COMPOSITE PANEL

Abstract
A door panel 1 has a peripheral frame 10 of extruded aluminium and a honeycomb core of plastics material tubes 11. An outer skin 2 of fibre-reinforced polyetherimide material is recessed with a pattern 3 formed in a preliminary operation of vacuum/pressure forming at elevated temperature. An inner skin 4 is plane. Edge channel members 5 of similarly formed, but thicker material are arranged around the edges of the door, enclosing the aluminium frame. A non-woven, polyester based scrim 6 extends across either side of the core and over the flanges 7 of the edge channels.
Description
RELATED APPLICATIONS

This application claims priority benefit of PCT application publication number WO 2007/071929 A1, filed 13 Dec. 2006 incorporated herein by reference, and British national application 0526312.4 filed 23 Dec. 2005 also incorporated herein by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

To help understanding, a specific embodiment thereof will now be described by way of example and with reference to the accompanying drawings, in which:



FIG. 1, is a perspective view of a first composite panel in one form;



FIG. 2, is a cross-sectional view of the first panel;



FIG. 3, is a perspective view of a second composite panel in one fomm; and



FIG. 4, is a cross-sectional view of the second panel in one form.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

In our prior European patent application No. 1,418,046 incorporated herein by reference, we have disclosed a composite material based on polyetherimide material (PEI), having a honeycomb core of PEI tubes and skins of reinforced PEI laminae. The skins and the tubes are bonded together under elevated pressure and temperature.


Originally the material was limited to flat panels, having uniform cores. The object of the present disclosure is to provide improved products from such composite material.


According to one embodiment, we provide a composite panel having a non-planar surface, the panel comprising:

    • two skin laminae of reinforced polymer material, at least one of them having a non-planar surface with at least one area of it being recessed with respect to adjacent area(s) and
    • a polymer honeycomb core of non-uniform thickness, the core being adhered to the skin laminae and crushed to a lesser thickness at the recessed area(s) of the non-planar skin lamina(e).


According to another embodiment, we provide a composite panel having:

    • two reinforced-polymer, skin laminae,
    • a polymer honeycomb core and
    • local reinforcement bonded inside at least one of the laminae.


In one form, the non-planar lamina is of PEI material, reinforced with glass fiber material. Conveniently, non-planar lamina is vacuum/pressure formed to shape at elevated temperature, prior to being pressed again at elevated temperature onto the core.


One embodiment of a local reinforcement is formed by a plurality of stacked small laminae bonded to each other, the local reinforcement being bonded to at least one of the skin laminae and/or the core.


Another embodiment of a local reinforcement is an elevated temperature vacuum/pressure forming, bonded to at least one of the skin laminae and/or the core. Conveniently, this reinforcement is of the same material as the skin laminae, in one form PEI material. Such a local reinforcement may be particularly useful where internal metal anchorages for equipment to be secured the panel are desirable with the anchorage being partially surrounded by and located in the panel reinforcement.


Bonding of either form of local reinforcement can be achieved by compression at elevated temperature, in like manner to bonding of the laminae to the core. In one form, an adhesive material is employed between the laminae and the reinforcement.


A further embodiment of a reinforcement is a thermoset moulding. In particular such a moulding can be used at an edge of the panel. Conveniently, the reinforcements can in one form be bonded in position with the interposition between themselves and the skin laminae of an elevated temperature adhesive material. Whilst conventional adhesives can be used, an embodiment is disclosed wherein adhesive material is a scrim of non-woven polyester material.


According to another embodiment, there is provided a method of forming a panel comprised of two reinforced-polymers, skin laminae and a polymer honeycomb core and having a non-planar surface, the method consisting in the steps of:

    • forming the or each skin lamina with a non-planar surface having at least one area of it recessed with respect to adjacent area(s);
    • assembling the skin laminae on opposite sides of the polymer honeycomb core;
    • compressing the assembly at elevated temperature to crush the core to a lesser thickness at the recessed area(s) of the non-planar, skin lamina; and
    • cooling the compressed assembly to adhere the core to the skin laminae and set it in its crushed state.


Referring to FIGS. 1 & 2, a door panel 1 in one form, will now be described. It has a peripheral frame 10 of extruded aluminum and a honeycomb core of plastics material tubes 11. An outer skin 2 of fiber-reinforced polyetherimide material is recessed with a pattern 3 formed in a preliminary operation of vacuum/pressure forming at elevated temperature. An inner skin 4 is planar. Edge channel members 5 of similarly formed, but thicker material are arranged around the edges of the door, enclosing the aluminum frame. A non-woven, polyester based scrim 6 extends across either side of the core and over the flanges 7 of the edge channels.


For bonding of the core, skin and edge channels together, the assembly just described is placed in a jig and compressed at elevated temperature in a heated press. The core is crushed at the recessed pattern 3 and the scrim melts and acts as a hot melt adhesive. On cooling of the press platens, the assembled door may be removed from the jig.


Referring on now to FIGS. 3 & 4, a floor panel 101 is there shown. It has upper and lower skins 102, 103, of which the upper is shaped in like manner to door skin 2 to provide a ramp 100 for access of trolleys onto the panel, when in use as an aircraft seat pallet. The pallet should have its seat secured to it and in turn be secured to the craft's air frame. For this internal aluminum extrusion 110 is provided. Elsewhere, the skins are joined together by the honeycomb core 111.


The extrusion in one form may be contained in top-hat section forming 104. Their flanges 105 are supported to the opposite skin by a stack of strips 106 of the same laminar PEI material, with a further reinforcing strip 107 providing additional closure across the flanges 105. The strips have interleaved hot-melt scrims—not shown. A similar, tapered stack of strips 108 provides a reinforcement of the skins where they taper towards each other at the ramp 100. At the same edge of the panel, on either side of the ramp and at the opposite edge, the skins are joined together by glass reinforced thermoset plastic material mouldings 109, individually contoured to the taper of the air frame. As with the door panel 1, the floor panel is bonded in a jig and a press at elevated temperature.


While the present invention is illustrated by description of several embodiments and while the illustrative embodiments are described in detail, it is not the intention of the applicants to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications within the scope of the appended claims will readily appear to those sufficed in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of applicants' general concept.

Claims
  • 1. A composite panel having a non-planar surface, the panel comprising: a. two skin laminae of reinforced polymer material, at least one of them having a non-planar surface with at least one area of it being recessed with respect to adjacent area(s) andb. a polymer honeycomb core of non-uniform thickness, the core being adhered to the skin laminae and crushed to a lesser thickness at the recessed area(s) of the non-planar skin lamina(e).
  • 2. A composite panel as claimed in claim 1, wherein the recessed area is an indented area of the panel in which the panel is thinner that in adjacent area(s).
  • 3. A composite panel as claimed in claim 1, wherein the recessed area is a tapered area of the panel in which the panel tapers to an edge of the panel.
  • 4. A composite panel as claimed in claim 1, wherein the non-planar lamina is of PEI material, reinforced with glass fibre material.
  • 5. A composite panel as claimed in claim 1, wherein at least one non-planar skin lamina is vacuum/pressure formed to shape at elevated temperature, prior to being pressed at elevated temperature onto the core.
  • 6. A composite panel as claimed in claim 1, including at least one local reinforcement bonded Inside at least one of the skin laminae.
  • 7. A composite panel as claimed in claim 6, wherein one local reinforcement at least is made up of a plurality of stacked pieces of reinforced-polymer, laminar material bonded to each other, the said local reinforcement being bonded to at least one of the skin laminae and/or the core.
  • 8. A composite panel as claimed in claim 6, wherein one local reinforcement is an elevated temperature vacuum/pressure forming, bonded to at least one of the skin laminae and/or the core.
  • 9. A composite panel as claimed in claim 8, wherein the formed local reinforcement is comprised of the same material as the skin laminae.
  • 10. A composite panel as claimed in claim 8, including one or more internal metal anchorage members partially surrounded by the formed local reinforcement and located in the panel by the local reinforcement.
  • 11. A composite panel as claimed in claim 6, wherein one local reinforcement is a thermoset moulding, bonded to at least one of the skin laminae and/or the core.
  • 12. A composite panel as claimed in claim 11, wherein the thermoset local reinforcement forms an edge of the panel.
  • 13. A composite panel as claimed in claim 6, wherein the or each local reinforcement is bonded in position with the interposition between the local reinforcement(s) and the skin laminae of an elevated temperature adhesive material.
  • 14. A composite panel as claimed in claim 11, wherein the adhesive material is a scrim of non-woven polyester material.
  • 15. A composite panel having: a. two reinforced-polymer, skin laminae,b. a polymer honeycomb core andc. local reinforcement bonded inside at least one of the laminae.
  • 16. A method of forming a panel comprised of two reinforced-polymer, skin laminae and a polymer honeycomb core and having a non-planar surface, the method consisting in the steps of: a. forming the or each skin lamina with a non-planar surface having at least one area of it recessed with respect to adjacent area(s);b. assembling the skin laminae on opposite sides of the polymer honeycomb core;c. compressing the assembly at elevated temperature to crush the core to a lesser thickness at the recessed area(s) of the non-planar, skin lamina; andd. cooling the compressed assembly to adhere the core to the skin laminae and set it in its crushed state.
  • 17. A method of forming a panel as claimed in claim 16, the panel having at least one local reinforcement between the skin laminae, the method including bonding the local reinforcement to one or both skin laminae during the compression and cooling steps.
  • 18. A method of forming a panel as claimed in claim 17, including providing an elevated temperature adhesive material between the local reinforcement(s) and the or each skin laminae to which the local reinforcement(s) are to be bonded.
Priority Claims (1)
Number Date Country Kind
0526312.4 Dec 2005 GB national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/GB06/04655 12/13/2006 WO 00 9/30/2008