The present invention relates to the construction of composite preform structural panels, and more particularly to a composite preform incorporating an electrically conductive stitching that forms an electrically conductive grid network to dissipate electrical energy received from a lightning strike throughout the thickness of the composite preform structural panel.
The ability to effectively deal with lightning strikes on composite materials that form structural panels for wings, fuselages and other components of a primary aircraft structure is anticipated to be an important consideration on newly developed aircraft. This is because composite materials, which are becoming increasingly common in aircraft use, are not highly conductive and cannot readily dissipate the energy from a lightning strike as efficiently as the traditional metal body components used with many present day primary aircraft. Composite materials are nevertheless highly desired because of the significant weight reduction that they can provide, in addition to the very high structural rigidity and strength they offer.
Presently, the solution to providing composite materials with the ability to dissipate electrical energy experienced during a lightning strike has involved coating the composite body panels with coatings such as Astrostrike® or other like materials. Such a solution forms an additional manufacturing step that is required to be performed after the composite preform, that forms the aircraft structural panel, has been completely manufactured. This is obviously more expensive than a solution in which the composite preform forming the structural panel is manufactured to include a means to dissipate electrical energy from a lightning strike.
It would therefore be highly desirable to provide a composite preform structural panel, as well as a manufacturing process, that integrates lightning protection directly into the primary manufacturing process of the composite preform. More specifically, it would be highly desirable to provide a structural panel and method of manufacturing same in which lightning protection is integrated into the primary manufacturing process in a manner that does not significantly increase the overall weight of the finished composite preform, and which does not significantly add to the cost or complexity of the manufacturing process of forming same.
The above and other objects are provided by a structural panel and method incorporating a stitched, electrically conductive material that is applied to a composite preform during the primary manufacturing process of the composite preform. The apparatus forms a composite preform having electrically conductive stitching that forms a grid-like network for dissipating electrical energy throughout at least a portion of the thickness of the composite preform. In one preferred form, the composite preform includes electrically conductive stitching extending only partially through its thickness. An alternative embodiment incorporates the electrically conductive stitching extending completely through the thickness of the composite preform to opposing surfaces of the composite preform. In yet another preferred form the electrically conductive stitching extends only through a portion of the thickness of the composite preform while a non-conductive polymer stitching extends through the entire thickness of the preform. In either event, the electrically conductive stitching is applied during the primary manufacturing process of forming the structural member.
In each of the preferred embodiments discussed above, the electrically conductive stitching comprises a metal stitching comprised of a metallic thread. In one alternative preferred embodiment suitable for use with fuel tanks and other liquid-containing components, a non-conductive, liquid-crystal polyester stitching is employed as the stitching thread. In one preferred form the non-conductive stitching thread comprises Vectran® liquid-crystal polymer thread.
The apparatus and method of the present invention forms a means to better dissipate the electrical energy imparted to the composite preform during a lightning strike by using the electrically conductive stitching to dissipate the electrical charge throughout at least a portion of the thickness of the composite preform. Since the electrically conductive stitching is applied during the primary manufacturing process for the composite preform, this significantly reduces the cost associated with the manufacture of the composite preform.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples are intended for purposes of illustration only and are not intended to limited the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
Referring to
With further reference to
Referring to
Referring to
One suitable non-conductive stitching material is liquid-crystal polymer thread, such as Vectran® polymer stitching thread, available from Celanese AG. In the embodiments of
The use of Vectran® liquid-crystal polymer stitching would be particularly useful for stitching in composite preforms that are to form a portion of a fuel tank. This is because Vectron® liquid-crystal stitching is known to be highly resistant to microcracking along the stitch-thread length when its associated composite preform is infused and cured with epoxy resin. Accordingly, with Vectran® liquid-crystal polymer thread, stitching through the entire thickness of a composite part can readily be implemented even for sensitive component parts needed to hold fuel, water, or other liquids.
An alternative to the use of Vectran® liquid-crystal polymer thread for a component panel that will be used to hold fuel or any other form of liquid would be to simply provide the electrically conductive stitching 14 along a portion of the thickness of the composite preform 12, as shown in FIG. 2. Since the electrically conductive stitching 14 of
The structural panel of the present invention thus provides a panel having a means for dissipating electrical energy received from a lightning strike throughout the thickness of the panel. Also importantly, the electrically conductive stitching 14 or 106 is integrated into the composite preform during the primary manufacturing process to thus minimize the overall cost of the finished structural panel.
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
This application is a divisional of U.S. patent application Ser. No. 10/235,778 filed on Sep. 5, 2002, now U.S. Pat. No. 6,794,012, the disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4352142 | Olson | Sep 1982 | A |
4479163 | Bannink, Jr. et al. | Oct 1984 | A |
4494165 | Maheshwari | Jan 1985 | A |
4583702 | Baldwin | Apr 1986 | A |
4628402 | Covey | Dec 1986 | A |
4755904 | Brick | Jul 1988 | A |
4776160 | Rees | Oct 1988 | A |
5132168 | Meyn et al. | Jul 1992 | A |
5260124 | Gaier | Nov 1993 | A |
5542624 | Smith | Aug 1996 | A |
5712449 | Miska et al. | Jan 1998 | A |
5935678 | Park | Aug 1999 | A |
20020180077 | Glatkowski et al. | Dec 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20040084103 A1 | May 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10235778 | Sep 2002 | US |
Child | 10684606 | US |