


233
Gd
Zn
0.99:0.01:1:2.9
−5
30


234
Gd
Zn
0.2:0.8:1:3.1
−12
45


235
Gd
Pb
0.99:0.01:1:2.9
−10
33


236
Gd
Pb
0.2:0.8:1:2.7
−18
24


237
Gd
Ba
0.99:0.01:1:3.0
−12
90


238
Gd
Ba
0.2:0.8:1:2.8
−6
72


239
Gd
Ca
0.99:0.01:1:2.9
−8
45


240
Gd
Ca
0.2:0.8:1:2.8
−5
30


241
Gd
Al
0.99:0.01:1:3.3
−10
41


242
Gd
Al
0.2:0.8:1:3.3
−8
29
















TABLE 10










Ln1−xMxNiOy
















Seebeck
Electrical






coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
Ln:M:Ni:O
(μVK−1)
(mΩcm)















243
Gd
Bi
0.99:0.01:1:3.2
−4
34


244
Gd
Bi
0.2:0.8:1:3.3
−10
27


245
Gd
Y
0.99:0.01:1:2.9
−12
49


246
Gd
Y
0.2:0.8:1:3.0
−8
33


247
Gd
La
0.99:0.01:1:3.0
−6
30


248
Gd
La
0.2:0.8:1:3.1
−4
19


249
Gd
Ce
0.99:0.01:1:3.3
−11
36


250
Gd
Ce
0.2:0.8:1:3.3
−4
24


251
Gd
Pr
0.99:0.01:1:3.0
−8
35


252
Gd
Pr
0.2:0.8:1:3.1
−9
31


253
Gd
Nd
0.99:0.01:1:2.9
−15
45


254
Gd
Nd
0.2:0.8:1:3.0
−17
36


255
Gd
Sm
0.99:0.01:1:3.1
−8
24


256
Gd
Sm
0.2:0.8:1:3.2
−7
35


257
Gd
Eu
0.99:0.01:1:2.9
−6
30


258
Gd
Eu
0.2:0.8:1:3.0
−18
45


259
Gd
Tb
0.99:0.01:1:2.8
−8
33


260
Gd
Tb
0.2:0.8:1:3.0
−20
24


261
Gd
Dy
0.99:0.01:1:2.9
−15
19


262
Gd
Dy
0.2:0.8:1:3.1
−12
31


263
Gd
Ho
0.99:0.01:1:3.1
−8
45


264
Gd
Ho
0.2:0.8:1:3.3
−5
33


265
Gd
Er
0.99:0.01:1:3.2
−5
30


266
Gd
Er
0.2:0.8:1:3.3
−8
19


267
Gd
Tm
0.99:0.01:1:3.0
−7
27


268
Gd
Tm
0.2:0.8:1:3.0
−11
31
















TABLE 11










Ln1−xMxNiOy
















Seebeck
Electrical






coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
Ln:M:Ni:O
(μVK−1)
(mΩcm)















269
Gd
Lu
0.99:0.01:1:3.1
−13
45


270
Gd
Lu
0.2:0.8:1:3.2
−15
36


271
Tb

1:0:1:3.1
−10
24


272
Tb
Na
0.99:0.01:1:2.9
−10
35


273
Tb
Na
0.2:0.8:1:2.7
−15
30


274
Tb
K
0.99:0.01:1:2.8
−12
45


275
Tb
K
0.2:0.8:1:2.8
−20
33


276
Tb
Li
0.99:0.01:1:2.9
−7
24


277
Tb
Li
0.2:0.8:1:2.7
−8
19


278
Tb
Zn
0.99:0.01:1:3.1
−5
31


279
Tb
Zn
0.2:0.8:1:3.3
−12
45


280
Tb
Pb
0.99:0.01:1:2.9
−10
33


281
Tb
Pb
0.2:0.8:1:2.8
−18
30


282
Tb
Ba
0.99:0.01:1:2.9
−12
19


283
Tb
Ba
0.2:0.8:1:2.7
−6
31


284
Tb
Ca
0.99:0.01:1:3.0
−8
30


285
Tb
Ca
0.2:0.8:1:3.1
−5
45


286
Tb
Al
0.99:0.01:1:3.3
−10
33


287
Tb
Al
0.2:0.8:1:3.3
−8
24


288
Tb
Bi
0.99:0.01:1:2.9
−4
19


289
Tb
Bi
0.2:0.8:1:2.9
−10
31


290
Tb
Y
0.99:0.01:1:2.9
−12
50


291
Tb
Y
0.2:0.8:1:3.0
−8
33


292
Tb
La
0.99:0.01:1:3.0
−6
49


293
Tb
La
0.2:0.8:1:3.1
−4
14


294
Tb
Ce
0.99:0.01:1:3.0
−11
20
















TABLE 12










Ln1−xMxNiOy
















Seebeck
Electrical






coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
Ln:M:Ni:O
(μVK−1)
(mΩcm)















295
Tb
Ce
0.2:0.8:1:3.2
−4
19


296
Tb
Pr
0.99:0.01:1:3.3
−8
19


297
Tb
Pr
0.2:0.8:1:3.3
−9
30


298
Tb
Nd
0.99:0.01:1:3.1
−15
24


299
Tb
Nd
0.2:0.8:1:3.2
−17
22


300
Tb
Sm
0.99:0.01:1:2.9
−8
30


301
Tb
Sm
0.2:0.8:1:3.2
−7
41


302
Tb
Eu
0.99:0.01:1:3.1
−6
29


303
Tb
Eu
0.2:0.8:1:3.2
−18
34


304
Tb
Gd
0.99:0.01:1:3.2
−8
27


305
Tb
Gd
0.2:0.8:1:3.3
−20
49


306
Tb
Dy
0.99:0.01:1:2.9
−15
29


307
Tb
Dy
0.2:0.8:1:3.0
−12
34


308
Tb
Ho
0.99:0.01:1:3.3
−8
27


309
Tb
Ho
0.2:0.8:1:3.2
−5
32


310
Tb
Er
0.99:0.01:1:3.1
−5
19


311
Tb
Er
0.2:0.8:1:3.2
−8
30


312
Tb
Tm
0.99:0.01:1:2.9
−7
42


313
Tb
Tm
0.2:0.8:1:3.3
−11
28


314
Tb
Lu
0.99:0.01:1:3.1
−13
24


315
Tb
Lu
0.2:0.8:1:3.2
−15
27


316
Dy

1:0:1:3.1
−10
31


317
Dy
Na
0.99:0.01:1:2.7
−15
45


318
Dy
Na
0.2:0.8:1:2.9
−8
36


319
Dy
K
0.99:0.01:1:3.0
−10
24


320
Dy
K
0.2:0.8:1:2.9
−12
35
















TABLE 13










Ln1−xMxNiOy
















Seebeck
Electrical






coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
Ln:M:Ni:O
(μVK−1)
(mΩcm)















321
Dy
Li
0.99:0.01:1:2.9
−21
30


322
Dy
Li
0.2:0.8:1:2.7
−5
45


323
Dy
Zn
0.99:0.01:1:3.1
−3
33


324
Dy
Zn
0.2:0.8:1:3.3
−12
24


325
Dy
Pb
0.99:0.01:1:2.9
−10
19


326
Dy
Pb
0.2:0.8:1:2.7
−18
31


327
Dy
Ba
0.99:0.01:1:3.0
−10
45


328
Dy
Ba
0.2:0.8:1:2.7
−8
33


329
Dy
Ca
0.99:0.01:1:2.9
−8
30


330
Dy
Ca
0.2:0.8:1:2.7
−9
19


331
Dy
Al
0.99:0.01:1:3.3
−7
27


332
Dy
Al
0.2:0.8:1:3.3
−8
14


333
Dy
Bi
0.99:0.01:1:3.3
−10
20


334
Dy
Bi
0.2:0.8:1:3.3
−8
19


335
Dy
Y
0.99:0.01:1:3.0
−5
19


336
Dy
Y
0.2:0.8:1:3.1
−10
30


337
Dy
La
0.99:0.01:1:2.9
−20
24


338
Dy
La
0.2:0.8:1:3.1
−15
22


339
Dy
Ce
0.99:0.01:1:3.2
−8
30


340
Dy
Ce
0.2:0.8:1:3.3
−4
41


341
Dy
Pr
0.99:0.01:1:3.0
−11
29


342
Dy
Pr
0.2:0.8:1:3.1
−17
34


343
Dy
Nd
0.99:0.01:1:3.3
−5
27


344
Dy
Nd
0.2:0.8:1:2.9
−10
49


345
Dy
Sm
0.99:0.01:1:3.1
−8
29


346
Dy
Sm
0.2:0.8:1:3.1
−6
34
















TABLE 14










Ln1−xMxNiOy
















Seebeck
Electrical






coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
Ln:M:Ni:O
(μVK−1)
(mΩcm)















347
Dy
Eu
0.99:0.01:1:2.9
−7
27


348
Dy
Eu
0.2:0.8:1:3.0
−8
32


349
Dy
Gd
0.99:0.01:1:3.2
−10
19


350
Dy
Gd
0.2:0.8:1:3.3
−10
49


351
Dy
Tb
0.99:0.01:1:3.1
−9
45


352
Dy
Tb
0.2:0.8:1:3.2
−10
33


353
Dy
Ho
0.99:0.01:1:3.1
−11
24


354
Dy
Ho
0.2:0.8:1:3.3
−12
19


355
Dy
Er
0.99:0.01:1:2.9
−18
31


356
Dy
Er
0.2:0.8:1:3.0
−20
45


357
Dy
Tm
0.99:0.01:1:3.1
−15
33


358
Dy
Tm
0.2:0.8:1:3.2
−5
30


359
Dy
Lu
0.99:0.01:1:3.0
−6
19


360
Dy
Lu
0.2:0.8:1:3.1
−5
27


361
Ho

1:0:1:3.1
−10
31


362
Ho
Na
0.99:0.01:1:2.7
−12
45


363
Ho
Na
0.2:0.8:1:2.9
−6
36


364
Ho
K
0.99:0.01:1:3.0
−8
24


365
Ho
K
0.2:0.8:1:2.9
−10
35


366
Ho
Li
0.99:0.01:1:2.9
−12
30


367
Ho
Li
0.2:0.8:1:2.7
−20
45


368
Ho
Zn
0.99:0.01:1:3.1
−22
33


369
Ho
Zn
0.2:0.8:1:3.3
−12
24


370
Ho
Pb
0.99:0.01:1:2.9
−8
19


371
Ho
Pb
0.2:0.8:1:2.7
−18
31


372
Ho
Ba
0.99:0.01:1:3.0
−12
45
















TABLE 15










Ln1−xMxNiOy
















Seebeck
Electrical






coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
Ln:M:Ni:O
(μVK−1)
(mΩcm)















373
Ho
Ba
0.2:0.8:1:2.7
−5
33


374
Ho
Ca
0.99:0.01:1:2.9
−8
30


375
Ho
Ca
0.2:0.8:1:2.7
−6
19


376
Ho
Al
0.99:0.01:1:3.3
−9
32


377
Ho
Al
0.2:0.8:1:3.3
−12
50


378
Ho
Bi
0.99:0.01:1:3.3
−5
15


379
Ho
Bi
0.2:0.8:1:3.3
−21
27


380
Ho
Y
0.99:0.01:1:3.0
−20
49


381
Ho
Y
0.2:0.8:1:3.1
−5
29


382
Ho
La
0.99:0.01:1:2.9
−8
58


383
Ho
La
0.2:0.8:1:3.1
−12
35


384
Ho
Ce
0.99:0.01:1:3.2
−20
40


385
Ho
Ce
0.2:0.8:1:3.3
−8
27


386
Ho
Pr
0.99:0.01:1:3.0
−5
49


387
Ho
Pr
0.2:0.8:1:3.1
−8
29


388
Ho
Nd
0.99:0.01:1:3.3
−10
39


389
Ho
Nd
0.2:0.8:1:2.9
−6
14


390
Ho
Sm
0.99:0.01:1:3.1
−6
20


391
Ho
Sm
0.2:0.8:1:3.1
−8
19


392
Ho
Eu
0.99:0.01:1:2.9
−12
19


393
Ho
Eu
0.2:0.8:1:3.0
−10
30


394
Ho
Gd
0.99:0.01:1:3.2
−8
24


395
Ho
Gd
0.2:0.8:1:3.3
−6
22


396
Ho
Tb
0.99:0.01:1:3.1
−12
30


397
Ho
Tb
0.2:0.8:1:3.2
−13
41


398
Ho
Dy
0.99:0.01:1:3.1
−8
29
















TABLE 16










Ln1−xMxNiOy
















Seebeck
Electrical






coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
Ln:M:Ni:O
(μVK−1)
(mΩcm)















399
Ho
Dy
0.2:0.8:1:3.3
−9
34


400
Ho
Er
0.99:0.01:1:2.9
−20
27


401
Ho
Er
0.2:0.8:1:3.0
−5
49


402
Ho
Tm
0.99:0.01:1:3.1
−12
29


403
Ho
Tm
0.2:0.8:1:3.2
−11
34


404
Ho
Lu
0.99:0.01:1:3.0
−6
27


405
Ho
Lu
0.2:0.8:1:3.1
−12
32


406
Er

1:0:1:3.1
−10
19


407
Er
Na
0.99:0.01:1:2.9
−15
30


408
Er
Na
0.2:0.8:1:2.7
−8
42


409
Er
K
0.99:0.01:1:2.9
−10
28


410
Er
K
0.2:0.8:1:2.8
−12
24


411
Er
Li
0.99:0.01:1:3.0
−21
27


412
Er
Li
0.2:0.8:1:2.7
−5
31


413
Er
Zn
0.99:0.01:1:2.9
−3
45


414
Er
Zn
0.2:0.8:1:3.1
−12
36


415
Er
Pb
0.99:0.01:1:2.9
−10
24


416
Er
Pb
0.2:0.8:1:2.7
−18
35


417
Er
Ba
0.99:0.01:1:3.0
−10
30


418
Er
Ba
0.2:0.8:1:2.8
−8
45


419
Er
Ca
0.99:0.01:1:2.9
−8
33


420
Er
Ca
0.2:0.8:1:2.8
−9
24


421
Er
Al
0.99:0.01:1:3.3
−7
19


422
Er
Al
0.2:0.8:1:3.3
−8
31


423
Er
Bi
0.99:0.01:1:3.2
−10
45


424
Er
Bi
0.2:0.8:1:3.3
−8
30
















TABLE 17










Ln1−xMxNiOy
















Seebeck
Electrical






coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
Ln:M:Ni:O
(μVK−1)
(mΩcm)















425
Er
Y
0.99:0.01:1:2.9
−5
19


426
Er
Y
0.2:0.8:1:3.0
−10
27


427
Er
La
0.99:0.01:1:3.0
−20
31


428
Er
La
0.2:0.8:1:3.1
−15
45


429
Er
Ce
0.99:0.01:1:3.3
−8
36


430
Er
Ce
0.2:0.8:1:3.3
−4
24


431
Er
Pr
0.99:0.01:1:3.0
−11
35


432
Er
Pr
0.2:0.8:1:3.1
−17
30


433
Er
Nd
0.99:0.01:1:2.9
−5
45


434
Er
Nd
0.2:0.8:1:3.0
−10
33


435
Er
Sm
0.99:0.01:1:3.1
−8
24


436
Er
Sm
0.2:0.8:1:3.2
−6
19


437
Er
Eu
0.99:0.01:1:2.9
−7
31


438
Er
Eu
0.2:0.8:1:3.0
−8
45


439
Er
Gd
0.99:0.01:1:2.8
−10
33


440
Er
Gd
0.2:0.8:1:3.0
−10
30


441
Er
Tb
0.99:0.01:1:2.9
−9
19


442
Er
Tb
0.2:0.8:1:3.1
−10
27


443
Er
Dy
0.99:0.01:1:3.1
−11
49


444
Er
Dy
0.2:0.8:1:3.3
−12
29


445
Er
Ho
0.99:0.01:1:3.2
−18
34


446
Er
Ho
0.2:0.8:1:3.3
−20
27


447
Er
Tm
0.99:0.01:1:3.0
−15
32


448
Er
Tm
0.2:0.8:1:3.0
−5
19


449
Er
Lu
0.99:0.01:1:3.1
−6
49


450
Er
Lu
0.2:0.8:1:3.2
−5
45
















TABLE 18










Ln1−xMxNiOy
















Seebeck
Electrical






coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
Ln:M:Ni:O
(μVK−1)
(mΩcm)















451
Tm

1:0:1:3.1
−10
33


452
Tm
Na
0.99:0.01:1:2.9
−10
24


453
Tm
Na
0.2:0.8:1:2.7
−15
19


454
Tm
K
0.99:0.01:1:2.8
−12
31


455
Tm
K
0.2:0.8:1:2.8
−20
45


456
Tm
Li
0.99:0.01:1:2.9
−7
75


457
Tm
Li
0.2:0.8:1:2.7
−8
55


458
Tm
Zn
0.99:0.01:1:3.1
−5
19


459
Tm
Zn
0.2:0.8:1:3.3
−12
31


460
Tm
Pb
0.99:0.01:1:2.9
−10
45


461
Tm
Pb
0.2:0.8:1:2.8
−18
30


462
Tm
Ba
0.99:0.01:1:2.9
−12
19


463
Tm
Ba
0.2:0.8:1:2.7
−6
27


464
Tm
Ca
0.99:0.01:1:3.0
−8
31


465
Tm
Ca
0.2:0.8:1:3.1
−5
45


466
Tm
Al
0.99:0.01:1:3.3
−10
36


467
Tm
Al
0.2:0.8:1:3.3
−8
24


468
Tm
Bi
0.99:0.01:1:2.9
−4
35


469
Tm
Bi
0.2:0.8:1:2.9
−10
30


470
Tm
Y
0.99:0.01:1:2.9
−12
45


471
Tm
Y
0.2:0.8:1:3.0
−8
33


472
Tm
La
0.99:0.01:1:3.0
−6
58


473
Tm
La
0.2:0.8:1:3.1
−4
35


474
Tm
Ce
0.99:0.01:1:3.0
−11
40


475
Tm
Ce
0.2:0.8:1:3.2
−4
30


476
Tm
Pr
0.99:0.01:1:3.3
−8
19
















TABLE 19










Ln1−xMxNiOy
















Seebeck
Electrical






coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
Ln:M:Ni:O
(μVK−1)
(mO cm)















477
Tm
Pr
0.2:0.8:1:3.3
−9
27


478
Tm
Nd
0.99:0.01:1:3.1
−15
31


479
Tm
Nd
0.2:0.8:1:3.2
−17
45


480
Tm
Sm
0.99:0.01:1:2.9
−8
36


481
Tm
Sm
0.2:0.8:1:3.2
−7
24


482
Tm
Eu
0.99:0.01:1:3.1
−6
35


483
Tm
Eu
0.2:0.8:1:3.2
−18
30


484
Tm
Gd
0.99:0.01:1:3.2
−8
45


485
Tm
Gd
0.2:0.8:1:3.3
−20
33


486
Tm
Tb
0.99:0.01:1:2.9
−15
24


487
Tm
Tb
0.2:0.8:1:3.0
−12
19


488
Tm
Dy
0.99:0.01:1:3.3
−8
31


489
Tm
Dy
0.2:0.8:1:3.2
−5
45


490
Tm
Ho
0.99:0.01:1:3.1
−5
33


491
Tm
Ho
0.2:0.8:1:3.2
−8
30


492
Tm
Er
0.99:0.01:1:2.9
−7
19


493
Tm
Er
0.2:0.8:1:3.3
−11
27


494
Tm
Lu
0.99:0.01:1:3.1
−13
35


495
Tm
Lu
0.2:0.8:1:3.2
−15
40


496
Lu

1:0:1:3.1
−10
30


497
Lu
Na
0.99:0.01:1:2.7
−12
19


498
Lu
Na
0.2:0.8:1:2.9
−6
27


499
Lu
K
0.99:0.01:1:3.0
−8
31


500
Lu
K
0.2:0.8:1:2.9
−10
45


501
Lu
Li
0.99:0.01:1:2.9
−12
35


502
Lu
Li
0.2:0.8:1:2.7
−20
40
















TABLE 20










Ln1−xMxNiOy
















Seebeck
Electrical






coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
Ln:M:Ni:O
(μVK−1)
(mΩcm)















503
Lu
Zn
0.99:0.01:1:3.1
−22
30


504
Lu
Zn
0.2:0.8:1:3.3
−12
19


505
Lu
Pb
0.99:0.01:1:2.9
−8
27


506
Lu
Pb
0.2:0.8:1:2.7
−18
31


507
Lu
Ba
0.99:0.01:1:3.0
−12
45


508
Lu
Ba
0.2:0.8:1:2.7
−5
36


509
Lu
Ca
0.99:0.01:1:2.9
−8
24


510
Lu
Ca
0.2:0.8:1:2.7
−6
35


511
Lu
Al
0.99:0.01:1:3.3
−9
30


512
Lu
Al
0.2:0.8:1:3.3
−12
45


513
Lu
Bi
0.99:0.01:1:3.3
−5
33


514
Lu
Bi
0.2:0.8:1:3.3
−21
35


515
Lu
Y
0.99:0.01:1:3.0
−20
40


516
Lu
Y
0.2:0.8:1:3.1
−5
30


517
Lu
La
0.99:0.01:1:2.9
−8
19


518
Lu
La
0.2:0.8:1:3.1
−12
27


519
Lu
Ce
0.99:0.01:1:3.2
−20
31


520
Lu
Ce
0.2:0.8:1:3.3
−8
45


521
Lu
Pr
0.99:0.01:1:3.0
−5
36


522
Lu
Pr
0.2:0.8:1:3.1
−8
24


523
Lu
Nd
0.99:0.01:1:3.3
−10
35


524
Lu
Nd
0.2:0.8:1:2.9
−6
30


525
Lu
Sm
0.99:0.01:1:3.1
−6
45


526
Lu
Sm
0.2:0.8:1:3.1
−8
33


527
Lu
Eu
0.99:0.01:1:2.9
−12
35


528
Lu
Eu
0.2:0.8:1:3.0
−10
40
















TABLE 21










Ln1−xMxNiOy
















Seebeck
Electrical






coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
Ln:M:Ni:O
(μVK−1)
(mΩcm)















529
Lu
Gd
0.99:0.01:1:3.2
−8
30


530
Lu
Gd
0.2:0.8:1:3.3
−6
49


531
Lu
Tb
0.99:0.01:1:3.1
−12
31


532
Lu
Tb
0.2:0.8:1:3.2
−13
45


533
Lu
Dy
0.99:0.01:1:3.1
−8
75


534
Lu
Dy
0.2:0.8:1:3.3
−9
55


535
Lu
Ho
0.99:0.01:1:2.9
−20
19


536
Lu
Ho
0.2:0.8:1:3.0
−5
31


537
Lu
Er
0.99:0.01:1:3.1
−12
45


538
Lu
Er
0.2:0.8:1:3.2
−11
30


539
Lu
Tm
0.99:0.01:1:3.0
−6
19


540
Lu
Tm
0.2:0.8:1:3.1
−12
27
















TABLE 22










(Ln1−xMx)2NiOy

















Electrical






Seebeck coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
0.5Ln:0.5M:Ni:O
(μVK−1)
(mΩcm)















541
Nd

1:0:1:4.0
−6
25


542
Nd
Na
0.99:0.01:1:3.6
−12
25


543
Nd
Na
0.2:0.8:1:3.9
−20
38


544
Nd
K
0.99:0.01:1:3.7
−22
34


545
Nd
K
0.2:0.8:1:3.8
−12
24


546
Nd
Li
0.99:0.01:1:3.8
−8
17


547
Nd
Li
0.2:0.8:1:3.6
−18
35


548
Nd
Zn
0.99:0.01:1:4.0
−12
38


549
Nd
Zn
0.2:0.8:1:3.8
−5
44


550
Nd
Pb
0.99:0.01:1:3.6
−8
36


551
Nd
Pb
0.2:0.8:1:3.6
−6
30


552
Nd
Ba
0.99:0.01:1:3.9
−9
42


553
Nd
Ba
0.2:0.8:1:4.0
−12
28


554
Nd
Ca
0.99:0.01:1:3.8
−5
24


555
Nd
Ca
0.2:0.8:1:4.0
−21
27


556
Nd
Al
0.99:0.01:1:4.0
−20
31


557
Nd
Al
0.2:0.8:1:4.1
−5
45


558
Nd
Bi
0.99:0.01:1:4.2
−15
36


559
Nd
Bi
0.2:0.8:1:4.4
−8
24


560
Nd
Y
0.99:0.01:1:4.2
−12
35


561
Nd
Y
0.2:0.8:1:4.3
−10
30


562
Nd
La
0.99:0.01:1:4.0
−19
45


563
Nd
La
0.2:0.8:1:4.1
−8
33


564
Nd
Ce
0.99:0.01:1:4.2
−5
24


565
Nd
Ce
02:0.8:1:4.4
−8
19


566
Nd
Pr
0.99:0.01:1:4.1
−10
31


567
Nd
Pr
0.2:0.8:1:4.2
−6
45


568
Nd
Sm
0.99:0.01:1:4.3
−6
33


569
Nd
Sm
0.2:0.8:1:4.2
−8
30


570
Nd
Eu
0.99:0.01:1:4.1
−12
19


571
Nd
Eu
0.2:0.8:1:4.0
−10
27
















TABLE 23










(Ln1−xMx)2NiOy

















Electrical






Seebeck coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
0.5Ln:0.5M:Ni:O
(μVK−1)
(mΩcm)















572
Nd
Gd
0.99:0.01:1:3.9
−8
44


573
Nd
Gd
0.2:0.8:1:4.1
−6
37


574
Nd
Tb
0.99:0.01:1:4.0
−12
38


575
Nd
Tb
0.2:0.8:1:3.9
−13
45


576
Nd
Dy
0.99:0.01:1:4.2
−8
28


577
Nd
Dy
0.2:0.8:1:4.1
−9
34


578
Nd
Ho
0.99:0.01:1:4.2
−8
19


579
Nd
Ho
0.2:0.8:1:4.3
−5
30


580
Nd
Er
0.99:0.01:1:4.1
−8
22


581
Nd
Er
0.2:0.8:1:4.2
−10
36


582
Nd
Tm
0.99:0.01:1:4.0
−6
38


583
Nd
Tm
0.2:0.8:1:4.1
−6
44


584
Nd
Lu
0.99:0.01:1:4.2
−8
22


585
Nd
Lu
0.2:0.8:1:4.3
−12
19


586
Ce

1:0:1:4.1
−10
31


587
Ce
Na
0.99:0.01:1:3.9
−8
29


588
Ce
Na
0.2:0.8:1:3.8
−6
22


589
Ce
K
0.99:0.01:1:3.8
−12
24


590
Ce
K
0.2:0.8:1:4.0
−13
32


591
Ce
Li
0.99:0.01:1:4.1
−8
29


592
Ce
Li
0.2:0.8:1:3.9
−9
35


593
Ce
Zn
0.99:0.01:1:4.2
−20
48


594
Ce
Zn
0.2:0.8:1:4.0
−5
34


595
Ce
Pb
0.99:0.01:1:4.0
−12
16


596
Ce
Pb
0.2:0.8:1:3.9
−11
28


597
Ce
Ba
0.99:0.01:1:3.9
−6
39


598
Ce
Ba
0.2:0.8:1:4.0
−25
20
















TABLE 24










(Ln1−xMx)2NiOy

















Electrical






Seebeck coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
0.5Ln:0.5M:Ni:O
(μVK−1)
(mΩcm)















599
Ce
Ca
0.99:0.01:1:4.0
−18
14


600
Ce
Ca
0.2:0.8:1:4.0
−21
22


601
Ce
Al
0.99:0.01:1:3.9
−14
31


602
Ce
Al
0.2:0.8:1:4.2
−18
44


603
Ce
Bi
0.99:0.01:1:4.4
−8
35


604
Ce
Bi
0.2:0.8:1:4.3
−5
30


605
Ce
Y
0.99:0.01:1:4.0
−8
25


606
Ce
Y
0.2:0.8:1:4.2
−10
33


607
Ce
La
0.99:0.01:1:4.1
−6
34


608
Ce
La
0.2:0.8:1:3.9
−6
40


609
Ce
Pr
0.99:0.01:1:3.9
−8
26


610
Ce
Pr
0.2:0.8:1:4.2
−12
38


611
Ce
Nd
0.99:0.01:1:4.1
−10
23


612
Ce
Nd
0.2:0.8:1:4.0
−8
32


613
Ce
Sm
0.99:0.01:1:4.3
−6
15


614
Ce
Sm
0.2:0.8:1:4.2
−12
25


615
Ce
Eu
0.99:0.01:1:4.0
−13
44


616
Ce
Eu
0.2:0.8:1:4.1
−8
22


617
Ce
Gd
0.99:0.01:1:4.0
−9
30


618
Ce
Gd
0.2:0.8:1:4.0
−20
45


619
Ce
Tb
0.99:0.01:1:3.9
−5
23


620
Ce
Tb
0.2:0.8:1:4.2
−18
16


621
Ce
Dy
0.99:0.01:1:4.1
−8
26


622
Ce
Dy
0.2:0.8:1:4.0
−5
30


623
Ce
Ho
0.99:0.01:1:4.2
−8
22


624
Ce
Ho
0.2:0.8:1:4.1
−5
19
















TABLE 25










(Ln1−xMx)2NiOy

















Electrical






Seebeck coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
0.5Ln:0.5M:Ni:O
(μVK−1)
(mΩcm)















625
Ce
Er
0.99:0.01:1:4.3
−8
24


626
Ce
Er
0.2:0.8:1:3.9
−10
35


627
Ce
Tm
0.99:0.01:1:4.0
−6
30


628
Ce
Tm
0.2:0.8:1:4.2
−6
43


629
Ce
Lu
0.99:0.01:1:4.1
−8
14


630
Ce
Lu
0.2:0.8:1:4.2
−12
40


631
Pr

1:0:1:4.1
−10
30


632
Pr
Na
0.99:0.01:1:3.8
−8
45


633
Pr
Na
0.2:0.8:1:3.9
−6
27


634
Pr
K
0.99:0.01:1:3.6
−12
24


635
Pr
K
0.2:0.8:1:3.9
−13
14


636
Pr
Li
0.99:0.01:1:3.9
−8
20


637
Pr
Li
0.2:0.8:1:3.8
−9
19


638
Pr
Zn
0.99:0.01:1:4.1
−20
30


639
Pr
Zn
0.2:0.8:1:4.0
−5
24


640
Pr
Pb
0.99:0.01:1:3.8
−12
22


641
Pr
Pb
0.2:0.8:1:4.0
−8
30


642
Pr
Ba
0.99:0.01:1:4.0
−8
41


643
Pr
Ba
0.2:0.8:1:4.0
−5
29


644
Pr
Ca
0.99:0.01:1:3.9
−8
34


645
Pr
Ca
0.2:0.8:1:3.9
−10
27


646
Pr
Al
0.99:0.01:1:4.2
−6
32


647
Pr
Al
0.2:0.8:1:4.1
−6
19


648
Pr
Bi
0.99:0.01:1:4.3
−8
15


649
Pr
Bi
0.2:0.8:1:4.4
−12
30


650
Pr
Y
0.99:0.01:1:4.2
−10
27
















TABLE 26










(Ln1−xMx)2NiOy

















Electrical






Seebeck coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
0.5Ln:0.5M:Ni:O
(μVK−1)
(mΩcm)















651
Pr
Y
0.2:0.8:1:4.0
−8
24


652
Pr
La
0.99:0.01:1:4.2
−6
39


653
Pr
La
0.2:0.8:1:4.1
−12
29


654
Pr
Ce
0.99:0.01:1:4.2
−13
30


655
Pr
Ce
0.2:0.8:1:4.2
−8
45


656
Pr
Nd
0.99:0.01:1:4.0
−9
36


657
Pr
Nd
0.2:0.8:1:4.1
−20
24


658
Pr
Sm
0.99:0.01:1:3.9
−5
22


659
Pr
Sm
0.2:0.8:1:4.1
−18
20


660
Pr
Eu
0.99:0.01:1:4.2
−8
34


661
Pr
Eu
0.2:0.8:1:4.1
−5
25


662
Pr
Gd
0.99:0.01:1:4.0
−8
39


663
Pr
Gd
0.2:0.8:1:4.1
−6
25


664
Pr
Tb
0.99:0.01:1:4.0
−12
29


665
Pr
Tb
0.2:0.8:1:4.0
−16
22


666
Pr
Dy
0.99:0.01:1:3.9
−25
24


667
Pr
Dy
0.2:0.8:1:4.1
−18
32


668
Pr
Ho
0.99:0.01:1:4.2
−5
29


669
Pr
Ho
0.2:0.8:1:4.0
−8
35


670
Pr
Er
0.99:0.01:1:4.2
−5
48


671
Pr
Er
0.2:0.8:1:4.1
−8
34


672
Pr
Tm
0.99:0.01:1:3.9
−10
16


673
Pr
Tm
0.2:0.8:1:4.2
−6
28


674
Pr
Lu
0.99:0.01:1:4.2
−18
39


675
Pr
Lu
0.2:0.8:1:4.3
−20
20


676
Sm

1:0:1:4.1
−19
14


677
Sm
Na
0.99:0.01:1:3.9
−16
22
















TABLE 27










(Ln1−xMx)2NiOy

















Electrical






Seebeck coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
0.5Ln:0.5M:Ni:O
(μVK−1)
(mΩcm)















678
Sm
Na
0.2:0.8:1:3.8
−6
31


679
Sm
K
0.99:0.01:1:3.8
−12
44


680
Sm
K
0.2:0.8:1:4.0
−16
35


681
Sm
Li
0.99:0.01:1:4.1
−25
30


682
Sm
Li
0.2:0.8:1:3.9
−18
25


683
Sm
Zn
0.99:0.01:1:4.2
−5
33


684
Sm
Zn
0.2:0.8:1:4.0
−8
34


685
Sm
Pb
0.99:0.01:1:4.0
−5
40


686
Sm
Pb
0.2:0.8:1:3.9
−8
26


687
Sm
Ba
0.99:0.01:1:3.9
−10
38


688
Sm
Ba
0.2:0.8:1:4.0
−6
23


689
Sm
Ca
0.99:0.01:1:4.0
−6
32


690
Sm
Ca
0.2:0.8:1:4.0
−8
38


691
Sm
Al
0.99:0.01:1:3.9
−12
44


692
Sm
Al
0.2:0.8:1:4.2
−10
22


693
Sm
Bi
0.99:0.01:1:4.4
−8
19


694
Sm
Bi
0.2:0.8:1:4.3
−6
31


695
Sm
Y
0.99:0.01:1:4.0
−12
29


696
Sm
Y
0.2:0.8:1:4.2
−13
22


697
Sm
La
0.99:0.01:1:4.1
−8
24


698
Sm
La
0.2:0.8:1:3.9
−9
32


699
Sm
Ce
0.99:0.01:1:3.9
−20
29


700
Sm
Ce
0.2:0.8:1:4.2
−5
35


701
Sm
Pr
0.99:0.01:1:4.1
−12
48


702
Sm
Pr
0.2:0.8:1:4.0
−8
34


703
Sm
Nd
0.99:0.01:1:4.3
−8
16
















TABLE 28










(Ln1−xMx)2NiOy

















Electrical






Seebeck coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
0.5Ln:0.5M:Ni:O
(μVK−1)
(mΩcm)















704
Sm
Nd
0.2:0.8:1:4.2
−12
28


705
Sm
Eu
0.99:0.01:1:4.0
−24
39


706
Sm
Eu
0.2:0.8:1:4.1
−17
20


707
Sm
Gd
0.99:0.01:1:4.0
−5
14


708
Sm
Gd
0.2:0.8:1:4.0
−8
22


709
Sm
Tb
0.99:0.01:1:3.9
−5
31


710
Sm
Tb
0.2:0.8:1:4.2
−8
44


711
Sm
Dy
0.99:0.01:1:4.1
−10
35


712
Sm
Dy
0.2:0.8:1:4.0
−6
30


713
Sm
Ho
0.99:0.01:1:4.2
−6
25


714
Sm
Ho
0.2:0.8:1:4.1
−8
33


715
Sm
Er
0.99:0.01:1:4.3
−12
34


716
Sm
Er
0.2:0.8:1:3.9
−10
40


717
Sm
Tm
0.99:0.01:1:4.0
−8
26


718
Sm
Tm
0.2:0.8:1:4.2
−6
19


719
Sm
Lu
0.99:0.01:1:4.1
−12
15


720
Sm
Lu
0.2:0.8:1:4.2
−13
30


721
Eu

1:0:1:4.1
−8
27


722
Eu
Na
0.99:0.01:1:3.8
−9
24


723
Eu
Na
0.2:0.8:1:3.9
−20
39


724
Eu
K
0.99:0.01:1:3.6
−5
29


725
Eu
K
0.2:0.8:1:3.9
−12
30


726
Eu
Li
0.99:0.01:1:3.9
−8
45


727
Eu
Li
0.2:0.8:1:3.8
−8
36


728
Eu
Zn
0.99:0.01:1:4.1
−5
24


729
Eu
Zn
0.2:0.8:1:4.0
−8
22


730
Eu
Pb
0.99:0.01:1:3.8
−10
20
















TABLE 29










(Ln1−xMx)2NiOy

















Electrical






Seebeck coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
0.5Ln:0.5M:Ni:O
(μVK−1)
(mΩcm)















731
Eu
Pb
0.2:0.8:1:4.0
−6
34


732
Eu
Ba
0.99:0.01:1:4.0
−20
25


733
Eu
Ba
0.2:0.8:1:4.0
−25
39


734
Eu
Ca
0.99:0.01:1:3.9
−16
25


735
Eu
Ca
0.2:0.8:1:3.9
−13
29


736
Eu
Al
0.99:0.01:1:4.2
−8
22


737
Eu
Al
0.2:0.8:1:4.1
−6
24


738
Eu
Bi
0.99:0.01:1:4.3
−12
32


739
Eu
Bi
0.2:0.8:1:4.4
−13
29


740
Eu
Y
0.99:0.01:1:4.2
−8
35


741
Eu
Y
0.2:0.8:1:4.0
−9
48


742
Eu
La
0.99:0.01:1:4.2
−20
34


743
Eu
La
0.2:0.8:1:4.1
−5
16


744
Eu
Ce
0.99:0.01:1:4.2
−18
28


745
Eu
Ce
0.2:0.8:1:4.2
−8
39


746
Eu
Pr
0.99:0.01:1:4.0
−5
20


747
Eu
Pr
0.2:0.8:1:4.1
−19
14


748
Eu
Nd
0.99:0.01:1:3.9
−16
22


749
Eu
Nd
0.2:0.8:1:4.1
−25
31


750
Eu
Sm
0.99:0.01:1:4.2
−12
44


751
Eu
Sm
0.2:0.8:1:4.1
−5
19


752
Eu
Gd
0.99:0.01:1:4.0
−8
32


753
Eu
Gd
0.2:0.8:1:4.1
−6
15


754
Eu
Tb
0.99:0.01:1:4.0
−5
25


755
Eu
Tb
0.2:0.8:1:4.0
−8
44


756
Eu
Dy
0.99:0.01:1:3.9
−5
22
















TABLE 30










(Ln1−xMx)2NiOy

















Electrical






Seebeck coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
0.5Ln:0.5M:Ni:O
(μVK−1)
(mΩcm)















757
Eu
Dy
0.2:0.8:1:4.1
−8
30


758
Eu
Ho
0.99:0.01:1:4.2
−10
45


759
Eu
Ho
0.2:0.8:1:4.0
−6
23


760
Eu
Er
0.99:0.01:1:4.2
−6
16


761
Eu
Er
0.2:0.8:1:4.1
−8
26


762
Eu
Tm
0.99:0.01:1:3.9
−12
30


763
Eu
Tm
0.2:0.8:1:4.2
−10
22


764
Eu
Lu
0.99:0.01:1:4.2
−8
19


765
Eu
Lu
0.2:0.8:1:4.3
−6
24


766
Gd

1:0:1:4.0
−12
35


767
Gd
Na
0.99:0.01:1:3.6
−16
30


768
Gd
Na
0.2:0.8:1:3.9
−25
43


769
Gd
K
0.99:0.01:1:3.7
−18
14


770
Gd
K
0.2:0.8:1:3.8
−5
40


771
Gd
Li
0.99:0.01:1:3.8
−8
30


772
Gd
Li
0.2:0.8:1:3.6
−5
45


773
Gd
Zn
0.99:0.01:1:4.0
−8
27


774
Gd
Zn
0.2:0.8:1:3.8
−10
24


775
Gd
Pb
0.99:0.01:1:3.6
−6
14


776
Gd
Pb
0.2:0.8:1:3.6
−6
20


777
Gd
Ba
0.99:0.01:1:3.9
−8
19


778
Gd
Ba
0.2:0.8:1:4.0
−12
30


779
Gd
Ca
0.99:0.01:1:3.8
−10
24


780
Gd
Ca
0.2:0.8:1:4.0
−8
22


781
Gd
Al
0.99:0.01:1:4.0
−6
30


782
Gd
Al
0.2:0.8:1:4.1
−12
41


783
Gd
Bi
0.99:0.01:1:4.2
−13
29
















TABLE 31










(Ln1−xMx)2NiOy

















Electrical






Seebeck coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
0.5Ln:0.5M:Ni:O
(μVK−1)
(mΩcm)















784
Gd
Bi
0.2:0.8:1:4.4
−8
34


785
Gd
Y
0.99:0.01:1:4.2
−9
27


786
Gd
Y
0.2:0.8:1:4.3
−20
32


787
Gd
La
0.99:0.01:1:4.0
−5
19


788
Gd
La
0.2:0.8:1:4.1
−12
15


789
Gd
Ce
0.99:0.01:1:4.2
−8
25


790
Gd
Ce
0.2:0.8:1:4.4
−8
33


791
Gd
Pr
0.99:0.01:1:4.1
−5
34


792
Gd
Pr
0.2:0.8:1:4.2
−8
40


793
Gd
Nd
0.99:0.01:1:4.3
−10
26


794
Gd
Nd
0.2:0.8:1:4.2
−6
19


795
Gd
Sm
0.99:0.01:1:4.1
−8
15


796
Gd
Sm
0.2:0.8:1:4.0
−5
30


797
Gd
Eu
0.99:0.01:1:3.9
−8
27


798
Gd
Eu
0.2:0.8:1:4.1
−10
24


799
Gd
Tb
0.99:0.01:1:4.0
−6
39


800
Gd
Tb
0.2:0.8:1:3.9
−6
29


801
Gd
Dy
0.99:0.01:1:4.2
−8
30


802
Gd
Dy
0.2:0.8:1:4.1
−12
45


803
Gd
Ho
0.99:0.01:1:4.2
−10
36


804
Gd
Ho
0.2:0.8:1:4.3
−8
24


805
Gd
Er
0.99:0.01:1:4.1
−6
22


806
Gd
Er
0.2:0.8:1:4.2
−12
20


807
Gd
Tm
0.99:0.01:1:4.0
−16
34


808
Gd
Tm
0.2:0.8:1:4.1
−6
25


809
Gd
Lu
0.99:0.01:1:4.2
−12
39
















TABLE 32










(Ln1−xMx)2NiOy

















Electrical






Seebeck coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
0.5Ln:0.5M:Ni:O
(μVK−1)
(mΩcm)















810
Gd
Lu
0.2:0.8:1:4.3
−16
25


811
Tb

1:0:1:4.1
−25
29


812
Tb
Na
0.99:0.01:1:3.9
−18
22


813
Tb
Na
0.2:0.8:1:3.8
−5
24


814
Tb
K
0.99:0.01:1:3.8
−8
32


815
Tb
K
0.2:0.8:1:4.0
−5
29


816
Tb
Li
0.99:0.01:1:4.1
−8
35


817
Tb
Li
0.2:0.8:1:3.9
−10
48


818
Tb
Zn
0.99:0.01:1:42
−6
34


819
Tb
Zn
0.2:0.8:1:4.0
−6
16


820
Tb
Pb
0.99:0.01:1:4.0
−8
28


821
Tb
Pb
0.2:0.8:1:3.9
−12
39


822
Tb
Ba
0.99:0.01:1:3.9
−10
20


823
Tb
Ba
0.2:0.8:1:4.0
−8
14


824
Tb
Ca
0.99:0.01:1:4.0
−8
22


825
Tb
Ca
0.2:0.8:1:4.0
−23
31


826
Tb
Al
0.99:0.01:1:3.9
−27
44


827
Tb
Al
0.2:0.8:1:4.2
−18
19


828
Tb
Bi
0.99:0.01:1:4.4
−15
32


829
Tb
Bi
0.2:0.8:1:4.3
−8
15


830
Tb
Y
0.99:0.01:1:4.0
−12
26


831
Tb
Y
0.2:0.8:1:4.2
−10
30


832
Tb
La
0.99:0.01:1:4.1
−19
22


833
Tb
La
0.2:0.8:1:3.9
−25
19


834
Tb
Ce
0.99:0.01:1:3.9
−14
24


835
Tb
Ce
0.2:0.8:1:4.2
−12
35
















TABLE 33










(Ln1−xMx)2NiOy

















Electrical






Seebeck coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
0.5Ln:0.5M:Ni:O
(μVK−1)
(mΩcm)















836
Tb
Pr
0.99:0.01:1:4.1
−5
30


837
Tb
Pr
0.2:0.8:1:4.0
−8
43


838
Tb
Nd
0.99:0.01:1:4.3
−6
14


839
Tb
Nd
0.2:0.8:1:4.2
−9
40


840
Tb
Sm
0.99:0.01:1:4.0
−12
30


841
Tb
Sm
0.2:0.8:1:4.1
−5
45


842
Tb
Eu
0.99:0.01:1:4.0
−21
27


843
Tb
Eu
0.2:0.8:1:4.0
−20
24


844
Tb
Gd
0.99:0.01:1:3.9
−5
14


845
Tb
Gd
0.2:0.8:1:4.2
−8
20


846
Tb
Dy
0.99:0.01:1:4.1
−12
19


847
Tb
Dy
0.2:0.8:1:4.0
−20
30


848
Tb
Ho
0.99:0.01:1:4.2
−8
24


849
Tb
Ho
0.2:0.8:1:4.1
−5
22


850
Tb
Er
0.99:0.01:1:4.3
−8
30


851
Tb
Er
0.2:0.8:1:3.9
−10
41


852
Tb
Tm
0.99:0.01:1:4.0
−6
29


853
Tb
Tm
0.2:0.8:1:4.2
−6
34


854
Tb
Lu
0.99:0.01:1:4.1
−8
27


855
Tb
Lu
0.2:0.8:1:4.2
−18
32


856
Dy

1:0:1:4.0
−20
19


857
Dy
Na
0.99:0.01:1:3.6
−18
15


858
Dy
Na
0.2:0.8:1:3.9
−5
25


859
Dy
K
0.99:0.01:1:3.7
−8
30


860
Dy
K
0.2:0.8:1:3.8
−6
43


861
Dy
Li
0.99:0.01:1:3.8
−9
14
















TABLE 34










(Ln1−xMx)2NiOy

















Electrical






Seebeck coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
0.5Ln:0.5M:Ni:O
(μVK−1)
(mΩcm)















862
Dy
Li
0.2:0.8:1:3.6
−12
40


863
Dy
Zn
0.99:0.01:1:4.0
−5
30


864
Dy
Zn
0.2:0.8:1:3.8
−21
45


865
Dy
Pb
0.99:0.01:1:3.6
−15
27


866
Dy
Pb
0.2:0.8:1:3.6
−18
24


867
Dy
Ba
0.99:0.01:1:3.9
−12
14


868
Dy
Ba
0.2:0.8:1:4.0
−5
20


869
Dy
Ca
0.99:0.01:1:3.8
−8
19


870
Dy
Ca
0.2:0.8:1:4.0
−6
30


871
Dy
Al
0.99:0.01:1:4.0
−9
24


872
Dy
Al
0.2:0.8:1:4.1
−12
22


873
Dy
Bi
0.99:0.01:1:4.2
−5
30


874
Dy
Bi
0.2:0.8:1:4.4
−21
41


875
Dy
Y
0.99:0.01:1:4.2
−20
29


876
Dy
Y
0.2:0.8:1:4.3
−5
34


877
Dy
La
0.99:0.01:1:4.0
−8
27


878
Dy
La
0.2:0.8:1:4.1
−12
32


879
Dy
Ce
0.99:0.01:1:4.2
−20
19


880
Dy
Ce
0.2:0.8:1:4.4
−8
15


881
Dy
Pr
0.99:0.01:1:4.1
−5
25


882
Dy
Pr
0.2:0.8:1:4.2
−8
33


883
Dy
Nd
0.99:0.01:1:4.3
−10
34


884
Dy
Nd
0.2:0.8:1:4.2
−6
30


885
Dy
Sm
0.99:0.01:1:4.1
−18
22


886
Dy
Sm
0.2:0.8:1:4.0
−5
19


887
Dy
Eu
0.99:0.01:1:3.9
−8
24
















TABLE 35










(Ln1−xMx)2NiOy

















Electrical






Seebeck coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
0.5Ln:0.5M:Ni:O
(μVK−1)
(mΩcm)















888
Dy
Eu
0.2:0.8:1:4.1
−6
35


889
Dy
Gd
0.99:0.01:1:4.0
−9
30


890
Dy
Gd
0.2:0.8:1:3.9
−12
43


891
Dy
Tb
0.99:0.01:1:4.2
−5
14


892
Dy
Tb
0.2:0.8:1:4.1
−21
40


893
Dy
Ho
0.99:0.01:1:4.2
−18
30


894
Dy
Ho
0.2:0.8:1:4.3
−20
45


895
Dy
Er
0.99:0.01:1:4.1
−18
27


896
Dy
Er
0.2:0.8:1:4.2
−5
24


897
Dy
Tm
0.99:0.01:1:4.0
−8
14


898
Dy
Tm
0.2:0.8:1:4.1
−6
20


899
Dy
Lu
0.99:0.01:1:4.2
−9
19


900
Dy
Lu
0.2:0.8:1:4.3
−12
30


901
Ho

1:0:1:4.1
−5
24


902
Ho
Na
0.99:0.01:1:3.8
−21
22


903
Ho
Na
0.2:0.8:1:3.9
−15
30


904
Ho
K
0.99:0.01:1:3.6
−18
41


905
Ho
K
0.2:0.8:1:3.9
−12
29


906
Ho
Li
0.99:0.01:1:3.9
−5
34


907
Ho
Li
0.2:0.8:1:3.8
−18
27


908
Ho
Zn
0.99:0.01:1:4.1
−20
32


909
Ho
Zn
0.2:0.8:1:4.0
−12
19


910
Ho
Pb
0.99:0.01:1:3.8
−5
15


911
Ho
Pb
0.2:0.8:1:4.0
−8
25


912
Ho
Ba
0.99:0.01:1:4.0
−6
30


913
Ho
Ba
0.2:0.8:1:4.0
−9
43
















TABLE 36










(Ln1−xMx)2NiOy

















Electrical






Seebeck coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
0.5Ln:0.5M:Ni:O
(μVK−1)
(mΩcm)















914
Ho
Ca
0.99:0.01:1:3.9
−12
14


915
Ho
Ca
0.2:0.8:1:3.9
−5
40


916
Ho
Al
0.99:0.01:1:4.2
−9
30


917
Ho
Al
0.2:0.8:1:4.1
−12
45


918
Ho
Bi
0.99:0.01:1:4.3
−5
27


919
Ho
Bi
0.2:0.8:1:4.4
−5
24


920
Ho
Y
0.99:0.01:1:4.2
−8
14


921
Ho
Y
0.2:0.8:1:4.0
−12
20


922
Ho
La
0.99:0.01:1:42
−20
19


923
Ho
La
0.2:0.8:1:4.1
−8
30


924
Ho
Ce
0.99:0.01:1:4.2
−5
22


925
Ho
Ce
0.2:0.8:1:4.2
−8
19


926
Ho
Pr
0.99:0.01:1:4.0
−10
24


927
Ho
Pr
0.2:0.8:1:4.1
−6
35


928
Ho
Nd
0.99:0.01:1:3.9
−18
30


929
Ho
Nd
0.2:0.8:1:4.1
−5
43


930
Ho
Sm
0.99:0.01:1:4.2
−8
14


931
Ho
Sm
0.2:0.8:1:4.1
−6
40


932
Ho
Eu
0.99:0.01:1:4.0
−9
30


933
Ho
Eu
0.2:0.8:1:4.1
−12
45


934
Ho
Gd
0.99:0.01:1:4.0
−5
27


935
Ho
Gd
0.2:0.8:1:4.0
−21
24


936
Ho
Tb
0.99:0.01:1:3.9
−18
14


937
Ho
Tb
0.2:0.8:1:4.1
−20
20


938
Ho
Dy
0.99:0.01:1:4.2
−18
19


939
Ho
Dy
0.2:0.8:1:4.0
−5
30
















TABLE 37










(Ln1−xMx)2NiOy

















Electrical






Seebeck coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
0.5Ln:0.5M:Ni:O
(μVK−1)
(mΩcm)















940
Ho
Er
0.99:0.01:1:4.2
−8
24


941
Ho
Er
0.2:0.8:1:4.1
−6
22


942
Ho
Tm
0.99:0.01:1:3.9
−9
30


943
Ho
Tm
0.2:0.8:1:4.2
−12
41


944
Ho
Lu
0.99:0.01:1:4.2
−5
29


945
Ho
Lu
0.2:0.8:1:4.3
−8
34


946
Er

1:0:1:4.0
−12
27


947
Er
Na
0.99:0.01:1:3.6
−8
32


948
Er
Na
0.2:0.8:1:3.9
−5
19


949
Er
K
0.99:0.01:1:3.7
−8
15


950
Er
K
0.2:0.8:1:3.8
−10
25


951
Er
Li
0.99:0.01:1:3.8
−6
30


952
Er
Li
0.2:0.8:1:3.6
−6
43


953
Er
Zn
0.99:0.01:1:4.0
−8
14


954
Er
Zn
0.2:0.8:1:3.8
−12
40


955
Er
Pb
0.99:0.01:1:3.6
−10
30


956
Er
Pb
0.2:0.8:1:3.6
−8
45


957
Er
Ba
0.99:0.01:1:3.9
−8
27


958
Er
Ba
0.2:0.8:1:4.0
−23
24


959
Er
Ca
0.99:0.01:1:3.8
−27
14


960
Er
Ca
0.2:0.8:1:4.0
−18
20


961
Er
Al
0.99:0.01:1:4.0
−15
32


962
Er
Al
0.2:0.8:1:4.1
−8
19


963
Er
Bi
0.99:0.01:1:4.2
−12
15


964
Er
Bi
0.2:0.8:1:4.4
−10
25


965
Er
Y
0.99:0.01:1:4.2
−19
30
















TABLE 38










(Ln1−xMx)2NiOy

















Electrical






Seebeck coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
0.5Ln:0.5M:Ni:O
(μVK−1)
(mΩcm)















966
Er
Y
0.2:0.8:1:4.3
−25
43


967
Er
La
0.99:0.01:1:4.0
−14
14


968
Er
La
0.2:0.8:1:4.1
−12
40


969
Er
Ce
0.99:0.01:1:4.2
−5
30


970
Er
Ce
0.2:0.8:1:4.4
−8
45


971
Er
Pr
0.99:0.01:1:4.1
−6
27


972
Er
Pr
0.2:0.8:1:4.2
−9
24


973
Er
Nd
0.99:0.01:1:4.3
−8
14


974
Er
Nd
0.2:0.8:1:4.2
−5
20


975
Er
Sm
0.99:0.01:1:4.1
−8
32


976
Er
Sm
0.2:0.8:1:4.0
−10
19


977
Er
Eu
0.99:0.01:1:3.9
−12
15


978
Er
Eu
0.2:0.8:1:4.1
−5
25


979
Er
Gd
0.99:0.01:1:4.0
−18
30


980
Er
Gd
0.2:0.8:1:3.9
−20
43


981
Er
Tb
0.99:0.01:1:4.2
−12
14


982
Er
Tb
0.2:0.8:1:4.1
−5
40


983
Er
Dy
0.99:0.01:1:4.2
−8
30


984
Er
Dy
0.2:0.8:1:4.3
−6
45


985
Er
Ho
0.99:0.01:1:4.1
−9
27


986
Er
Ho
0.2:0.8:1:4.2
−12
24


987
Er
Tm
0.99:0.01:1:4.0
−5
14


988
Er
Tm
0.2:0.8:1:4.1
−9
20


989
Er
Lu
0.99:0.01:1:4.2
−12
32


990
Er
Lu
0.2:0.8:1:4.3
−5
19


991
Tm

1:0:1:4.1
−5
15
















TABLE 39










(Ln1−xMx)2NiOy

















Electrical






Seebeck coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
0.5Ln:0.5M:Ni:O
(μVK−1)
(mΩcm)















992
Tm
Na
0.99:0.01:1:3.9
−8
25


993
Tm
Na
0.2:0.8:1:3.8
−12
30


994
Tm
K
0.99:0.01:1:3.8
−20
43


995
Tm
K
0.2:0.8:1:4.0
−8
14


996
Tm
Li
0.99:0.01:1:4.1
−5
24


997
Tm
Li
0.2:0.8:1:3.9
−8
35


998
Tm
Zn
0.99:0.01:1:4.2
−10
30


999
Tm
Zn
0.2:0.8:1:4.0
−9
43


1000
Tm
Pb
0.99:0.01:1:4.0
−12
14


1001
Tm
Pb
0.2:0.8:1:3.9
−5
40


1002
Tm
Ba
0.99:0.01:1:3.9
−21
30


1003
Tm
Ba
0.2:0.8:1:4.0
−18
45


1004
Tm
Ca
0.99:0.01:1:4.0
−20
27


1005
Tm
Ca
0.2:0.8:1:4.0
−18
24


1006
Tm
Al
0.99:0.01:1:3.9
−5
14


1007
Tm
Al
0.2:0.8:1:4.2
−8
20


1008
Tm
Bi
0.99:0.01:1:4.4
−6
19


1009
Tm
Bi
0.2:0.8:1:4.3
−9
30


1010
Tm
Y
0.99:0.01:1:4.0
−12
24


1011
Tm
Y
0.2:0.8:1:4.2
−5
22


1012
Tm
La
0.99:0.01:1:4.1
−21
30


1013
Tm
La
0.2:0.8:1:3.9
−15
41


1014
Tm
Ce
0.99:0.01:1:3.9
−18
29


1015
Tm
Ce
0.2:0.8:1:4.2
−12
34


1016
Tm
Pr
0.99:0.01:1:4.1
−5
27


1017
Tm
Pr
0.2:0.8:1:4.0
−18
32
















TABLE 40










(Ln1−xMx)2NiOy

















Electrical






Seebeck coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
0.5Ln:0.5M:Ni:O
(μVK−1)
(mΩcm)















1018
Tm
Nd
0.99:0.01:1:4.3
−20
19


1019
Tm
Nd
0.2:0.8:1:4.2
−12
15


1020
Tm
Sm
0.99:0.01:1:4.0
−5
25


1021
Tm
Sm
0.2:0.8:1:4.1
−8
30


1022
Tm
Eu
0.99:0.01:1:4.0
−6
43


1023
Tm
Eu
0.2:0.8:1:4.0
−9
14


1024
Tm
Gd
0.99:0.01:1:3.9
−12
40


1025
Tm
Gd
0.2:0.8:1:4.2
−9
30


1026
Tm
Tb
0.99:0.01:1:4.1
−12
45


1027
Tm
Tb
0.2:0.8:1:4.0
−5
27


1028
Tm
Dy
0.99:0.01:1:4.2
−21
24


1029
Tm
Dy
0.2:0.8:1:4.1
−18
14


1033
Tm
Ho
0.99:0.01:1:4.3
−10
20


1031
Tm
Ho
0.2:0.8:1:3.9
−12
19


1032
Tm
Er
0.99:0.01:1:4.0
−5
19


1033
Tm
Er
0.2:0.8:1:4.2
−18
30


1034
Tm
Lu
0.99:0.01:1:4.1
−20
24


1035
Tm
Lu
0.2:0.8:1:4.2
−12
22


1036
Lu

1:0:1:4.0
−5
30


1037
Lu
Na
0.99:0.01:1:3.6
−8
41


1038
Lu
Na
0.2:0.8:1:3.9
−6
29


1039
Lu
K
0.99:0.01:1:3.7
−9
34


1040
Lu
K
0.2:0.8:1:3.8
−12
27


1041
Lu
Li
0.99:0.01:1:3.8
−5
32


1042
Lu
Li
0.2:0.8:1:3.6
−9
19


1043
Lu
Zn
0.99:0.01:1:4.0
−12
15
















TABLE 41










(Ln1−xMx)2NiOy

















Electrical






Seebeck coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
0.5Ln:0.5M:Ni:O
(μVK−1)
(mΩcm)















1044
Lu
Zn
0.2:0.8:1:3.8
−5
25


1045
Lu
Pb
0.99:0.01:1:3.6
−5
30


1046
Lu
Pb
0.2:0.8:1:3.6
−8
43


1047
Lu
Ba
0.99:0.01:1:3.9
−12
14


1048
Lu
Ba
0.2:0.8:1:4.0
−20
40


1049
Lu
Ca
0.99:0.01:1:3.8
−8
30


1050
Lu
Ca
0.2:0.8:1:4.0
−23
45


1051
Lu
Al
0.99:0.01:1:4.0
−27
27


1052
Lu
Al
0.2:0.8:1:4.1
−18
24


1053
Lu
Bi
0.99:0.01:1:4.2
−15
14


1054
Lu
Bi
0.2:0.8:1:4.4
−8
20


1055
Lu
Y
0.99:0.01:1:4.2
−12
32


1056
Lu
Y
0.2:0.8:1:4.3
−10
19


1057
Lu
La
0.99:0.01:1:4.0
−19
15


1058
Lu
La
0.2:0.8:1:4.1
−5
25


1059
Lu
Ce
0.99:0.01:1:4.2
−8
30


1060
Lu
Ce
0.2:0.8:1:4.4
−6
43


1061
Lu
Pr
0.99:0.01:1:4.1
−9
14


1062
Lu
Pr
0.2:0.8:1:4.2
−12
30


1063
Lu
Nd
0.99:0.01:1:4.3
−9
43


1064
Lu
Nd
0.2:0.8:1:4.2
−12
14


1065
Lu
Sm
0.99:0.01:1:4.1
−5
40


1066
Lu
Sm
0.2:0.8:1:4.0
−21
30


1067
Lu
Eu
0.99:0.01:1:3.9
−18
45


1068
Lu
Eu
0.2:0.8:1:4.1
−10
27


1069
Lu
Gd
0.99:0.01:1:4.0
−12
24
















TABLE 42










(Ln1−xMx)2NiOy

















Electrical






Seebeck coefficient
resistivity






at 700° C.
at 700° C.


No.
Ln
M
0.5Ln:0.5M:Ni:O
(μVK−1)
(mΩcm)















1070
Lu
Gd
0.2:0.8:1:3.9
−5
14


1071
Lu
Tb
0.99:0.01:1:4.2
−18
20


1072
Lu
Tb
0.2:0.8:1:4.1
−20
19


1073
Lu
Dy
0.99:0.01:1:4.2
−12
19


1074
Lu
Dy
0.2:0.8:1:4.3
−5
30


1075
Lu
Ho
0.99:0.01:1:4.1
−8
24


1076
Lu
Ho
0.2:0.8:1:4.2
−6
22


1077
Lu
Er
0.99:0.01:1:4.0
−9
30


1078
Lu
Er
0.2:0.8:1:4.1
−5
41


1079
Lu
Tm
0.99:0.01:1:4.2
−8
29


1080
Lu
Tm
0.2:0.8:1:4.3
−12
34








Claims
  • 1. A complex oxide having a composition represented by the formula Ln1-xMxNiOy; wherein Ln is a lanthanide, M is at least one element selected from the group consisting of Na, K, Li, Zn, Pb, Ba, Ca, Al, Bi, and rare earth elements being not the same as Ln; and 0≦x≦0.8; and 2.7≦y≦3.3, the complex oxide having a negative Seebeck coefficient at 100° C. or higher.
  • 2. A complex oxide having a composition represented by the formula Ln1-xMxNiOy; wherein Ln is a lanthanide, M is at least one element selected from the group consisting of Na, K, Li, Zn, Pb, Ba, Ca, Al, Bi, and rare earth elements being not the same as Ln; 0≦x≦0.8; and 2.7≦y≦3.3, the complex oxide having an electrical resistivity of 1 Ωcm or less at 100° C. or higher.
  • 3. A complex oxide having a composition represented by the formula (Ln1-xMx)2NiOy; wherein Ln is a lanthanide, M is at least one element selected from the group consisting of Na, K, Li, Zn, Pb, Ba, Ca, Al, Bi, and rare earth elements being not the same as Ln; 0≦x≦0.8; and 3.6≦y≦4.4, the complex oxide having a negative Seebeck coefficient at 100° C. or higher.
  • 4. A complex oxide having a composition represented by the formula (Ln1-xMx)2NiOy; wherein Ln is a lanthanide, M is at least one element selected from the group consisting of Na, K, Li, Zn, Pb, Ba, Ca, Al, Bi, and rare earth elements being not the same as Ln; 0≦x≦0.8, and 3.6≦y≦4.4, the complex oxide having an electrical resistivity of 1 Ωcm or less at 100° C. or higher.
  • 5. An n-type thermoelectric material comprising the complex oxide of claim 1.
  • 6. A thermoelectric module comprising the n-type thermoelectric material of claim 5.
Priority Claims (1)
Number Date Country Kind
2003-086006 Mar 2003 JP national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/JP04/04034 3/24/2004 WO 9/26/2005