The present invention relates to a method of forming a composite oxygen transport membrane and the composite oxygen transport membrane itself in which a porous fuel oxidation layer, a dense separation layer, and a porous surface activation layer are formed on a porous support from mixtures of (Ln1-xAx)wCr1-yByO3-δ and a doped zirconia. The invention also relates to such a method in which the separation layer is sintered to full density in nitrogen atmosphere. The term “nitrogen atmosphere” means an atmosphere with oxygen partial pressure between about 0.1 and 1000 Pa
Oxygen transport membranes function to separate oxygen from air or other oxygen containing gases by transporting oxygen ions through a material that is capable of conducting oxygen ions and electrons at elevated temperatures. When a partial pressure difference of oxygen is applied on opposite sides of such a membrane, oxygen ions will ionize on one surface of the membrane and emerge on the opposite side of the membrane and recombine into elemental oxygen and release electrons. The free electrons resulting from the combination will be transported back through the membrane to ionize the oxygen. The partial pressure difference can be produced by providing the oxygen containing feed to the membrane at a positive pressure or by combusting a fuel or other combustible substance in the presence of the separated oxygen on the opposite side of the membrane or a combination of the two methods. It is to be noted that the combustion will produce heat that is used to raise the temperature of the membrane to an operational temperature at which the oxygen ion transport can occur and also, to supply heat to an industrial process that requires heating. Moreover, whether or not heat is required for a process, the combustion itself can produce products such as synthesis gases by means of partial oxidation of a fuel or other combustible substance occasioned as a result of the combustion.
Oxygen transport membranes can utilize a single phase mixed conducting material such as a perovskite to conduct the electrons and transport the oxygen ions. While perovskite materials with high ambi-polar conductivity, such as La1-xSrxCo1-yFeyO3-δ or Ba1-xSrxCo1-yFeyO3-δ, can exhibit a high oxygen flux, such materials tend to be very fragile under operational conditions involved where a fuel or other combustible substance is used to produce the partial pressure difference. This is because the perovskite will have a variable stoichiometry with respect to oxygen or decompose in reducing atmosphere, which makes the material unsuitable for processes in which a reducing fuel is introduced. In order to overcome this problem, a two-phase mixture of more stable materials can be used in which a primarily ionic conductor is provided to conduct the oxygen ions and a primarily electronic conductor is used to conduct the electrons. The primarily ionic conductor can be a fluorite such as a stabilized zirconia and the primarily electronic conductor can be a perovskite which contains Cr and therefore more stable than the Co-containing perovskite materials. Where the primarily ionic conductor is a fluorite, this chemical expansion is less problematical.
Typically, oxygen transport membranes are composite, also known as supported thick film, structures that include a dense separation layer composed of the two phases of materials, a porous fuel oxidation layer located between the dense separation layer and a porous support layer and a porous surface activation layer located opposite to the porous fuel oxidation layer and on the other side of the dense separation layer. All of these layers are supported on a porous support, or porous supporting substrate. The dense separation layer is where the oxygen ion transport principally occurs. Although defects in the dense separation layer can occur that enable the passage of gas through such layer, it is intended to be gas tight and therefore, not porous. Both the porous surface activation layer and the porous fuel oxidation layers are “active”, that is, they are formed from materials that permit the transport of oxygen ions and the conduction of electrons. Since the resistance to oxygen ion transport is dependent on the thickness of the membrane, the dense separation layer is made as thin as possible and therefore must be supported in any case. The porous fuel oxidation layer enhances the rate of fuel oxidation by providing a high surface area where fuel can react with oxygen or oxygen ions. The oxygen ions diffuse through the mixed conducting matrix of this porous layer towards the porous support and react with the fuel that diffuses inward from the porous support into the porous fuel oxidation layer. The porous surface activation layer enhances the rate of oxygen incorporation by enhancing the surface area of the dense separation layer while providing a path for the resulting oxygen ions to diffuse through the oxygen ion conducting phase to the dense separation layer and for oxygen molecules to diffuse through the open pore space to the dense separation layer. The surface activation layer therefore, reduces the loss of driving force in the oxygen incorporation process and thereby increases the achievable oxygen flux. Preferably, the porous fuel oxidation layer and the porous surface exchange layer are formed from similar electronic and ionic phases as the dense separation layer to provide a close thermal expansion match between the layers.
U.S. Pat. No. 7,556,676 describes a composite oxygen ion transport membrane. In order to form a dense, gas impermeable dual phase membrane layer from these materials the membrane needs to contain vanadium, and be sintered in a furnace atmosphere containing a mixture of hydrogen and nitrogen. From a cost perspective for high volume manufacturing it would be preferable to sinter in an atmosphere which does not contain hydrogen. From an environmental viewpoint it would be beneficial to eliminate vanadium. The materials of both the porous intermediate fuel oxidation layer and the porous air side surface exchange layers described in this patent have shown a tendency to densify during prolonged usage at high temperatures. Densification of these layers results in degradation of oxygen flux through the membrane due to loss of surface area and therefore active reaction site.
U.S. Pat. No. 8,795,417 B2 provides a method of producing a composite oxygen ion membrane consisting of a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer from mixtures of (Ln1-xAx)wCr1-yByO3-δ and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not calcium and preferably strontium. The typical materials are (La0.8Ca0.2)0.95Cr0.5Mn0.5O3-δ (LCCM55) for the porous fuel oxidation and optional porous surface exchange layers and (La0.8Sr0.2)0.95Cr0.5Fe0.5O3-δ (LSCF55) for the dense separation layer.
Since Ca-containing perovskite materials are more refractory than Sr-containing ones, the idea was to sinter the separation layer to full density while maintaining a porous fuel activation layer without using pore former. However, it was later found out that although the fuel activation layer remained porous, the separation layer was difficult to sinter to full density in air. Moreover, the shrinkage mismatch between the fuel activation layer and the separation layer resulted in residual stress in the membrane which caused the membrane to delaminate from the porous substrate.
As will be discussed the present invention provides a method of manufacturing a composite oxygen ion transport membrane and the membrane structure resulting from such manufacturing methods that among other advantages incorporates materials that enable fabrication to be accomplished in a more cost effective manner than in the prior art and also, will be more durable than prior art membranes.
The present invention provides a method of manufacturing an oxygen ion composite membrane. In accordance with such method, a first layer containing a first mixture of particles of (Ln1-xAx)wCr1-yByO3-δ, doped zirconia and pore formers is formed on a porous support. Ln is La, Y, Pr, Ce or Sm, A is Ca or Sr, B is Fe, Mn, Co, Al, Ti or combinations thereof, w is from about 0.9 to about 1.0, x is from about 0.1 to about 0.3 and y is from about 0.1 to about 0.6. The first mixture contains the (Ln1-xAx)wCr1-yByO3-δ and the doped zirconia such that when sintered, the first layer will contain the (Ln1-xAx)wCr1-yByO3-δ and the doped zirconia in a first volume percentage of (Ln1-xAx)wCr1-yByO3-δ from about 30% to about 70% of the total solid mass. A second layer is formed on the first layer that contains a second mixture of particles of (Ln1-xAx)wCr1-yByO3-δ and the doped zirconia. In one embodiment this second mixture of particles is substantially free of pore formers. In another embodiment, the second mixture of particles does not contain pore formers. In such mixture, Ln is La, Y, Pr, Ce or Sm, A is Ca or Sr, and B is Fe, Mn, Co, Al, Ti or combinations thereof, w is from about 0.9 to about 1.0, x is from about 0.1 to about 0.3 and y is from about 0.3 to about 0.7. The second mixture contains the (Ln1-xAx)wCr1-yByO3-δ and the doped zirconia such that when sintered, the second layer will contain the (Ln1-xAx)wCr1-yByO3-δ and the doped zirconia in a second volume percentage of (Ln1-xAx)wCr1-yByO3-δ of from about 30% to about 70% of the total solid mass. The first layer and the second layer and porous support are heated in nitrogen so that said first layer partially sinters into a porous mass containing the first mixture of particles, thereby to provide a porous fuel oxidation layer and the second layer sinters fully into a densified mass containing the second mixture of particles, thereby to provide a dense separation layer. While maintaining a fully densified separation layer, the porosity of the first layer can be controlled by adjusting either the amount of pore formers or the Cr content in the perovskite material.
As can be appreciated from the above discussion, since the composite membrane of the present invention is formed by sintering the layers in nitrogen, or a nitrogen atmosphere, a hydrogen-containing sintering atmospheres is not required, which reduces the cost of fabricating such a composite membrane of the present invention. The term “nitrogen atmosphere” means an atmosphere with oxygen partial pressure of from about 0.1 to about 1000 Pa.
In addition to the foregoing, a third layer can be formed on the second layer containing a third mixture of particles of (Ln1-xAx)wCr1-yByO3-δ and the doped zirconia and pore formers. Again, for such mixture, Ln is La, Y, Pr, Ce or Sm, A is Ca or Sr, B is Fe, Mn, Co, Al, Ni or combinations thereof, w is from about 0.9 to about 1.0, x is from about 0.1 to about 0.3 and y is from about 0.4 to about 0.8. The third mixture has a third volume percentage of the (Ln1-xAx)wCr1-yByO3-δ and the doped zirconia such that, when sintered, the third layer will contain the (Ln1-xAx)wCr1-yByO3-δ and the doped zirconia in a third volume percentage of (Ln1-xAx)wCr1-yByO3-δ from about 30% to about 70% of the total solid mass. The third layer is sintered in air at a temperature of about 1300° C. such that the third layer is porous. In one embodiment, the doped zirconia is 10 mol % scandia and 1 mol % yttria doped zirconia (10Sc1YSZ) or 10 mol % scandia and 1 mol % ceria doped zirconia (10Sc1CeSZ).
The (Ln1-xAx)wCr1-yByO3-δ within the first mixture of particles can be (La1-xSrx)wCr1-yFeyO3-δ, where w is 0.95, x is 0.2 and y is 0.3. The (Ln1-xAx)wCr1-yByO3-δ within the second mixture of particles can be (La1-xSrx)wCr1-yFeyO3-δ, where w is 0.95, x is 0.2 and y is 0.5. The (Ln1-xAx)wCr1-yByO3-δ within the third mixture of particles can be (La1-xSrx)wCr1-yFeyO3-δ, where w is 0.95, x is 0.2 and y is 0.7. Moreover, the sintered porous support is formed from an yttria stabilized zirconia with yttria content of from about 3-6 mol %, in another embodiment from about 4-5 mol % or a mixture of MgO and MgAl2O4.
In one embodiment, the first volume percentage of (La1-xSrx)wCr1-yFeyO3-δ is about 60% of the total solid mass, the second volume percentage of (La1-xSrx)wCr1-yFeyO3-δ is about 50% of the total solid mass and the third volume percentage of (La1-xSrx)wCr1-yFeyO3-δ is about 60% of the total solid mass. The porous support can be of tubular or planar configuration. In one specific embodiment, the porous support is formed of 4 mol % Yttria Stabilized Zirconia (4YSZ) and fired at a temperature of about 1050° C., so that it is not fully sintered prior to forming the first layer on the porous support. In such an embodiment, the first layer is formed on the porous support and dried at ambient temperature. The second layer is then formed on the first layer. The first layer, the second layer and the porous support are then sintered at a temperature of about 1400° C. in nitrogen. Additionally, the third layer can be formed on the second layer and be sintered at a temperature of from about 1250° C. to about 1350° C. in air. Alternatively, the first layer, the second layer and the third layer can be sintered at a temperature of about 1400° C. in nitrogen. In any embodiment of the present invention, the first layer, the second layer and/or the third layer can be formed by any an conventional coating method. In one embodiment, the first layer, the second layer and/or the third layer are formed by slurry coating.
The present invention also provides an oxygen ion composite membrane that comprises first and second layers on a porous support providing a porous fuel oxidation layer and a dense separation layer, respectively. Each of the first and second layers contain a mixture of (Ln1-xAx)wCr1-yByO3-δ and doped zirconia, where for the first of the layers, Ln is La, Y, Pr, Ce or Sm, A is Ca or Sr, B is Fe, Mn, Co, Al, Ti or combinations thereof, w is from about 0.9 to about 1.0, x is from about 0.1 to about 0.3 and y is from about 0.1 to about 0.6 and for the second of the layers, Ln is La, Y, Pr, Ce or Sm, A is Ca or Sr, and B is Fe, Mn, Co, Al, Ti or combinations thereof, w is from about 0.9 to about 1.0, x is from about 0.1 to about 0.3 and y is from about 0.3 to about 0.7. The first of the layers contains the (Ln1-xAx)wCr1-yByO3-δ and the doped zirconia in a first volume percentage of (Ln1-xAx)wCr1-yByO3-δ of from about 30% to about 70% of the total solid mass. The second of the layers contains the (Ln1-xAx)wCr1-yByO3-δ and the doped zirconia in a second volume percentage of (Ln1-xAx)wCr1-yByO3-δ from about 30% to about 70% of the total solid mass.
A third layer can be situated on the second layer to form a porous surface exchange layer and that also contains the mixture of (Ln1-xAx)wCr1-yByO3-δ and the doped zirconia. In such layer, Ln is La, Y, Pr, Ce or Sm, A is Ca or Sr, B is Fe, Mn, Co, Ni, Al, or combinations thereof, w is from about 0.9 to about 1.0, x is from about 0.1 to about 0.3 and y is from about 0.4 to about 0.8. The third layer contains the (Ln1-xAx)wCr1-yByO3-δ and the doped zirconia in a third volume percentage of (Ln1-xAx)wCr1-yByO3-δ between about 30% and about 70% of the total solid mass.
Further, the doped zirconia can be 10Sc1YSZ or 10Sc1CeSZ. Preferably, the (Ln1-xAx)wCr1-yByO3-δ within the first layer is (La0.8Sr0.2)0.95Cr0.7Fe0.3O3-δ; the (La1-xAx)wCr1-yByO3-δ within the second layer is preferably (La0.8Sr0.2)0.95Cr0.5Fe0.5O3-δ; and the (La1-xAx)wCr1-yByO3-δ within the third layer is preferably (La0.8Sr0.2)0.95Cr0.3Fe0.7O3-δ. Additionally, preferably, the first volume percentage of (Ln1-xAx)wCr1-yByO3-δ is about 60% of the total solid mass; the second volume percentage of (Ln1-xAx)wCr1-yByO3-δ is about 50% of the total solid mass; and the third volume percentage of (Ln1-xAx)wCr1-yByO3-δ is about 60% of the total solid mass. In any embodiment of the present invention and in any aspect, the porous support is of tubular configuration.
While the specification concludes with claims distinctly pointing out the subject matter that the inventors regard as their invention, it is believed that the invention will be better understood when taking in connection
The porous support layer 10 could be formed from partially stabilized zirconia oxide e.g. from about 3 and 6 mol % yttria stabilized zirconia or fully stabilized zirconia e.g. 15 mol % calcia stabilized zirconia. Partially doped zirconia with yttria content lower than 4 mol % tends to experience a tetragonal-to-monoclinic phase transformation at ambient temperature, especially when under stress or in the presence of water vapor. The phase transformation is accompanied by about 5% volume increase and results in cracking of the porous support or delamination of the coating layers from the porous support. Alternatively the porous substrate can be formed from a mixture of MgO and MgAl2O4. Alternatively the porous substrate could be a porous metal. In this regard, although not part of the present invention, as would be appreciated by those skilled in the art, porous support layer 10 should provide as open an area as possible while still being able to be structurally sound in its supporting function.
Porous support structures for application in composite oxygen transport membranes are best characterized in terms of their porosity, strength and effective oxygen diffusivity. The porous support forms the mechanical support for the “active” membrane layers so should have sufficient strength at high temperatures. A typical support structure in this application would have total porosity in the range of from about 20 to about 50% by volume. An important property of the porous substrate is the ability to allow gaseous species to readily move through the porous support structure to and from the membrane ‘active’ layers e.g. H2, CO, H2O and CO2. The ability of the substrate to allow gaseous transport can be characterized as an effective oxygen diffusivity, Deff O2-N2. For this application it has been determined that a Deff O2-N2 more than 0.005 cm2/s measured at room temperature is preferred. The porous substrate should also possess a thermal expansion coefficient not more than 10% different from that of the membrane ‘active’ layers between room temperature and membrane operation temperature.
A stabilized zirconia, namely, Zr1-x-yAxByO2-δ is a common material in all three “active” membrane layers, namely, the first layer 12, the second layer 14 and the third layer 16. As mentioned above in all of these layers oxygen ion transport occurs and as such, are “active”. In order to generate industrially relevant levels of oxygen ion conductivity, A and B are typically Sc, Y, Ce, Al or Ca. Preferably, such stabilized zirconia has a composition given by the formula: Zr0.802Sc0.180Y0.018O2-δ or Zr0.809Sc0.182Ce0.009O2-δ, often noted as 10Sc1YSZ or 10Sc1CeSZ, respectively, in literature associated with this class of membrane. However it should be noted that many different combinations of Sc, Y, Ce, Al, Ca or other elements can be substituted to achieve the same end.
Turning first to the first layer 12, this layer is formed from a first mixture of particles of (Ln1-xAx)wCr1-yByO3-δ and 10Sc1YSZ and pore formers. In this layer, Ln is La, Y, Pr, Ce or Sm, A is Ca or Sr, B can be Mn, Fe, Co Al, Ti or combinations thereof, w is from about 0.9 to about 1.0, x is from about 0.1 to about 0.3 and y is from about 0.1 to about 0.6. The preferred composition of material for this layer is (La0.8Sr0.2)0.95Cr0.7Fe0.3O3-δ. The (La1-xAx)wCr1-yByO3-δ and 10Sc1YSZ should be present within a first volume percentage of (La1-xAx)wCr1-yByO3-δ of from about 30% to about 70% of the total sintered mass. In one embodiment, the first volume percentage of (La1-xAx)wCr1-yByO3-δ is about 60%.
The second layer 14 is formed of a second mixture of particles of (Ln1-xAx)wCr1-yByO3-δ and 10Sc1YSZ. The function of the second layer 14 is to be a gas separation layer that is impervious to gas molecules but should be conductive to oxygen ions and electrons. In this layer, Ln is La, Y, Pr, Ce or Sm, A is Ca or Sr, B is Mn, Fe, Co Al, Ti or combinations thereof, x is from about 0.1 to about 0.3, y is from about 0.3 to about 0.7 and w is from about 0.9 to about 1.0. The preferred composition of material for this layer is (La0.8Sr0.2)0.95Cr0.5Fe0.5O3-δ. Within the second mixture of particles, the (Ln1-xAx)wCr1-yByO3-δ and 10Sc1YSZ should be present within a second volume percentage of (Ln1-xAx)wCr1-yByO3-δ of from about 30% to about 70% of the total sintered mass. In one embodiment, the second volume percentage is about 50% of (Ln1-xAx)wCr1-yByO3-δ.
The third layer 16, that serves as the porous surface exchange layer, is formed of a third mixture of particles of (Ln1-xAx)wCr1-yByO3-δ and 10Sc1YSZ. In this layer, Ln is La, Y, Pr, Ce or Sm, A is Ca or Sr, B can be Mn, Fe, Co Al, Ni or combinations thereof; w is from about 0.9 to about 1.0, x is from about 0.1 to about 0.3 and y is from about 0.4 to about 0.8. In one embodiment the composition of material for this layer is (La0.8Sr0.2)0.95Cr0.3Fe0.7O3-δ. The (Ln1-xAx)wCr1-yByO3-δ and 10Sc1YSZ should be present within a third volume percentage of (Ln1-xAx)wCr1-yByO3-δ of from about 30% to about 70% of the total sintered mass. In one embodiment, the third volume percentage of (Ln1-xAx)wCr1-yByO3-δ is about 60%. The high Fe content in the perovskite phase and the volume ratio of the two phases in the mixture help keep the loss of driving force for oxygen reduction low while maintaining a stable microstructure during long-term operation at high temperatures.
As an example of forming the composite oxygen ion transport membrane 1, the perovskite material (La0.8Sr0.2)0.95Cr0.5Fe0.5O3-δ (LSCrF55) for the second layer 14, the gas separation layer, can be obtained from NexTech Materials, Ltd., Lewis Center, Ohio and Zr0.802Sc0.180Y0.018O2-δ (10Sc1YSZ) can be obtained from Daiichi Kigenso Kagaku Kogyo Co., Ltd, Osaka, Japan through their US agent Sojitz, Ltd, in New York, United States of America. The perovskite phase LSCrF55 can have a particle size D50 in the range of from about 0.3 to 0.5 μm, the 10Sc1YSZ should have a D50 of less than 0.6 μm. In order to fabricate a 70 gram batch of gas separation layer slurry, 36.75 gram of LSCrF55 are mixed with 33.25 gram of 10Sc1YSZ, 36 gram Ferro B73210 binder, 170 gram toluene and 1200 gram of 1.5 mm diameter YSZ milling media in a 500 ml NALGENE bottle. The mixture is milled until the particle size of the mixture is in the range of from about 0.3 to 0.5 μm. The perovskite material (La0.8Sr0.2)0.95Cr0.7Fe0.3O3-δ (LSCrF73) for the first layer 12, the fuel oxidation layer, is also obtained from NexTech Materials, Ltd., Lewis Center, Ohio and the 10Sc1YSZ can also be obtained from Daiichi Kigenso Kagaku Kogyo Co. Ltd, Osaka, Japan through their US agent Sojitz, Ltd, in New York. The perovskite phase LSCrF73 is specified as having a particle size D50 in the range of from about 0.3 to 0.5 μm, the 10Sc1YSZ should have a D50 of less than 0.6 μm as received. In order to prepare a 180 gram batch of fuel oxidation layer slurry, 112.32 gram of LSCrF73, 67.68 gram of 10Sc1YSZ, 150 gram of toluene, 30 gram of Ferro B73210 binder, and 1200 gram of 1.5 mm diameter YSZ grinding media are added in a 500 ml NALGENE bottle. The mixture is then milled for about 6 hours to form a slurry having a particle size d50 of from about 0.3 to about 0.5 μm. About 4.5 gram of carbon black having a particle size of about d50 of 0.8 μm and 0.3 gram of surfactant KD-1 dissolved in 15 gram of toluene are then added to the slurry and milled for additional 2 hours. To prepare the surface exchange layer slurry, 80 gram of the electronic and ionic mixture having (La0.8Sr0.2)0.95Cr0.3Fe0.7O3-δ (LSCrF37) and 10Sc1YSZ is prepared so that the mixture contains about 60% of LSCrF37 and about 40% of 10Sc1YSZ by volume. To the mixture, 28.8 gram of toluene, 19.2 gram of ethyl alcohol, 16 gram of the same Ferro binder mentioned above, 1.6 gram of surfactant KD-1, and about 500 gram of 1.5 mm diameter YSZ grinding media are added and the resultant mixture is milled for about 2 hours to form a slurry having a particle size d50 of from about 0.3 to about 0.5 μm. About 12 gram of carbon black are added to the slurry and it is milled for additional 2 hours.
In order to form a composite oxygen transport membrane 1 from these slurries the slurries are deposited on a porous support 10 by slurry coating followed by firing in nitrogen. The porous support 10 can be tubular and fabricated by an extrusion process. Although the porous support 10 can be fully sintered, it can first be fired at a low temperature e.g. at about 1000° C. after green forming such that some residual shrinkage remains when the coated substrate is fired again at higher temperatures. The first layer 12 is then deposited on the surface of the porous support layer 10 and the thickness is controlled by the speed at which the supporting substrate is dipped into the slurry. The first layer 12 is allowed to dry at ambient temperature. The second layer 14 is then applied on top of the first layer 12 by dipping the component into the gas separation slurry and allowed to dry. The coated tube is slowly heated in flowing nitrogen to about 1400° C. and held at the same temperature for about 6 hours for the membrane to sinter completely. During sintering, the oxygen partial pressure of the atmosphere in the furnace is controlled below 20 Pa. The tube is then cooled in nitrogen to complete the sintering process. The sintered tube is checked for flow coefficient, as defined below:
where q is the flow rate, N2 is a constant, p1 is the inlet pressure, Gg is the gas specific gravity, and T1 is the absolute upstream temperature. The Cv of the sintered tube should not exceed 1.5×10−5. After this, the third layer 16 is applied by slurry coating the sintered three layer membrane structure and firing at a temperature of about 1300° C. in air. The third layer 16 could also be applied after drying of the dense layer, 14 and then all three active layers 12, 14, 16 co-fired together in one high temperature sintering step at a temperature of about 1400° C. in nitrogen. Combining the high temperature sintering steps for these three layers leads to lower manufacturing costs than can be achieved when using separate high temperature sintering steps for each of the three layers. The Cv of the tube after the sintering of the surface exchange layer is checked again to make sure no significant change has occurred.
The resultant tube has the preferred thickness, pore size and porosity within the ranges, namely, the fuel oxidation layer 12 has a thickness of from about 10 microns to about 50 microns, an average pore size of from about 0.1 microns to about 1 micron and a porosity of from about 25 percent to about 50 percent. The porous support layer 10 has a thickness of about 1 mm, an average pore size of from about 0.5 micron to about 3 microns and a porosity of from about 25 to 45 percent. The surface exchange layer 16 has a thickness of from about 10 microns to about 50 microns, an average pore size from about 0.1 microns to about 1 microns and a porosity of from about 25 percent to about 50 percent. The separation layer 14 has a thickness of from about 10 microns to about 50 microns, with substantially no connected porosity; in another embodiment with no connected porosity.
While the present invention has been described with reference to a preferred embodiment, as would occur to those skilled in the art, numerous changes, additions and omission may be made without departing from the spirit and scope of the present invention as set forth in the appended claims.
The present application is a continuation-in-part of and claims benefit and priority of U.S. application Ser. No. 14/322,981 which was filed on Jul. 3, 2014 and which is a continuation of U.S. application Ser. No. 13/644,666, filed on Oct. 12, 2012, now U.S. Pat. No. 8,795,417, which claims priority to and the benefit of U.S. provisional patent application Ser. No. 61/576,108 filed Dec. 15, 2011.
This invention was made with Government support under Cooperative Agreement No. DE-FC26-07NT43088, awarded by the United States Department of Energy. The Government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
2593507 | Wainer | Apr 1952 | A |
2692760 | Flurschutz | Oct 1954 | A |
3282803 | Poepel et al. | Nov 1966 | A |
3317298 | Klomp et al. | May 1967 | A |
3770621 | Collins et al. | Nov 1973 | A |
3861723 | Kunz et al. | Jan 1975 | A |
3930814 | Gessner | Jan 1976 | A |
3976451 | Blackmer et al. | Aug 1976 | A |
4013592 | Matsuoka et al. | Mar 1977 | A |
4128776 | Bonaquist et al. | Dec 1978 | A |
4153426 | Wintrell | May 1979 | A |
4162993 | Retalick | Jul 1979 | A |
4175153 | Dobo et al. | Nov 1979 | A |
4183539 | French et al. | Jan 1980 | A |
4206803 | Finnemore et al. | Jun 1980 | A |
4261167 | Paull et al. | Apr 1981 | A |
4292209 | Marchant et al. | Sep 1981 | A |
4350617 | Retalick et al. | Sep 1982 | A |
4357025 | Eckart | Nov 1982 | A |
4365021 | Pirooz | Dec 1982 | A |
4373575 | Hayes | Feb 1983 | A |
4402871 | Retalick | Sep 1983 | A |
4609383 | Bonaventura et al. | Sep 1986 | A |
4631238 | Ruka | Dec 1986 | A |
4650814 | Keller | Mar 1987 | A |
4651809 | Gollnick et al. | Mar 1987 | A |
4720969 | Jackman | Jan 1988 | A |
4734273 | Haskell | Mar 1988 | A |
4749632 | Flandermeyer et al. | Jun 1988 | A |
4783085 | Wicks et al. | Nov 1988 | A |
4791079 | Hazbun | Dec 1988 | A |
4862949 | Bell, III | Sep 1989 | A |
4866013 | Anseau et al. | Sep 1989 | A |
5021137 | Joshi et al. | Jun 1991 | A |
5035726 | Chen et al. | Jul 1991 | A |
5061297 | Krasberg | Oct 1991 | A |
5143751 | Richard et al. | Sep 1992 | A |
5169506 | Michaels | Dec 1992 | A |
5169811 | Cipollini et al. | Dec 1992 | A |
5171646 | Rohr | Dec 1992 | A |
5185301 | Li et al. | Feb 1993 | A |
5205990 | Lawless | Apr 1993 | A |
5240480 | Thorogood et al. | Aug 1993 | A |
5259444 | Wilson | Nov 1993 | A |
5286686 | Haig et al. | Feb 1994 | A |
5298469 | Haig et al. | Mar 1994 | A |
5302258 | Renlund et al. | Apr 1994 | A |
5306411 | Mazanec et al. | Apr 1994 | A |
5342705 | Minh et al. | Aug 1994 | A |
5356730 | Minh et al. | Oct 1994 | A |
5417101 | Weich | May 1995 | A |
5454923 | Nachlas et al. | Oct 1995 | A |
5478444 | Liu et al. | Dec 1995 | A |
5534471 | Carolan et al. | Jul 1996 | A |
5547494 | Prasad et al. | Aug 1996 | A |
5569633 | Carolan et al. | Oct 1996 | A |
5599509 | Toyao et al. | Feb 1997 | A |
5643355 | Phillips et al. | Jul 1997 | A |
5649517 | Poola et al. | Jul 1997 | A |
5702959 | Hutter | Dec 1997 | A |
5707911 | Rakhimov et al. | Jan 1998 | A |
5712220 | Carolan | Jan 1998 | A |
5733435 | Prasad | Mar 1998 | A |
5750279 | Carolan et al. | May 1998 | A |
5804155 | Farrauto et al. | Sep 1998 | A |
5820654 | Gottzman et al. | Oct 1998 | A |
5820655 | Gottzmann et al. | Oct 1998 | A |
5837125 | Prasad et al. | Nov 1998 | A |
5855762 | Phillips et al. | Jan 1999 | A |
5864576 | Nakatani et al. | Jan 1999 | A |
5902379 | Phillips et al. | May 1999 | A |
5927103 | Howard | Jul 1999 | A |
5932141 | Rostrop-Nielsen et al. | Aug 1999 | A |
5944874 | Prasad et al. | Aug 1999 | A |
5964922 | Keskar et al. | Oct 1999 | A |
5975130 | Ligh et al. | Nov 1999 | A |
5980840 | Kleefisch et al. | Nov 1999 | A |
6010614 | Keskar et al. | Jan 2000 | A |
6035662 | Howard et al. | Mar 2000 | A |
6048472 | Nataraj et al. | Apr 2000 | A |
6051125 | Pham et al. | Apr 2000 | A |
6070471 | Westphal et al. | Jun 2000 | A |
6077323 | Nataraj et al. | Jun 2000 | A |
6110979 | Nataraj et al. | Aug 2000 | A |
6113673 | Loutfy et al. | Sep 2000 | A |
6114400 | Nataraj et al. | Sep 2000 | A |
6139810 | Gottzmann et al. | Oct 2000 | A |
6153163 | Prasad et al. | Nov 2000 | A |
RE37134 | Wilson | Apr 2001 | E |
6214066 | Nataraj et al. | Apr 2001 | B1 |
6214314 | Abbott | Apr 2001 | B1 |
6290757 | Lawless | Sep 2001 | B1 |
6293084 | Drnevich et al. | Sep 2001 | B1 |
6296686 | Prasad et al. | Oct 2001 | B1 |
6352624 | Crome et al. | Mar 2002 | B1 |
6360524 | Drnevich et al. | Mar 2002 | B1 |
6368491 | Cao et al. | Apr 2002 | B1 |
6382958 | Bool, III et al. | May 2002 | B1 |
6394043 | Bool, III et al. | May 2002 | B1 |
6402988 | Gottzmann et al. | Jun 2002 | B1 |
6430966 | Meinhardt et al. | Aug 2002 | B1 |
6468328 | Sircar et al. | Oct 2002 | B2 |
6475657 | Del-Gallo et al. | Nov 2002 | B1 |
6492290 | Dyer et al. | Dec 2002 | B1 |
6532769 | Meinhardt et al. | Mar 2003 | B1 |
6537514 | Prasad et al. | Mar 2003 | B1 |
6562104 | Bool, III et al. | May 2003 | B2 |
6592731 | Lawless | Jul 2003 | B1 |
6638575 | Chen et al. | Oct 2003 | B1 |
6641626 | Van Calcar et al. | Nov 2003 | B2 |
6652626 | Plee | Nov 2003 | B1 |
6681589 | Brudnicki | Jan 2004 | B2 |
6695983 | Prasad et al. | Feb 2004 | B2 |
6783750 | Shah et al. | Aug 2004 | B2 |
6786952 | Risdal et al. | Sep 2004 | B1 |
6811904 | Gorte et al. | Nov 2004 | B2 |
6846511 | Visco et al. | Jan 2005 | B2 |
6916570 | Vaughey et al. | Jul 2005 | B2 |
7077133 | Yagi et al. | Jul 2006 | B2 |
7125528 | Besecker et al. | Oct 2006 | B2 |
7153559 | Ito et al. | Dec 2006 | B2 |
7179323 | Stein et al. | Feb 2007 | B2 |
7229537 | Chen et al. | Jun 2007 | B2 |
7261751 | Dutta et al. | Aug 2007 | B2 |
7320778 | Whittenberger | Jan 2008 | B2 |
7351488 | Visco et al. | Apr 2008 | B2 |
7374601 | Bonchonsky et al. | May 2008 | B2 |
7396442 | Bagby et al. | Jul 2008 | B2 |
7427368 | Drnevich | Sep 2008 | B2 |
7470811 | Thiebaut | Dec 2008 | B2 |
7510594 | Wynn et al. | Mar 2009 | B2 |
7534519 | Cable et al. | May 2009 | B2 |
7556676 | Nagabhushana et al. | Jul 2009 | B2 |
7588626 | Gopalan et al. | Sep 2009 | B2 |
7658788 | Holmes et al. | Feb 2010 | B2 |
7786180 | Fitzpatrick | Aug 2010 | B2 |
7833314 | Lane et al. | Nov 2010 | B2 |
7846236 | Del-Gallo et al. | Dec 2010 | B2 |
7856829 | Shah et al. | Dec 2010 | B2 |
7871579 | Tentarelli | Jan 2011 | B2 |
7901837 | Jacobson et al. | Mar 2011 | B2 |
7906079 | Whittenberger et al. | Mar 2011 | B2 |
7968208 | Hodgson | Jun 2011 | B2 |
8070922 | Nelson et al. | Dec 2011 | B2 |
8128988 | Yasumoto et al. | Mar 2012 | B2 |
8196387 | Shah et al. | Jun 2012 | B2 |
8201852 | Linhorst et al. | Jun 2012 | B2 |
8262755 | Repasky et al. | Sep 2012 | B2 |
8323378 | Swami et al. | Dec 2012 | B2 |
8323463 | Christie et al. | Dec 2012 | B2 |
8349214 | Kelly et al. | Jan 2013 | B1 |
8419827 | Repasky et al. | Apr 2013 | B2 |
8435332 | Christie et al. | May 2013 | B2 |
8455382 | Carolan et al. | Jun 2013 | B2 |
6191573 | Garing et al. | Nov 2013 | B1 |
8658328 | Suda et al. | Feb 2014 | B2 |
8795417 | Christie et al. | Aug 2014 | B2 |
8894944 | Larsen et al. | Nov 2014 | B2 |
9238201 | Kelly | Jan 2016 | B2 |
20020073938 | Bool et al. | Jun 2002 | A1 |
20020078906 | Prasad et al. | Jun 2002 | A1 |
20020155061 | Prasad et al. | Oct 2002 | A1 |
20030039601 | Halvorson et al. | Feb 2003 | A1 |
20030039608 | Shah et al. | Feb 2003 | A1 |
20030054154 | Chen et al. | Mar 2003 | A1 |
20030068260 | Wellington | Apr 2003 | A1 |
20030230196 | Kim | Dec 2003 | A1 |
20040042944 | Sehlin et al. | Mar 2004 | A1 |
20040043272 | Gorte et al. | Mar 2004 | A1 |
20040065541 | Sehlin | Apr 2004 | A1 |
20040089973 | Hoang | May 2004 | A1 |
20040164280 | Singla | Aug 2004 | A1 |
20040221722 | Prasad et al. | Nov 2004 | A1 |
20050037299 | Gottzmann | Feb 2005 | A1 |
20050048343 | Thirukkvalur | Mar 2005 | A1 |
20050058871 | Li et al. | Mar 2005 | A1 |
20050061663 | Chen et al. | Mar 2005 | A1 |
20050137810 | Esposito, Jr. | Jun 2005 | A1 |
20050214612 | Visco et al. | Sep 2005 | A1 |
20050248098 | Sisk et al. | Nov 2005 | A1 |
20050263405 | Jacobson et al. | Dec 2005 | A1 |
20060029539 | Dutta et al. | Feb 2006 | A1 |
20060054301 | McRay et al. | Mar 2006 | A1 |
20060062707 | Crome et al. | Mar 2006 | A1 |
20060127656 | Gallo et al. | Jun 2006 | A1 |
20060127749 | Christie et al. | Jun 2006 | A1 |
20060191408 | Gopalan et al. | Aug 2006 | A1 |
20060236719 | Lane et al. | Oct 2006 | A1 |
20070004809 | Lattner et al. | Jan 2007 | A1 |
20070029342 | Cross et al. | Feb 2007 | A1 |
20070039466 | Nawata et al. | Feb 2007 | A1 |
20070041894 | Drnevich | Feb 2007 | A1 |
20070065687 | Kelly et al. | Mar 2007 | A1 |
20070082254 | Hiwatashi | Apr 2007 | A1 |
20070104793 | Akash | May 2007 | A1 |
20070137478 | Stein et al. | Jun 2007 | A1 |
20070158329 | Cao | Jul 2007 | A1 |
20070163889 | Kato et al. | Jul 2007 | A1 |
20070212271 | Kennedy et al. | Sep 2007 | A1 |
20070259252 | Koc | Nov 2007 | A1 |
20070289215 | Hemmings et al. | Dec 2007 | A1 |
20070292342 | Hemmings et al. | Dec 2007 | A1 |
20070292742 | Ball et al. | Dec 2007 | A1 |
20080000350 | Mundschau et al. | Jan 2008 | A1 |
20080000353 | Rarig et al. | Jan 2008 | A1 |
20080006532 | Mukundan et al. | Jan 2008 | A1 |
20080023338 | Stoots et al. | Jan 2008 | A1 |
20080029388 | Elangovan et al. | Feb 2008 | A1 |
20080047431 | Nagabhushana et al. | Feb 2008 | A1 |
20080141672 | Shah et al. | Jun 2008 | A1 |
20080168901 | Carolan et al. | Jul 2008 | A1 |
20080169449 | Mundschau | Jul 2008 | A1 |
20080226544 | Nakamura | Sep 2008 | A1 |
20080302013 | Repasky et al. | Dec 2008 | A1 |
20090011323 | Guan | Jan 2009 | A1 |
20090023050 | Finnerty et al. | Jan 2009 | A1 |
20090029040 | Christie et al. | Jan 2009 | A1 |
20090031895 | Del-Gallo et al. | Feb 2009 | A1 |
20090084035 | Wei | Apr 2009 | A1 |
20090107046 | Leininger | Apr 2009 | A1 |
20090120379 | Bozzuto et al. | May 2009 | A1 |
20090220837 | Osada | Sep 2009 | A1 |
20100015014 | Gopalan et al. | Jan 2010 | A1 |
20100074828 | Singh | Mar 2010 | A1 |
20100076280 | Bernstein et al. | Mar 2010 | A1 |
20100116133 | Reed et al. | May 2010 | A1 |
20100116680 | Reed et al. | May 2010 | A1 |
20100122552 | Schwartz | May 2010 | A1 |
20100143824 | Tucker et al. | Jun 2010 | A1 |
20100178219 | Verykios et al. | Jul 2010 | A1 |
20100193104 | Ryu et al. | Aug 2010 | A1 |
20100200418 | Licht | Aug 2010 | A1 |
20100266466 | Froehlich et al. | Oct 2010 | A1 |
20100276119 | Doty | Nov 2010 | A1 |
20100313762 | Roeck et al. | Dec 2010 | A1 |
20110067405 | Armstrong et al. | Mar 2011 | A1 |
20110076213 | Carolan et al. | Mar 2011 | A1 |
20110111320 | Suda et al. | May 2011 | A1 |
20110120127 | Lippmann et al. | May 2011 | A1 |
20110132367 | Patel | Jun 2011 | A1 |
20110142722 | Hemmings et al. | Jun 2011 | A1 |
20110143255 | Jain et al. | Jun 2011 | A1 |
20110180399 | Christie et al. | Jul 2011 | A1 |
20110195342 | Luo | Aug 2011 | A1 |
20110200520 | Ramkumar | Aug 2011 | A1 |
20110240924 | Repasky | Oct 2011 | A1 |
20110253551 | Lane et al. | Oct 2011 | A1 |
20120000360 | Richet et al. | Jan 2012 | A1 |
20120067060 | Greeff | Mar 2012 | A1 |
20130009100 | Kelly et al. | Jan 2013 | A1 |
20130009102 | Kelly et al. | Jan 2013 | A1 |
20130015405 | Quintero et al. | Jan 2013 | A1 |
20130072374 | Lane et al. | Mar 2013 | A1 |
20130072375 | Lane et al. | Mar 2013 | A1 |
20130156958 | Belov et al. | Jun 2013 | A1 |
20140044604 | Lane et al. | Feb 2014 | A1 |
20140056774 | Kelly et al. | Feb 2014 | A1 |
20140060643 | Martin et al. | Mar 2014 | A1 |
20140183866 | Kromer et al. | Jul 2014 | A1 |
20140206779 | Lackner et al. | Jul 2014 | A1 |
20140271393 | Nazarpoor | Sep 2014 | A1 |
20140319424 | Chakravarti et al. | Oct 2014 | A1 |
20140319427 | Chakravarti et al. | Oct 2014 | A1 |
20140323597 | Stuckert et al. | Oct 2014 | A1 |
20140323598 | Chakravarti et al. | Oct 2014 | A1 |
20140323599 | Chakravarti et al. | Oct 2014 | A1 |
20150096506 | Kelly | Apr 2015 | A1 |
20150098868 | Kelly | Apr 2015 | A1 |
20150098872 | Kelly | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
0926096 | Jun 1999 | EP |
0984500 | Mar 2000 | EP |
0989093 | Mar 2000 | EP |
1504811 | Feb 2005 | EP |
1743694 | Jan 2007 | EP |
2873451 | May 2015 | EP |
688657 | Mar 1953 | GB |
689522 | Apr 1953 | GB |
697377 | Sep 1953 | GB |
713553 | Nov 1954 | GB |
1199483 | Jul 1970 | GB |
1348375 | Mar 1974 | GB |
WO 9842636 | Oct 1998 | WO |
WO 0017418 | Mar 2000 | WO |
WO 0109059 | Feb 2001 | WO |
WO 2007060141 | May 2007 | WO |
WO 2007086949 | Aug 2007 | WO |
WO 2008024405 | Feb 2008 | WO |
WO 2010052641 | May 2010 | WO |
WO 2011083333 | Jul 2011 | WO |
WO 2011121095 | Oct 2011 | WO |
WO 2012118730 | Sep 2012 | WO |
WO 2013009560 | Jan 2013 | WO |
WO 2013062413 | May 2013 | WO |
WO 2013089895 | Jun 2013 | WO |
WO 2014074559 | May 2014 | WO |
WO 2014077531 | May 2014 | WO |
WO 2014107707 | Jul 2014 | WO |
WO 2014176022 | Oct 2014 | WO |
Entry |
---|
Switzer et al., “Cost and Feasability Study on the Praxair Advanced Boiler for the CO2 Capture Project's Refinery Scenario”, Carbon Dioxide Capture for Deep Geologic Formations, vol. 1, D.C. Thomas and S.M. Benson (Eds.), Copyright 2005 Published by Elsevier Ltd., Chapter 32, pp. 561-579. |
David Studer; Demonstration of a cylinder fill system based on solid electrolyte oxygen separator (SEOS) technology: Early field assessment at a USAF maintenance facility, (Air Products & Chemicals Inc.); AFRL-RH-BR-TR-2010-0046; Jun. 2010. |
Zhu et al.; Development of Interconnect Materials for Solid Oxide Fuel Cells; Materials Science and Engineering A348, Apr. 23, 2002, pp. 227-243. |
Lee Rosen et al.; “Development of Oxygen Transport Membranes for Coal-Based Power Generation”; ScienceDirect (Available online at www.sciencedirect.com); Energy Procedia 4 (2011) pp. 750-755. |
F. Bidrawn et al., “Efficient Reduction of CO2 in a Solid Oxide Electrolyzer” Electrochemical and Solid State Letters, vol. 11, No. 9, Jun. 20, 2008, pp. B167-B170, XP002644615. |
Ebbesen et al., “Electrolysis of carbon dioxide in Solid Oxide Electrolysis Cells”, Journal of Power Sources, Elsevier SA, CH, vol. 193, No. 1, Aug. 1, 2009, pp. 349-358, XP026150424, ISSN: 0378-7753, DOI: 10.1016/J. JPOWSOUR. 2009. 02. 093. |
The U.S. Department of Energy, “Evaluation of Fossil Fuel Power Plants with CO2 Recovery”, Final Report (Feb. 2002). |
The U.S. Department of Energy—Office of Fossil Energy and U.S. Department of Energy/NETL, “Evaluation of Innovative Fossil Fuel Power Plants with CO2 Removal”, Interim Report (Dec. 2000). |
Sylvain Deville; “Freeze-Casting of Porous Ceramics: A Review of Current Achievements and Issues”; Advanced Engineering Materials 2008, 10, No. 3, pp. 155-169. |
Neville Holt, “Gasification Process Selection—Trade-offs and Ironies”, Presented at the Gasification Technologies Conference 2004, Oct. 3-6, 2004, JW Marriott Hotel, Washington, DC, pp. 1-10. |
Friedmann Marschner et al., “Gas Production”, Ullmann's Encyclopedia of Industrial Chemistry, Jun. 15, 2000, pp. 1-21, XP002253967. |
Dyer et al., “Ion Transport Membrane Technology for Oxygen Separation and Syngas Production”, Solid State Ionics 134 (2000) p. 21-33. |
Andrea Montebelli et al., “Methods for the catalytic activation of metallic structured substrates”, Catalysis Science & Technology, 2014, pp. 2846-2870. |
Joseph J. Beaman, D.Sc.; “Oxygen Storage on Zeolites”; Prepared by USAF School of Aerospace Medicine, Human Systems Divisions (AFSC), Brooks Air Force Base, TX 78235-5301; USAFSAM-TR-88-26; AD-A209 352; pp. 1-77; Jan. 1989. |
Radtke et al., “Renaissance of Gasification based on Cutting Edge Technologies”, VGB PowerTech (2005), XP-001235150, pp. 106-115. |
L. N. Protasova et al., “Review of Patent Publications from 1990 to 2010 on Catytic Coatings on Different Substrates, Including Microstructured Channels: Preparation, Deposition Techniques, Applications”, Recent Patents on Chemical Engineering, 2012, pp. 28-44. |
Babcock & Wilcox, Steam 40, “Sulfur Dioxide Control” (1992), pp. 35-1-35-15. |
M.F. Lu et al., Thermomechanical transport and anodic properties of perovskite-type (LaSr) CrFeO, Journal of Power Sources, Elsevier SA, CH, vol. 206, Jan. 15, 2012, pp. 59-69, XP028403091. |
Okawa et al., Trial Design for a CO2 Recovery Power Plant by Burning Pulverized Coal in O2/CO2, Energy Conyers. Mgmt., vol. 38, Supplement (1997) pp. S123-S127. |
Ciacchi et al., “Tubular zirconia-yttria electrolyte membrane technology for oxygen separation”, Solid State Ionics 152-153, 2002, pp. 763-768. |
Zhimin Zhong, “Stoichiometric lanthanum chromite based ceramic interconnects with low sintering temperature”, Solid State of Ionics, North Holland Pub. Company, Amsterdam, NL, vol. 177 No. 7-8, Mar. 15, 2006, pp. 757-764, XP027895768, ISSN: 0167-2738. |
Number | Date | Country | |
---|---|---|---|
20160001221 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
61576108 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13644666 | Oct 2012 | US |
Child | 14322981 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14322981 | Jul 2014 | US |
Child | 14856038 | US |