Claims
- 1. A composite pipeline comprising an elongate pipe of lightweight, load bearing material having a cylindrical outer surface, a coating of two layers of glass fiber on the entire outer surface of the pipe, and a thick layer of load bearing, reinforced concrete cast in place directly on the coating around the pipe, said layer of concrete having a thickness at least ten times as thick as the thickness of the pipe, and said pipe, said coating and said layer of concrete all integrally bonded together, thus resulting in an integral composite pipeline.
- 2. A composite pipeline comprising an elongate, cylindrical, load bearing steel pipe, at least one layer of glass fibers bonded to the entire outer surface of the steel pipe, a layer of structural adhesive bonded to the entire outer surface of the glass fibers, and a thick layer of load bearing, reinforced concrete cast in place directly on the layer of adhesive around the pipe, said layer of concrete having a thickness several times as thick as the thickness of the steel pipe, and said pipe, said layer of adhesive, said layer of glass fibers and said layer of concrete all integrally bonded together, thus resulting in an integral, composite pipeline of substantial strength and load bearing ability.
- 3. A composite pipeline as in claim 2, wherein there are two layers of glass fibers on the outer surface of the steel pipe, and said steel pipe has a wall thickness of from about 0.312 inches to about 0.33 inches, and said layer of concrete has a thickness of from about 4.0 inches to about 8.0 inches.
- 4. A composite pipe as in claim 3, wherein the composite pipeline has an overall diameter of from about 30 inches up to about 60 inches.
- 5. A composite pipeline as in claim 2, wherein the structural adhesive comprises a water insensitive thermal setting resin, said structural adhesive comprising a shear transfer means between the pipe and layer of concrete, so that as the cast in place concrete cures, it shrinks, thus placing the concrete under tension, and when the pipeline is submerged in a body of water, the concrete swells and the tensile stress on the concrete is thus eliminated.
- 6. A composite pipeline as in claim 2, wherein a wrapper is applied to the outer surface of the steel pipe to protect the pipe against electrolytic corrosion, reinforcing means secured to the outer surface of the steel pipe and extending into the layer of concrete, said reinforcing means comprising a spiral wire spirally wound around the pipe and secured to the outer surface of the pipe prior to application of the wrapper and concrete, and said reinforcing means comprising a shear transfer means.
- 7. A composite pipeline as in claim 6, wherein the spiral wire is welded to the pipe.
- 8. A composite pipeline as in claim 2, wherein a wrapper is applied to the outer surface of the steel pipe to protect the pipe against electrolytic corrosion, reinforcing means secured to the outer surface of the steel pipe and extending into the layer of concrete, said reinforcing means comprising a plurality of axially spaced apart, circumferentially extending expanded metal rings secured to the outer surface of the pipe prior to application of the wrapper and concrete.
- 9. A composite pipeline as in claim 2, wherein a wrapper is applied to the outer surface of the steel pipe to protect the pipe against electrolytic corrosion, reinforcing means secured to the outer surface of the steel pipe and extending into the layer of concrete, said reinforcing means comprising a plurality of rings secured to the outer surface of the pipe, and a plurality of radially outwardly extending lugs on each of said rings.
- 10. A composite pipeline as in claim 2, wherein reinforcing means are embedded in said concrete and extend generally longitudinally of the pipe, and spacer means secured to the pipe and to the reinforcing means to hold the reinforcing means in spaced relation to the pipe.
BACKGROUND OF THE INVENTION
This application is a continuation-in-part application of co-pending application Ser. No. 150,633, filed June 7, 1971, now abandoned, entitled COMPOSITE PIPELINE.
US Referenced Citations (14)
Continuation in Parts (1)
|
Number |
Date |
Country |
| Parent |
150633 |
Jun 1971 |
|