Not Applicable.
Embodiments usable within the scope of the present disclosure relate, generally, to manufactured panels used in the construction of buildings and building components, namely, in the construction of interior and/or exterior walls, floors, ceilings, roofing, or any other surface. More specifically, embodiments usable within the scope of the present disclosure relate to pre-fabricated panels having exterior elements thereon to provide the panels with a desired appearance, such elements able to be lighter and thinner than conventional masonry counterparts due to the structural characteristics of the panel. Embodiments of the present disclosure also relate to manufacturing processes usable to create such panels.
Embodiments of the disclosure pertain to a composite panel usable for forming a surface that may include one or more of: an at least one finish element; a backing material, the backing material configured to provide the panel with a reduced thickness, a reduced weight, or combinations thereof; and a polyurethane material cured between the at least one finish element and the backing material.
Upon curing, the polyurethane material may form a structural substrate having a first side and a second side. Upon curing, the backing material may be adhesively bonded to the first side. Upon curing, the at least one finish element may be adhesively bonded to the second side.
The composite panel may include a particulate material disposed proximate to the first side of the structural substrate, and between a first finish element and a second element. The structural substrate may bond the particulate material to the at least one finish element and the backing material. At least a part of a layer of structural substrate may at least partially occupy interstices between particles of the particulate material. In aspects, the particulate material may include a binder composition.
The at least one finish element may include magnesium oxide. The at least one finish element may be configured to further provide the panel with a reduced thickness, a reduced weight, or combinations thereof.
The at least one finish element may include a body having an interior surface bonded to the structural substrate. The at least one finish element may include an exterior surface that may have a coating that includes cement, clay, and/or an aggregate. The coating may provide the at least one finish element with an appearance of a natural clay brick.
In aspects, the clay may include clay dust. In aspects, the aggregate may include sand.
The composite panel may be configured for installation on at least one of an exterior wall of a building, an interior wall of a building, a floor, a ceiling, a roof, a counter, a backsplash, and combinations thereof.
Other embodiments of the disclosure pertain to a composite panel usable for forming a surface that may include one or more of a first finish element and a second finish element; a backing material; a cured polyurethane material having a first side and a second side, the cured polyurethane material being cured between the first finish element and the backing material; and a particulate material disposed proximate to the first side, and between the first finish element and the second finish element.
The backing material may be adhesively bonded to the first side. The first finish element may be adhesively bonded to the second side.
The cured polyurethane material may bond the particulate material to the first finish element. In aspects, the cured polyurethane material may at least partially occupy interstices between particles of the particulate material.
The particulate material may include a binder composition.
At least one of the first finish element and the second finish element may include magnesium oxide. At least one of the first finish element and the second finish element may be configured to further provide the panel with a reduced thickness, a reduced weight, or combinations thereof.
The first finish element may include a body having an interior surface bonded to the structural substrate. The first finish element may include an exterior surface. The exterior surface may include a coating having one or more of cement, clay, and/or an aggregate. In aspects, the coating may provide the at least one finish element with an appearance of a natural clay brick. Clay may include clay dust. Aggregate may include sand.
The composite panel may be configured for installation on at least one of an exterior wall of a building, an interior wall of a building, a floor, a ceiling, a roof, a counter, a backsplash, and combinations thereof.
These and other embodiments, features and advantages will be apparent in the following detailed description and drawings.
In the detailed description of various embodiments of the present invention presented below, reference is made to the accompanying drawings, in which:
Embodiments of the present invention are described below with reference to the listed Figures.
Before explaining selected embodiments of the present invention in detail, it is to be understood that the present invention is not limited to the particular embodiments described herein and that the present invention can be practiced or carried out in various ways.
Referring now to
While
For example, embodied panels can be provided with various types of water resistant surface finish materials, such as ceramic tile, glass or polymer tile, and polymer wall surfaces, for example. Embodiments of panels usable within the scope of the present disclosure can have a thermal insulating quality that exceeds the thermal insulating characteristics of conventional masonry walls, can have a thinner profile than conventional walls, and can be installed in significantly less time when compared to the installation of the various layers (substrate, vapor barrier, insulation, brick, mortar, etc.) of a wall required by building codes and conventional methods. Due to the lightweight and/or thinner nature of various embodied panels, the foundation of a building structure can also be of lighter weight construction (thus providing weight and cost savings), because the foundation would not be required to support the weight of a typical brick and mortar wall.
The term “masonry” as used herein is intended to encompass a wide range of materials, including, without limitation, natural and manufactured stone materials, artificial stone materials, and special effect finish or facade materials usable to provide visible wall surfaces with a desired appearance. The terms “brick members”, “thin bricks”, “finish elements” and “thin masonry elements,” as used herein, are intended to encompass any of a number of thin masonry or masonry-like members of rectangular, square, round, ovoid, triangular or other suitable configuration.
For example,
Where natural or artificial stone is used as a finish material it can be provided in a “repeating pattern” such that individual finish elements can be positioned at specifically designed locations, e.g., within a jig, magazine, or similar frame or retention element, during panel manufacture. The term “facade members” is intended to include a wide variety of possible surface materials, such as ceramic tile, composite materials including wood, various polymer materials, glass, rubber like materials, etc.
The panels 10 of
The substrate material 16 is depicted having a rectangular configuration and defines a rectangular surround structure 18, having edges 19 that define the top, bottom and sides of the depicted panel. The depicted panel can be provided in 48″×96″ or 48″×32⅝″ sizes, to facilitate fitting within the on-center stud spacing of a conventional building framework. However, the panels may be of larger or smaller dimension depending on the size and/or orientation of the panels, the purpose of the panel and the structure with which the panels are to be used, and/or on the preferences of the designer, contractor, and/or other personnel.
As shown in
However, in other embodiments, each of the surround portions of a panel structure can include spline slots, while spline members can be positioned within adjacent spline slots after construction of the panels (e.g., during installation in the field). In addition to maintaining each of the top, bottom and side edges of adjacent panels in alignment, the splines also assist in providing a weather-tight closure of joints between the edges of adjacent panels to minimize the potential for ingress of water and/or air. In an embodiment, closure and/or sealing between panels can be enhanced by application of interlocking flashing strips 29 (shown in
While
Alternatively or additionally, the ends of the grout lines can be removed to provide flat edge surfaces for mounting of the flashing. The flashing strips 29 may be secured in place by screws, nails, rivets, or any other type of retainer member, fastener, and/or bonding material or adhesive. Sealing of the panel joints 28 can further be enhanced by application of a moisture impervious layer of silicon caulking or other sealing material. The flashing strips 29 may be applied over the joint caulking material if desired. The moisture impervious layer will subsequently cure to a durable form. In an embodiment, the closure strips and joint sealant can be covered by finish elements such that the closure strips and sealant are not visible in a completed structure.
A plurality of finish elements 24, which are depicted as masonry or masonry-like facade elements in
The pulverulent/particulate material 26 is shown within the gaps or spaces between the top, bottom and side edges of adjacent finish elements, and can be compacted within the spaces prior to application of the substrate. In an embodiment, the particulate material can be located only in the spaces between the finish elements, and is not placed beneath the finish elements to secure the finish elements to the panel structure. The polymeric/substrate component of the composite panel assembly serves to affix the finish elements to the panel, such that the pulverulent/particulate material is not required to function as conventional grout or mortar.
Even distribution and compaction of the grout material within the grout spaces can be accomplished by subjecting the grout to mechanical pressure, such as by use of a press mechanism (e.g., a resilient pad of open cell polymeric foam or similar resilient material attached to a press plate, which can be deformed into the grout spaces by the force of the press). The particulate material can include a binder composition mixed therein, such that arranged/compacted material will retain its compacted/arranged state during the panel manufacturing process.
The finish elements and particulate/pulverulent material can be secured to the panel structure 16 by the adhesion that occurs as an uncured liquid polymeric foam mixture or similar suitable substrate is sprayed, poured, and/or otherwise placed in association with the back surfaces of the finish elements, after positioning the finish elements in a desired arrangement within a mold. The polymer or polymeric foam substrate serves to fix the finish elements to the panel structure.
During manufacture, the substrate can be confined within a mold in its uncured state, and subjected to the mechanical pressure (e.g., via a press), causing the polymeric foam to assume the configuration of an integral polymeric substrate covering substantially the entire rear surface of the panel, thereby forming a moisture resistant and thermal insulating layer. The mold can be shaped to cause the polymeric foam substrate to define a surround or border structure of the panel (e.g. by permitting the substrate to flow around the edges of other panel components prior to curing).
In an embodiment, the border can have a rectangular shape, but it should be understood that any shape and/or dimension can be achieved depending on the configuration of the mold. In an alternative embodiment, one or more finish elements can be secured to the substrate using a bonding agent (e.g., cement, adhesive) or any other means for mechanical retention.
As described above,
Materials other than masonry or stone members may also be used to form the exterior finish or facade of the pre-manufactured construction panels so that the resulting wall structure may have any desired appearance. When stones or similar irregularly-shaped elements are used, the elements can be positioned to accommodate a repeating facade pattern. Such an arrangement can permit the finish elements to be retained in a jig having the desired pattern during panel manufacture. In an embodiment, jigs and/or finish elements can be designed to result in uneven positioning of the face surfaces of the finish elements, such as when it is desired to provide a wall having uneven surfaces to mimic a conventional stone wall.
As noted above and shown in
For example,
With reference to
A moisture impervious or resistant multi-function polymeric substrate 16, which can be composed of polyurethane, polyurethane foam or any one of a number of other suitable single or multi-component polymeric materials, is integrated with the sheathing or backing panel 14, and in the depicted embodiment, provides a generally rectangular surround structure 18 that is integral therewith and encompasses the edges 25 of the sheathing panel 14. The surround structure 18 is shown having a rectangular configuration (e.g., 4′×8′), defining substantially straight edges 19 at the top and bottom sides of the panel. The polymeric substrate 16 can provide the panels with moisture resistance and thermal insulation characteristics, and can materially enhance the structural integrity of the panels.
Independent of the shape, configuration, and dimensions depicted in
As shown, for example, in
After the panels have been secured to the framework members 12, e.g. of a wall structure, such as by screws or any other suitable fasteners, adhesives, bonding agents, etc., any empty spaces 30 can be filled with additional finish elements and/or by a filler assembly, e.g., to bridge adjacent panel joints 28. Any number of additional panels can be secured to a wall/surface structure to expand the structure in a vertical or horizontal/lateral direction. Particulate and/or spacing material can be sprayed or otherwise applied in the spaces between the finish elements to both provide a desired spacing and appearance, and to cover any damage that could be caused by screws and/or other fasteners that are applied to secure the panels.
In an embodiment, any manner of adhesive material can be used to attach finish elements or other materials to the empty spaces 30, while silicon and/or other suitable caulking materials (e.g. a two-component epoxy) can be applied in the grout space adjacent each empty space. Silicon and/or caulking materials can also function as a surface adhesive to bond particulate material between the finish elements, and to bond finish elements placed in the empty spaces 30. The caulking material can also assist the sealing capability of the splines at the edges of the panels. While the silicon or other caulking material is in its uncured state, particulate materials can be applied to the spaces between finish elements, where it can become embedded in and/or adhered to the caulking material.
As such, the depicted panels can be provided with the appearance of a conventional masonry wall structure, while the joints 28 between adjacent panels are not visible in a completed construction. Installation of conventional brick facade materials requires a cleaning step to remove brick and mortar dust from the exterior show surface of the brick facade, e.g., using an acid solution. Embodiments of the present panels do not require subsequent cleaning, further conserving time and expense when compared to conventional materials and methods. In other embodiments, finish elements can extend beyond the edge of one panel, for receipt in an adjacent empty space of an adjacent panel, rather than installing such finish elements in the field.
In one possible embodiment, finish elements can be formed from exceptionally lightweight materials. For example, magnesium oxide materials, such as those available from Jet Products, LLC, are typically available in the form of 0.5″×4 8″×96″ or 0.25″×24″×48″ boards. Such boards are typically brittle when used in such large sizes, and as such, are available with fiberglass reinforcement materials. However, smaller panels of magnesium oxide, e.g., 2.625″×7.625″ rectangles, sized similarly to brick veneer elements, do not suffer from the same drawbacks and are as durable, if not more so, than conventional brick and/or masonry veneer materials and facade elements. Magnesium oxide materials are significantly lighter than other masonry facade materials, and can be much thinner than other masonry counterparts, reducing the time, weight, and expense required to construct a panel using such elements.
It is noted that magnesium oxide materials are normally extremely smooth, and white in color, and as such, would normally be unsuitable for use as aesthetic substitutes for brick veneer. However, in an embodiment, finish elements of magnesium oxide can be ground on at least one surface thereof to provide a surface texture that mimics the texture of a natural clay brick, dipped into an exterior-grade concrete stain, then dipped into a composition that includes Portland cement, magnesium cement, clay dust, and a light aggregate (e.g., sand). While normal methods of coloration are typically not effective for staining, coloring, and/or changing the appearance of magnesium oxide materials, a composition including such components can provide magnesium oxide finish elements having at ground/textured surface with a color similar to that of natural brick.
Magnesium oxide materials can also be used as backing/sheathing layers in embodiments of the present panel. For example, a magnesium oxide panel (e.g., a 0.25″×24″×48″ board thereof) can have an adhesive compound applied to its surface, while finish elements (such 2.625″×7.625″ as magnesium oxide elements, as described above) can be bonded thereto with a gap (e.g., 0.375 inches) between the elements to simulate the appearance of a brick wall. A particulate mixture can be applied to the spaces between the finish elements to complete the appearance of the wall. As the adhesive cures, it can adhere the finish elements and particulate material to the backing panel. Finish elements at the edges of the panel can be allowed to extend past the edge thereof (e.g. 0.125 inches beyond the edge) to facilitate alignment with adjacent panels and to cover the gap between adjacent panels.
A completed panel of such construction has the appearance and feel of a typical masonry brick wall, but does not require the structural support normally associated with brick installation. Such panels are also lightweight, fire resistant, and sound absorbing (acoustically soft.) The panel can be applied directly to open framing studs, an existing drywall or wood surface, metal panels, or any other framework member, such as through use of drywall or deck screws, contact or wallboard adhesives, or other mechanical and/or adhesive means. While the panel is described in the context for use in an exterior brick wall of a structure, it should be noted that such panels can be used with interior walls, floors, ceilings, roofs, counters, backsplashes, and any other structural surface.
Referring now to
The manufacturing process can begin by placing a mold base 52, shown as a generally rectangular member, on the production table 34. The depicted mold base 52 defines a rectangular mold pocket, recess or receptacle 54 therein having a bottom receptacle wall 56. The mold base 52 can be composed of wood, metal or any of a number of suitable polymer materials and/or composite materials. If desired, a mold composed of a suitable material, such as silicon, may be placed within the mold recess 54 to provide location devices or geometry for precise location of finish elements within the mold.
In an embodiment, a finish element alignment jig 53, shown in
The locator pins 59 can position the finish elements 24 in accurately spaced relation with one another to define grout spaces therebetween and prevent the finish elements from shifting laterally during the panel manufacturing process. This feature permits each finished composite construction panel to have the resulting appearance of, for example, a portion of a brick and mortar wall, with the even spaces between the finish elements serving to provide the appearance of the conventional mortar joints.
When finish elements having irregular (e.g. non-rectangular) shapes are used, such as when attempting to replicate the appearance of a stone wall, the alignment members or pins of a specifically designed stone positioning jig can be located according to a repeating pattern utilizing specific shapes and dimensions of each element. The finish elements, can be placed “outer or front surface down” within the element sites 58 defined by the locator elements or pins 59 of the alignment jig 53, thus positioning the thin finish elements 24 in properly oriented and spaced relation with one another, independent of the specific dimensions of each finish element. The uneven face surface positioning of irregular elements, such as the stones of a stone wall, can be replicated by the construction of the special jig or by the use of support and/or positioning members within the mold or jig, or combinations of these approaches.
In the alternative or in addition, location of the finish elements may be achieved by providing alignment ridges 60 on the bottom wall 56 of the mold base 52, as shown in
During panel manufacture, the machine 32 can be configured to precisely position the screed panel with respect to the mold. As such, the configuration of the slots 64 is such that dry pulverulent or particulate material can be readily deposited into the spaces between finish elements while the body of the screed prevents the passage of such material to other parts of the mold and/or panel. The shapes of the slots 64 can determine the amount and specific location of the particulate material. In an embodiment, the pulverulent/particulate material can include a binder composition that enables the material to be compacted to an essentially solid, porous form, and to maintain its compacted form as successive panel manufacturing process steps occur.
The planar surface 63 of the screed panel member 62 can engage and/or cover the surfaces of the finish elements to ensure that the back surfaces thereof remain free of the particulate material deposited through the slots 64. In an embodiment, deposition of particulate material can be accomplished simply by applying the particulate material to the upper surface of the screed member 62, then sweeping or wiping the material through the slots 64, so that an essentially measured quantity of particulate material falls into the spaces between finish elements. Alternatively, an application system may be provided for directly depositing material into the slots 64, so that very little particulate, if any, is permitted to contact the upper surface of the screed panel member or the back surfaces of the finish elements.
After the grout deposit operation has been completed, the screed member 62 can be removed from the mold so that loose dry pulverulent or particulate material is present and substantially evenly distributed within the spaces 62 between the finish elements 24. As stated above, since portions of the screed member 62 cover the back faces of the finish elements 24 during the deposit process, the back faces can remain substantially free of particulate.
With reference to
As such, a layer of the particulate material can be bonded or otherwise secured to the polymeric substrate, such that the material becomes substantially permanently fixed within the spaces between finish elements. By ensuring that the polymeric material does not fully penetrate the particulate material, the polymeric material does not become exposed to view within the spaces, which could potentially detract from the desired ornamental appearance of the finished panel.
The depicted force application mechanism 80 includes an actuator and actuator control system 82, such as a pneumatic or hydraulic actuator, having a vertically moveable actuator member 84 to which a stiff rectangular backing panel member 78 is secured. A rectangular panel 76 including a soft and/or deformable material, such as an open cell foam material, is shown secured to the lower surface of the backing panel member 78, thereby providing a soft body of material that can engage the back surfaces of the finish elements and be deformed into the spaces 69 when compressive force is applied to the stiff backing member 78.
While
Further movement of the backing member 78 and panel 76 can conform the material of the panel to the configurations of the finish elements 24, such that the material of the panel 76 enters the spaces 69 between finish elements. Portions of the material that contact the particulate matter within the spaces 69, previously deposited loosely through the slots of the screed member, as described above, can cause even distribution and compaction of the particulate material. As the particulate material is compacted, a binder composition, mixed therewith, can cause the particulate material to be compacted into a substantially rigid, porous form, such that the particulate material remains in place within the spaces 69 throughout the panel manufacturing process.
The porous nature of the compacted particulate material defines interstices into which uncured polymeric foam material can migrate as the mold and panel assembly is later subjected to the mechanical pressure of a press. The compacted nature of the particulate material, the consistency and applied volume of the liquid polymeric substrate material, and the pressure that is applied by the press, can be selected to ensure that the polymeric material does not penetrate completely through the grout material to the front surface thereof, where it would be visible. The cured polymeric material can provide support for the particulate material within the spaces 69, while further providing the material with the appearance of a conventional mortar joint for a brick or other masonry wall, or any other desired appearance.
It should be noted that
After completion of the grout compaction operation, the actuator mechanism 82 can be energized to move the backing member 78 and panel 76 away from the assembled panel elements (e.g. upwardly and/or laterally). The mold base or jig 52, with finish elements 24 and compacted particulate material 26 can be subjected to subsequent manufacturing steps, as illustrated in
While the use of a two component polymeric material, such as polyurethane foam material, is specifically referenced, it should be understood that this is one illustrative example of a usable substrate material, and that any polymeric or other type of material having similar qualities can be used, including, without limitation, any material that can set and/or cure, such as polyurea, or light- or thermally-activated, or chemically-catalyzed polymers.
Returning to
In other embodiments, the sheathing or backing panel 14 can include magnesium oxide, as described above. In an embodiment, the backing panel 14 can have a porous surface and/or a surface containing microscopic irregularities for facilitating bonding between the panel 14 and the polymeric foam substrate. When wood or a similar material is utilized to form a sheathing or backing panel, the material may treated to enhance the water-resistant character thereof and resist the tendency of various wood or board materials to become warped by excess moisture. In an embodiment, only the exterior or facade surfaces of the finished panel could be water resistant, while use of untreated wood or other similar materials as the backing substrate, that faces the interior of a structure, may be unlikely to cause damage due to the minimized potential for ingress of moisture through the exterior of the completed panel.
During panel manufacture, as shown in the exploded isometric illustration of
Once the upper jig lid 70 is lowered into association with the mold base 52, the jig, mold, and/or upper jig lid can be subjected to mechanical compression, such as by means of a press, for a sufficient period of time for the sheathing substrate 14 to become bonded to the polymeric substrate, for pressure induced penetration of the polymer into the particulate material, and for any small spaces that might exist within the mold to be filled with the polymeric material. In embodiments where polymer foam is used, expansion thereof will tend to fill the mold and generate internal pressure that enhances the density of the cured polymeric foam.
Additionally, the mechanical compression, together with the configuration of the mold base, can prevent deformation of the panel during curing of the polymeric material. Pressure-induced compression of the polymeric foam material during the manufacturing process can cause the polymeric foam material to produce the desired density to enhance the moisture proofing and structural integrity of the completed panels. The pressure can also enhance the bond established between the substrates and components. When the mechanical compression is released, the completed panel can naturally maintain its flat configuration. Thus, when the construction panel is subsequently installed. e.g., to vertical components of a building framework, such as wall studs, or other generally straight and/or flat surface structures, there will be no need to apply force using fasteners to conform the construction panel to the surface structure.
As described above, in its compacted state, the pulverulent/particulate material 26 can include minute interstices between grains or particles. These interstices permit pressure-induced penetration of the uncured polymeric material, to a desired depth, at least partially due to the compression that is applied to the jig or mold base 52 and/or the mold lid or cover 70. The pocket or receptacle 72 within the mold cover, which includes the sheathing panel substrate 14 at position 74, is thereby bound to the particulate material 26 and finish elements 24 by the curing of the polymeric material. The sheathing substrate panel 14 is thereby released from the pocket or receptacle 72 upon release of the mold cover 70 from the mold base 52. The depth to which the uncured liquid polymer penetrates into the interstices of the compacted particulate material can be controlled by application of limited or controlled volume and/or mechanical pressure.
Thus, after the compaction operation, the polymer applicator mechanism 68 can be activated to mix polymeric materials and distribute uncured polymer on the back portion 71 of the panel elements. Sufficient material can be deposited into the mold to form the surround structure 18 of the resulting panel. Compressive force then causes the polymeric material to enter the interstices between grains of particulate material, to bind the material in place and further distribute the material within spaces between the finish elements. Curing of the polymeric material fixes the finish elements and particulate material in place, and binds these elements to the sheathing panel.
Embodiments usable within the scope of the present disclosure can be at least partially automated, thereby enabling enhanced volume of manufacture. For example, multiple conveying devices for simultaneous operation of any and/or all steps in the panel manufacturing process can be employed such that numerous panels may be simultaneously produced and/or can undergo various stages of production at the same time.
One suitable system for automated manufacture is shown schematically in
While
To properly position and/or locate multiple finish elements in a spaced relation within a mold base 52, a placement mechanism 96 can be used. The placement mechanism 96 shown in
In one embodiment, the placement mechanism 96 can use mechanical gripping members to retain and release finish elements. In another embodiment, the placement mechanism 96 can include one or more vacuum support devices usable to retain finish elements in association therewith. After the finish elements have been located with respect to the mold base, the conveyor 94 can move the mold base into a desired position relative to a screed 100 and screed actuator mechanism 102. The screed can be moved by the actuator mechanism 102 into association with the back faces of the finish elements to permit deposition of particulate material through the screed openings.
While
In an embodiment, a planar or rotary compaction mechanism 104, shown having open cell polymer or any other suitable deformable body 106 in association therewith, can be used to engage the back faces of the finish elements to compact the particulate material within the spaces between finish elements. The deformable body 106 is shown mounted to a press plate 108 that can be moved by actuating shafts and/or posts 110. The deformable body 106, whether of planar or rotary character, can engage the panel elements and achieve compression or compaction of particulate material, while also retaining the finish elements in place. After the compaction operation has been completed the compaction mechanism can be raised to permit movement of the mold base, e.g., to a subsequent manufacturing station for application of polymeric foam.
A polymeric foam mixing and application system 112 for support and movement of a polymeric foam mixing and applicator mechanism 68, is shown being supported and/or moved by an actuator mechanism having one or more actuating posts 116, relative to a panel being manufactured. The polymeric foam mixing and applicator mechanism 68 can apply a contiguous layer or substrate of polymeric foam thermal insulating and moisture proofing material to a panel, either during movement of the panel by the conveyor or during movement of the polymeric foam mixing and applicator mechanism 68, or during movement of both devices, as determined by the design of the panel manufacturing system.
After a polymeric substrate has been applied, and before the polymeric material cures, e.g., by the chemical reaction of its polymer constituents, a backing or sheathing panel 14, carried by a mold closure member 70, can be moved into surface-to-surface contact with the uncured polymeric material.
Backing or sheathing panels may be moved and/or retrieved from a supply or storage site, such as by lateral movement of the backing or sheathing panel positioning mechanism 120, and then positioned on the polymer substrate. The backing or sheathing panel positioning mechanism 120 can be actuated to apply a predetermined mechanical pressure to the sheathing panel 14, thereby subjecting the panel being manufactured to a desired compression pressure during curing of the polymeric material. In an embodiment, a layer of release material, such as paper or a polymer film, can be positioned between the mold closure member 70 and the backing or sheathing panel 14, to prevent uncured polymeric material from contacting the mold closure member during compression.
Application of mechanical pressure to the panel can cause polymeric material to penetrate to a desired extent into the compacted particulate material, to become bonded with the finish elements, and to become bonded to the backing or sheathing panel 14. This mechanical pressure can also cause the polymeric material to have a density that enhances the structural integrity and water and air imperviousness of the resulting panel. The finished panels, thus manufactured, are then in the form of integrated panel substrate structures that will retain their structural integrity and provide many years of efficient service as structural components, with a usable life as long or longer than that of conventional masonry walls and other components of a building structure. The composite panels, due to the presence of the polymeric substrate, can provide efficient thermal insulation for a surface and can also serve as an efficient barrier to air infiltration and an efficient moisture barrier to prevent intrusion of water.
In an embodiment, completed panels can be dusted and cleaned, subjected to final inspection for quality control, and packaged. The size and light weight of each panel can enable user friendly, easy installation. For example, an embodied panel can have a height of 4 feet and a width of 19 and 3/16 inches, with a thickness of 1.5 inches; however, it should be noted that other dimensions can be used, as desired. User friendly dimensions that enable easy manipulation and installation of panels can facilitate proper interlocking of adjacent panels and proper installation over framework and/or other structural elements.
Additionally, embodied panels can be cut, e.g. using masonry cutting blades, and could further be attached to sub-surfaces, e.g., using screws, adhesives, or other types of fasteners. Screws or similar fasteners can be placed in the spaces between finish elements (which, in an embodiment, can be spaced in a manner consistent with the 16″ or 24″ on-center frequency of wall stud members in a conventional wall framework). Screw heads and adjacent panel joints can be treated with caulking (e.g., clear silicone), and while such caulking material remains uncured, particulate material can be applied to bond to the caulk. Use of pliant and resilient caulk, can allow for expansion and contraction of panel components while maintaining water resistance of panel joints. Any residual particulate material can be brushed or washed from the panel surface once caulking has cured.
Ends and edges of embodied panels can be manufactured for abutting relation with adjacent panels above, below and/or at the sides. Each panel end can be manufactured to interfit with an opposing end of an adjacent panel. This feature can allow for a constant and consistent blending of the finish materials of the panels. Corner installations can be formed by fitting the ends of panels flush with the corner of the building structure, and by filling any “missing brick” spaces in the manner described previously. In the event that a framework space is too small to receive a complete panel, panels may be cut to size, e.g., using a masonry saw to avoid damage to the finish elements.
In an embodiment, all materials used in the manufacture and installation of embodied panels can be waterproof, and weather resistant, thus requiring little or no maintenance. The mortar or brick cracking that is typically experienced during the service life of conventional brick and mortar wall installations will not typically be expected when using embodied panels. Additionally, repair of embodied panels can be accomplished quickly and easily, such as through replacement of individual surface-mounted finish elements, since unlike conventional surfaces, the finish elements are not structurally integral to the surface. The embodied panels can also permit movement of components over time, without resulting in the formation of cracks.
In addition to the construction of new walls and/or surfaces, embodied panels can also be applied over old siding, conventional sheathing, pre-fabricated panel systems, bare stud framework and, virtually in any place on any surface, in virtually any type of construction.
In one specific embodiment, the panel construction process can be nearly entirely automated. For example, finish elements can be stored in a structure capable of containing numerous finish elements, arranged in a manner suitable for application to a completed panel. In an embodiment, such a structure can include a “magazine,” having orifices (e.g., columns) within which multiple, stacked finish elements can be placed, resembling a three-dimensional jig.
Alternatively, the magazine could lack interior walls and/or separation members, and could simply include an external frame (e.g., a box) within which stacks and/or columns of finish elements are arranged. The columns of finish elements can be positioned such that the stacked finish elements are arranged in a manner corresponding to that of a finished panel (e.g., offset rows of thin brick elements having spaces therebetween for receiving particulate material). In a further embodiment, the “magazine” can include actuator and/or biasing members at the base of one or more columns, for urging stacks of finish elements upward for acquisition and use. For example, spring-biased rods/pistons, rods/platforms raised via a scissor lift, or other similar actuation/biasing members could be used. Alternatively or additionally, the entire floor of the magazine could be raised to position the finish elements within multiple columns at the upper surface thereof.
Independent of whether a magazine is used, or whether finish elements are arranged manually or using other means, a set of arranged finish elements (e.g., each of the finish elements usable to produce a single panel, arranged in a manner corresponding to the arrangement of elements on the completed panel) can be simultaneously retained by a single apparatus, such as a vacuum device, which can be used to lift and/or otherwise move the finish elements from the magazine or other storage area. The vacuum can then be moved (e.g. laterally) to transport the finish elements to a second step of the manufacturing process, or alternatively, the finish element storage can be moved and additional apparatus for manufacturing panels can be moved into association with the vacuum.
As such, after a set of arranged finish elements are bought into association with a vacuum device, suction from the vacuum device can retain the finish elements such that the finish elements can occupy a first portion of a vacuum frame, thus defining a first “zone” of the vacuum that is occupied by the finish elements, and a second “zone” defined by the spaces between the finish elements. While suction against the finish elements is maintained, the vacuum can be moved from the magazine into association with a particulate source (e.g., a tray and/or similar container having particulate matter therein), and/or the magazine and particulate source can be moved into association with the vacuum. Suction from the vacuum device can then cause the accumulation of particulate material in the spaces between finish elements (e.g., the second “zone” of the vacuum device), while the presence of the finish elements prevents accumulation of particulate material in the first zone.
In an embodiment, the vacuum device can be used to retain one or more frame members, e.g., about the edges thereof, before acquiring the finish elements, after acquiring the finish elements, or after acquiring the particulate material, as desired. The frame member(s) can define a border that retains the particulate materials about the edge of the assembly.
Once the finish elements and particulate material (and the frame member(s), if applicable) have been retained by the vacuum device, the vacuum device can be placed in association with a mold, and suction from the vacuum device can be discontinued. The finish elements and particulate material are thereby deposited within the mold in an arrangement suitable for immediate application of polymeric substrate materials and sheathing/backing, as described previously, thereby significantly reducing the time required to position finish elements and particulate material when compared to other manufacturing and assembly methods. If frame members are also retained by the vacuum, the frame can similarly be deposited within and/or into association with the mold, such that the frame retains the edges of the panel components (e.g., the particulate material) in a desired position during the molding process. Embodiments of the process described above can prepare a panel for the molding/compressing process in as little as one minute, or less.
The interior of the magazine 200 can include a removable jig 204 and/or integral/removable interior wall components, thereby dividing the interior into a plurality of columns 206, each of which is sized to contain a stack of finish elements 208. In other embodiments, internal spacing elements can be omitted, and the finish elements 208 can simply be positioned in columns and/or stacks having a desired orientation. At the lower end of each column 206, a platform and/or similar support member 210 can be positioned, the platform 210 being movable upward and downward within its respective column 206 using a scissor lift 212. In other embodiments, the platform 210 could include a rod, piston, or similar elongate member.
Alternatively, platforms and/or support members could be omitted, and scissor lifts 212 or similar actuating and/or biasing apparatus could contact and move stacks of finish elements 208 directly. While
Additionally, while
During typical use, the platform(s) and associated actuating elements can be used to raise each stack of finish elements 208, such that the uppermost finish elements in each stack are accessible to a vacuum apparatus. Once the uppermost finish elements are brought into association with the vacuum apparatus and removed from the magazine, the platform(s) and actuating elements can then lift each stack of finish elements to position the subsequent finish element of each stack at the upper surface of the magazine. In an embodiment, each column of stacked finish elements can include approximately sixty individual finish elements, and a magazine can contain approximately 2500 finish elements, in sum.
Specifically,
The depicted frame 214 is shown having a generally rectangular shape (e.g., with four sidewalls and a top surface), the top surface having multiple element receiving regions 216 thereon. Each element receiving region 216 can include a bore or orifice 218 therein, for engagement with a vacuum apparatus and/or for transmitting suction from a vacuum apparatus therethrough. As such, suction provided by a vacuum apparatus, via the bores 218, will tend to draw finish elements to the element receiving regions 216. Between adjacent element receiving regions 216, and between the outermost element receiving regions 216 and the edges of the frame 214 are a plurality of slots 220.
Suction from a vacuum apparatus associated with the frame 214 can also draw material into and/or through the slots 220. In an embodiment, a first vacuum apparatus can be provided in association with the bores 218 in the element receiving regions 216, while a second vacuum apparatus can be provided in association with the slots 220; however, it should be understood that a single vacuum apparatus can be used, the presence of finish elements within the frame 214 effectively defining multiple “zones” affected by the single vacuum apparatus, as described above and below.
The magazine 300 is shown having multiple columns and/or stacks 304 of finish elements therein, which can be arranged in a manner corresponding to the arrangement of finish elements on a completed panel, as described previously, while the frame 302 is shown having an external surface 306 (e.g., a screen or similar member) suitable for receiving panel components during assembly and/or transport. In use, suction from the vacuum apparatus, applied through the frame 302, can draw the uppermost layer of finish elements 308 to the surface 306.
Due to the arrangement of the finish elements 308 within the magazine 300, the finish elements 308 are positioned on the surface 306 in substantially the same arrangement, such an arrangement corresponding to the arrangement of finish elements on a completed panel. The finish elements 308 can be drawn to defined regions of the frame 302, via appropriate bores therein and/or or similar conduits/features for engagement with conduits of the vacuum apparatus, and in an embodiment, stand-off members for spacing the surface 306 from the body of the frame 302, thereby defining a first vacuum zone, indicated by the arrow 310.
Use of the vacuum apparatus to removably retain panel border members 312 against the surface 306 creates a transferable barrier, such that the panel border members 312 can be deposited into a mold with the assembled panel components to continue retaining the particulate material in a desired position until the molding process has been completed. Specifically,
While
For example, the presence of the finish elements 308 on the surface 306 prevents suction from the vacuum apparatus from passing through occupied portions of the surface 306, such that subsequent materials will generally only be drawn to other, unoccupied regions of the surface 306. As such, the presence of the finish elements 308 effectively creates a second vacuum zone, even though a single vacuum apparatus could be used to apply suction through the entirety of the surface 306.
As discussed previously, while reference is made to a third vacuum zone 320, each of the vacuum zones 310, 314, 320 could have suction applied thereto using separate apparatus, a single apparatus capable of applying suction to discrete portions of the frame 302, or a single apparatus that applies suction through the entirety of the surface 306 while the presence of panel components thereon creates effective vacuum zones by preventing the vacuum apparatus from associating additional components with portions of the surface 306 that are occupied and/or obstructed.
While
As such, uncured polymeric material can be permitted to penetrate into the particulate material 318 to form a secure bond between each of the panel elements as it cures, while the panel border members 312 prevent movement of the particulate material 318 beyond the intended edge of the completed panel prior to the curing of the polymeric substrate. After the molding process has been completed, the panel border members 312 can be removed.
During current construction practices, the sheathing panel joints, between sheathing panels, are not typically sealed in any manner, so in humid regions, moisture can penetrate the sheathing to a sufficient extent to be potentially damaging to the typically wood wall framework. Also, the conventional brick veneer wall structure 130 typically defines an air gap or vent 142 between the interior surface of the brick veneer wall 138 and the insulation and moisture resistant sheathing panels that are fixed to the exterior of the framework. Additionally, the conventional brick veneer wall employs mechanical tie members 144 to provide the brick and mortar wall with lateral support by the building framework.
In comparison with the brick veneer wall structure of
The foundation 154 can be slightly smaller, as compared with the foundation 134 of
Embodied panels 10 can be fixed to the wall framework 132 by means of fasteners, such as screws or adhesive, can provide thermal insulation characteristics, can serve as structural enhancement for the framework structure of the wall, and can provide a moisture and air barrier. Fasteners that penetrate the panels can be located in the spaces between finish elements, and engage within the wall studs or other structural members of the wall framework 132. If desired, the panels 10 may be applied over existing wall materials, such as the conventional sheathing 140 of
The panels, as discussed in detail above, can support thin brick or other facade members 24 which define the outer surface of the completed composite paneled wall 150. Significant savings in time, labor and materials can thereby be gained through employment of the present invention. The resulting completed wall construction can withstand equal or greater wind loads as compared with that of a conventional brick veneer wall. Moreover, as building settling and thermal movement occurs over time, conventional brick veneer walls tend to crack and must be repaired. Embodiments of the preset panels can have significant flexibility, sufficient to flex when building structure movement occurs, without developing significant cracks.
While various embodiments of the present invention have been described with emphasis, it should be understood that within the scope of the appended claims, the present invention might be practiced other than as specifically described herein.
This application is a continuation of U.S. Non-Provisional patent application Ser. No. 14/973,776, filed Dec. 18, 2015, which is a divisional of U.S. patent application Ser. No. 13/741,029, filed on Jan. 14, 2013, now U.S. Pat. No. 9,303,403, which is a continuation-in-part of U.S. patent application Ser. No. 12/459,156, filed Jun. 26, 2009, now U.S. Pat. No. 8,353,144. The entirety of each application is incorporated herein by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
Parent | 13741029 | Jan 2013 | US |
Child | 14973776 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14973776 | Dec 2015 | US |
Child | 15600354 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12459156 | Jun 2009 | US |
Child | 13741029 | US |